2. Transient and Frequency Analysis

- step response
- impulse response
- basic frequency analysis
- improved frequency analysis

Step response of ^a first-order system

$$
G(s) = \frac{K}{1+sT}e^{-s\tau}, \quad y(t) = K\left[1 - e^{-(t-\tau)/T}\right]u(t-\tau)
$$

determine K from the final value, T and τ from the steepest tangent

Step response of ^a second-order system

$$
G(s) = \frac{K\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}
$$

$$
y(t) = K \left[1 - \frac{e^{-\zeta\omega_0 t}}{\sqrt{1 - \zeta^2}} \sin(\omega_0 \sqrt{1 - \zeta^2} t + \tau) \right], \quad \tau = \arccos\zeta
$$

The local extrema of the step response occur at

determine ζ from

$$
M = \exp\left(\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}\right)
$$

compute ω_0 when the period T of oscillations are determined

$$
\omega_0 = \frac{2\pi}{T\sqrt{1-\zeta^2}}
$$

Impulse response

consider ^a system described by

$$
y(t) = \sum_{k=0}^{\infty} g(k)u(t-k) + v(t)
$$

where $v(t)$ is a disturbance and $u(t)$ is an impulse input:

$$
u(t) = \begin{cases} \alpha, & t = 0\\ 0, & t \neq 0 \end{cases}
$$

if the noise level is low, the estimate of $g(t)$ is

$$
\hat{g}(t) = \frac{y(t)}{\alpha}
$$

Basic frequency analysis

Sine-wave input: $u(t) = a \sin(\omega t)$

$$
y(t) = a|G(i\omega)|\sin(\omega t + \phi) + \text{ transient}
$$

- $\bullet\,$ determine the amplitudes and the phase shift of $y(t)$
- $\bullet\,$ repeat for a number of ω and obtain a graphical approximation of $G(\mathrm{i}\omega)$
- $\bullet\,$ in the presence of noise, it is difficult to estimate a and ϕ

Determining amplitude and phase

Effect of noise

• example with $a = 2, G(s) = 1/(s + 1)$ at frequency $\omega_0 = \sqrt{3}$

• noisy data make it difficult to determine amplitude and phase

Improved frequency analysis

suppress the effect of the noise $e(t)$ by taking correlation with a cosine function

If $T=2k\pi/\omega$, then

$$
y_s(T) = \frac{a|G(i\omega)|T}{2}\cos\phi + \int_0^T e(t)\sin\omega t dt,
$$

$$
y_c(T) = \frac{a|G(i\omega)|T}{2}\sin\phi + \int_0^T e(t)\cos\omega t dt
$$

- $\bullet\,$ the integral terms can be considered as projections of $e(t)$ on an orthonormal basis
- $\bullet\,$ the estimate of $G(\mathrm{i}\omega)$ is

$$
\operatorname{Re}\{\hat{G}(i\omega)\} = \frac{2y_s(T)}{aT}, \quad \operatorname{Im}\{\hat{G}(i\omega)\} = \frac{2y_c(T)}{aT}
$$

References

Chapter ⁶ inL. Ljung, *System Identification: Theory for the User*, Prentice Hall, Second edition, ¹⁹⁹⁹

Chapter ³ in

T. Söderström and P. Stoica, *System Identification*, Prentice Hall, 1989