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Least-squares with constraints

minimize || Az — y||
subjectto z €C

C is a convex set (many applications fall into this case)

e used to rule out certain unacceptable approximations of y
e arise as prior knowledge of the vector x to be estimated
e same as determining the projection of y on a set more complicated than a subspace

e form a convex optimization problem with no analytical solution (typically)
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AN

onnegative orthant box probability simplex norm ball

nonnegativity constraints on variables
C={z | x>0}

® parameter T known to be nonnegative, e.g., powers, rates, etc.

e finding the projection of y onto the cone generated by the columns of A

variable bounds
C={z|Il=x=2u}

e vector = known to lie in an interval [[, u]

e finding the projection of y onto the image of a box under the linear mapping
induced by A
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probability distribution
C={z | x>0 1'2=1}

e arise in estimation of proportions which are nonnegative and sum to one

e approximating y by a convex combination of the columns of A

norm ball constraint
C={z|[lzr—ml <d}

where x( and d are problem parameters

® 1 is a prior guess of what x should be
e d is the maximum plausible deviation from our prior guess

e the constraints | — x|| < d can denote a trust region. (the linear relation
y = Ax is an approximation and only valid when z is near z)

Variations on least-squares

8-4



¢>-regularized least-squares

adding the 2-norm penalty to the objective function
Coe 2 2
minimize || Az — yll5 + 7([z|)2
X
e seek for an approximate solution of Az =~ y with small norm
e also called Tikhonov regularized least-squares or ridge regression

e v > (0 controls the trade off between the fitting error and the size of x

e has the analytical solution for any v > 0:
= (ATA+~I)"1 ATy

(no restrictions on shape, rank of A)

e interpreted as a MAP estimation with the log-prior of the Gaussian
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¢;-regularized least-squares

Idea: adding || to a minimization problem introduces a sparse solution

consider a scalar problem:

minixmize f(z) = (1/2)(x — a)* + ||

to derive the optimal solution, we consider the two cases:
o if x> 0then f(z) = (1/2)(x — (a — 7))?
x* =a —-, provided that a > ~

o if 2 <0 then f(z) = (1/2)(z — (a + 7))’

r* =a-+, provided that a < —v

when |a| < v then z* must be zero
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the optimal solution to minimization of f(x) = (1/2)(x — a)* + || is

o+ _ ) (lal =)sign(a), |a| >~
0, lal <~

meaning: if vy is large enough, =* will be zero

generalization to vector case: x € R"
minimize f(z) = (1/2)||z — al* + llz[
the optimal solution has the same form

.CE* _ <‘CL| T 7>Sign<a’>7 |CL‘ >
0, ja| <~

where all operations are done in elementwise
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¢;-regularized least-squares
adding the £1-norm penalty to the least-square problem
minimize (1/2)||Az — y|l3 +7]z;

e a convex heuristic method for finding a sparse = that gives Az ~ y
e also called Lasso or basis pursuit

e a nondifferentiable problem due to || - ||; term

e no analytical solution, but can be solved efficiently

e interpreted as a MAP estimation with the log-prior of the Laplacian distribution
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Similar form of /;-regularized LS
the /1-norm is an inequality constraint:

minimize ||Ax —y||5 subject to |lz|; <t (1)
T

e t is specified by the user; serves as a budget of the sum of absolute values of x
e the /i-regularized LS (1) is the Lagrangian form of this problem

e for each t where ||z||; <t is active, there is a corresponding value of ~y that yields
the same solution from (1)

< gntou;of | Az — sz g
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S

{5 -norm ball 1-norm ball
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example A € R"™*"™ b € R™ with m = 100, n = 500,y = 0.2

01 {y-regularized solution

Frequency
o
o
(&)}

0.2

40

Frequency
o
(6]

{1-regularized solution

-0.2 -0.1 0 0.1 0.2

Lasso

e histogram of ¢, solution is widely spread while ¢; is more concentrated at zero

e (bottom: m = 5) many entries of ¢; solution are exactly zero as ~y varies while
entries of /5 solution converge to small values
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Generalizations of /;-regularized LS

many variants are proposed for acheiving particular structures in solutions

e elastic net: for highly correlated variables and lasso doesn't perform well
e group lasso: for acheiving sparsity in group

e fused lasso: for neighboring variables to be similar
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Elastic net

a combination between the ¢; and /5 regularizations
minimize (1/2)[|Az -yl +~{(1/2)(1 - o)l|z[; + ez}
where o € |0, 1] and y are parameters

e the problem reduces to a lasso when v = 1 and to a ridge regression when o = 0
e used when we expect groups of very correlated variables (e.g. microarray, genes)

e strictly convex problem for any @ < 1 and A > 0 (unique solution)
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generate A € R?°*° where a; and a» are highly correlated
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e if a; = ay, the ridge estimate of x; and x5 will be equal (not obvious, please verify)

e the blue and

e the lasso does not reflect the relative importance of the two variables

e using a = 0.1, the elastic net selects the estimates of 1 and x5 together
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Group lasso

to have all entries in x within a group become zero simultaneously

let x = (21, %9, ...,2K) where x; € R"

K

minimize (1/2)[| Az — y[3+7> " llzll2
j=1

e the sum of /5 norm is a generalization of /1-like penalty
e as 7 is large enough, either x; is entirely zero or all its element is nonzero
e when n =1, group lasso reduces to the lasso

e a non-smooth convex problem but can be solved efficiently
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generate the problem with x = (z1, 2, ..., x5) where z; € R*
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® as -y increases, some of partition x; becomes entirely zero

e as the sum of 2-norm is zero, the entire vector x is zero
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Fused lasso

to have neighboring variables similar and sparse

C e 2
minimize (1/2)142 =yl -+l + 2 2 les -
j:

e the /; penalty serves to shrink x; toward zero

e the second penalty is /1-type encouraging some pairs of consecutive entries to be
similar

e also known as total variation denoising in signal processing
e ~; controls the sparsity of x and , controls the similarity of neighboring entries

e a nondifferentiable convex problem but can be solved efficiently
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generate A € R!'Y%! and vary v, with two values of v,
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® as 7, consecutive entries of x tend to be equal

e for a higher value of 71, some of the entries of x become zero
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Robust least-squares

consider the LS problem
minimize ||Ax — bl|2
X

but A may have variation or some uncertainty

we can treat the uncertainty in A in different ways

e A is deterministic but belongs to a set

e A is stochastic
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Worst-case robust least-squares

describe the uncertainty by a set of possible values for A:
Ac ACR™""

the problem is to minimize the worst-case error:

minimize sup {||Ax —y|2| A € A}
x A

e always a convex problem

e its tractablity depends on the description of A
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example 1: given A= {A+ F | |E|lr < ¢}

e meaning: each column in A corresponds to measurements of a variable recorded

thru a sensor given with noise RMS

e define w = Ax — v, the worst-case norm-2 can be calculated by

Az — y||* = |[Ex + w|? = ' EY Ex + 2w Ex + ||w]|?
< Aunax(E7 E)l|2|* + 2tr((wa” )T E) + [Jw]|”
< |E|Fll=|® + 2w || F | E|| 7 + [|w]*

< eflzl* + 2efwlll|]l + [[w]* = (ellz]| + [Jwl]])®

e the worst-case norm is attained when E = awx? where o = ¢/ ||w]|||z||

sup [[Az — yllo = Az — yll2 + e[| z])»
AcA

it is a second-order cone programming
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simulation of robust LS: A € R***® and e = (0.1 (used for RLS estimation)

. Random solution

L 8 8
e’ ¢ - ‘I
g 9 8 4 g B :
g 6 — o o g © E A B
- T I A R B N
=5 g g <} 4 ©
g i e 5 hd
4 t? | | | | | | | | |
0.01 0.06 0.12 0.17 0.23 0.28 0.34 0.39 0.45 0.5

e

RLS and LS solutions
I I

0.01 0.06 0.12 0. 17 0.23 0.28 0.34 0.39 0.45

~

»

worst-norm
(6)]
[

N
I
e

e compare robust LS (RLS) with LS using A, A — 3§, A+ ¢ for 6 = 0.01

e compute worst norm || Az — yl|> + e||z||2 as e varies using = from various methods
e (top) worst-norms of random solution x are high and widely spread

e (bottom) worst-norms of RLS are relatively low and are not sensitive to e
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example 2: let U = [ul Uy - un]

uncertainty in A is prescribed as upper bounds of 2-norm of each columns in U

A:{A—I—U| H’LLjHQSCLj, j:1,2,...,n}
it can be shown that

sup  ||Az — y+ Uz|s = a”|z| + || Az — y||»

lujll2<a;
where the supremum is attained when each column of U is selected as

CjSigIl<£Ej>
U; = =
T Az =yl

(Az—vy), j=12,...,n

e the robust LS can be cast as a second-order cone programming

e the term a’'|x| can be viewed as a weighted ¢;-regularization
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Worst-case Chebyshev approximation

setting: find supy; ||(Az — y||oo where uncertainty in A is prescribed as upper bounds
of oo-norm of each columns in U

A:{A—FU‘ ||ujHoo§aj7 j:1,2,...,n}
it can be shown that

sup [ Az — y + Uzl = a’ |2] + [[ Az — yll

lujlloo<a;

where the supremum is attained when

e let j be the index for which ||w||s = |w;|

e for each column uy, for K =1,...,n, set all entries as zero, except the jth as

. a, if z;, and w; has the same sign
(ur); = sign(zrw;) - ar, = .
—ayp, otherwise
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Stochastic robust least-squares

when A is a random variable, so we can describe A as
A=A+T,

where A is the average value of A and U is a random matrix

use the expected value of ||[Ax — y|| as the objective:
minimize E|Az — y||;
xr
expanding the objective gives

E| Az — y||5 = (Az — ) (Az — y) + B2 U Ux
= || Az — y|5 + 2! Px

where P = E[U1U]

Variations on least-squares

8-24



this problem is equivalent to

minimize ||Az — yl|5 + le/%”%
XT

with solution z = (AT A + P)~1 ATy

e a form of a regularized least-squares

e balance making Az — vy small with aiming to get a small z
(so that the variation in Ax is small)

e Tikhonov regularization is a special case of robust least-squares:

when U has zero mean and uncorrelated variables, i.e., E[ULU] = 61

example: u;; ~ U(—a;,a;) and assume columns of U are uncorrelated

Pij — O, Pm — E[U?UZ] =E Z’U%z — mvar[u;m-] — ma?/i%
k=1
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Comparison between robust and stochastic LS

two comparable formulations

e robust LS: Ac A={A+U ||uy| <aj, j=1,2,...,n}
e stochastic LS: A = A+ U where u;; ~ U(—a;,a;)
e A e R and a; ranges from 0.01 to 0.03

—
o

—Ls
~—— —Robust LS ||

| Stochastic LS
0 5
Uncertainty factor («)

[[(A+ alo)z -y
L= N w A o N ©
T T T T T T T

[6)]

robust LS solution is most robust to uncertainty while LS solution is most sensitive to
« and stochastic LS performance lies in between

Variations on least-squares 8-26



Summary

e variants of least-squares problems are regarded as optimization problems with
quadratic cost objective

e most of them are convex programs and can be solved by many existing algorithms

e regularized least-squares are proposed to promote a certain structure in the
solutions
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