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8. Variations on least-squares

• least-squares with constraints

• ℓ2 regularization

• ℓ1 regularization

• generalizations of ℓ1-regularized LS

• robust least-squares
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Least-squares with constraints

minimize ∥Ax− y∥
subject to x ∈ C

C is a convex set (many applications fall into this case)

• used to rule out certain unacceptable approximations of y

• arise as prior knowledge of the vector x to be estimated

• same as determining the projection of y on a set more complicated than a subspace

• form a convex optimization problem with no analytical solution (typically)
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nonnegative orthant box probability simplex norm ball

nonnegativity constraints on variables

C = { x | x ⪰ 0 }

• parameter x known to be nonnegative, e.g., powers, rates, etc.
• finding the projection of y onto the cone generated by the columns of A

variable bounds
C = { x | l ⪯ x ⪯ u }

• vector x known to lie in an interval [l, u]
• finding the projection of y onto the image of a box under the linear mapping

induced by A
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probability distribution

C = { x | x ⪰ 0, 1Tx = 1 }

• arise in estimation of proportions which are nonnegative and sum to one

• approximating y by a convex combination of the columns of A

norm ball constraint
C = { x | ∥x− x0∥ ≤ d }

where x0 and d are problem parameters

• x0 is a prior guess of what x should be

• d is the maximum plausible deviation from our prior guess

• the constraints ∥x− x0∥ ≤ d can denote a trust region. (the linear relation
y = Ax is an approximation and only valid when x is near x0)
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ℓ2-regularized least-squares

adding the 2-norm penalty to the objective function

minimize
x

∥Ax− y∥22 + γ∥x∥22

• seek for an approximate solution of Ax ≈ y with small norm

• also called Tikhonov regularized least-squares or ridge regression

• γ > 0 controls the trade off between the fitting error and the size of x

• has the analytical solution for any γ > 0:

x = (ATA + γI)−1ATy

(no restrictions on shape, rank of A)

• interpreted as a MAP estimation with the log-prior of the Gaussian
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ℓ1-regularized least-squares
Idea: adding |x| to a minimization problem introduces a sparse solution
consider a scalar problem:

minimize
x

f (x) = (1/2)(x− a)2 + γ|x|

to derive the optimal solution, we consider the two cases:

• if x ≥ 0 then f (x) = (1/2)(x− (a− γ))2

x⋆ = a− γ, provided that a ≥ γ

• if x ≤ 0 then f (x) = (1/2)(x− (a + γ))2

x⋆ = a + γ, provided that a ≤ −γ

when |a| ≤ γ then x⋆ must be zero
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the optimal solution to minimization of f (x) = (1/2)(x− a)2 + γ|x| is

x⋆ =

{
(|a| − γ)sign(a), |a| > γ

0, |a| ≤ γ

meaning: if γ is large enough, x∗ will be zero

generalization to vector case: x ∈ Rn

minimize
x

f (x) = (1/2)∥x− a∥2 + γ∥x∥1

the optimal solution has the same form

x⋆ =

{
(|a| − γ)sign(a), |a| > γ

0, |a| ≤ γ

where all operations are done in elementwise
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ℓ1-regularized least-squares

adding the ℓ1-norm penalty to the least-square problem

minimize
x

(1/2)∥Ax− y∥22 + γ∥x∥1 (1)

• a convex heuristic method for finding a sparse x that gives Ax ≈ y

• also called Lasso or basis pursuit

• a nondifferentiable problem due to ∥ · ∥1 term

• no analytical solution, but can be solved efficiently

• interpreted as a MAP estimation with the log-prior of the Laplacian distribution
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Similar form of ℓ1-regularized LS

the ℓ1-norm is an inequality constraint:

minimize
x

∥Ax− y∥22 subject to ∥x∥1 ≤ t (1)

• t is specified by the user; serves as a budget of the sum of absolute values of x
• the ℓ1-regularized LS (1) is the Lagrangian form of this problem
• for each t where ∥x∥1 ≤ t is active, there is a corresponding value of γ that yields

the same solution from (1)

-norm ball -norm ball

contour of
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example A ∈ Rm×n, b ∈ Rm with m = 100, n = 500, γ = 0.2
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• histogram of ℓ2 solution is widely spread while ℓ1 is more concentrated at zero

• (bottom: n = 5) many entries of ℓ1 solution are exactly zero as γ varies while
entries of ℓ2 solution converge to small values
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Generalizations of ℓ1-regularized LS

many variants are proposed for acheiving particular structures in solutions

• elastic net: for highly correlated variables and lasso doesn’t perform well

• group lasso: for acheiving sparsity in group

• fused lasso: for neighboring variables to be similar
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Elastic net

a combination between the ℓ1 and ℓ2 regularizations

minimize
x

(1/2)∥Ax− y∥22 + γ
{
(1/2)(1− α)∥x∥22 + α∥x∥1

}
where α ∈ [0, 1] and γ are parameters

• the problem reduces to a lasso when α = 1 and to a ridge regression when α = 0

• used when we expect groups of very correlated variables (e.g. microarray, genes)

• strictly convex problem for any α < 1 and λ > 0 (unique solution)
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generate A ∈ R20×5 where a1 and a2 are highly correlated
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• if a1 = a2, the ridge estimate of x1 and x2 will be equal (not obvious, please verify)

• the blue and orange lines correspond to the variables x1 and x2

• the lasso does not reflect the relative importance of the two variables

• using α = 0.1, the elastic net selects the estimates of x1 and x2 together
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Group lasso

to have all entries in x within a group become zero simultaneously

let x = (x1, x2, . . . , xK) where xj ∈ Rn

minimize (1/2)∥Ax− y∥22 + γ

K∑
j=1

∥xj∥2

• the sum of ℓ2 norm is a generalization of ℓ1-like penalty

• as γ is large enough, either xj is entirely zero or all its element is nonzero

• when n = 1, group lasso reduces to the lasso

• a non-smooth convex problem but can be solved efficiently
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generate the problem with x = (x1, x2, . . . , x5) where xi ∈ R4
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• as γ increases, some of partition xi becomes entirely zero

• as the sum of 2-norm is zero, the entire vector x is zero
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Fused lasso

to have neighboring variables similar and sparse

minimize
x∈Rn

(1/2)∥Ax− y∥22 + γ1∥x∥1 + γ2

n∑
j=2

|xj − xj−1|

• the ℓ1 penalty serves to shrink xi toward zero

• the second penalty is ℓ1-type encouraging some pairs of consecutive entries to be
similar

• also known as total variation denoising in signal processing

• γ1 controls the sparsity of x and γ2 controls the similarity of neighboring entries

• a nondifferentiable convex problem but can be solved efficiently
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generate A ∈ R100×10 and vary γ2 with two values of γ1
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• as γ2, consecutive entries of x tend to be equal

• for a higher value of γ1, some of the entries of x become zero
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Robust least-squares

consider the LS problem
minimize

x
∥Ax− b∥2

but A may have variation or some uncertainty

we can treat the uncertainty in A in different ways

• A is deterministic but belongs to a set

• A is stochastic
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Worst-case robust least-squares

describe the uncertainty by a set of possible values for A:

A ∈ A ⊆ Rm×n

the problem is to minimize the worst-case error:

minimize
x

sup
A

{∥Ax− y∥2 | A ∈ A}

• always a convex problem

• its tractablity depends on the description of A
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example 1: given A = {Ā + E | ∥E∥F ≤ e}

• meaning: each column in A corresponds to measurements of a variable recorded
thru a sensor given with noise RMS

• define w = Āx− y, the worst-case norm-2 can be calculated by

∥Ax− y∥2 = ∥Ex + w∥2 = xTETEx + 2wTEx + ∥w∥2

≤ λmax(E
TE)∥x∥2 + 2 tr((wxT )TE) + ∥w∥2 (1)

≤ ∥E∥2F∥x∥2 + 2∥wxT∥F∥E∥F + ∥w∥2 (2)
≤ e2∥x∥2 + 2e∥w∥∥x∥ + ∥w∥2 = (e∥x∥ + ∥w∥)2 (3)

• the worst-case norm is attained when E = αwxT where α = e/∥w∥∥x∥

sup
A∈A

∥Ax− y∥2 = ∥Āx− y∥2 + e∥x∥2

it is a second-order cone programming
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simulation of robust LS: Ā ∈ R20×5 and e = 0.1 (used for RLS estimation)
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Random solution

RLS and LS solutions
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• compare robust LS (RLS) with LS using Ā, Ā− δ, Ā + δ for δ = 0.01

• compute worst norm ∥Āx− y∥2 + e∥x∥2 as e varies using x from various methods
• (top) worst-norms of random solution x are high and widely spread
• (bottom) worst-norms of RLS are relatively low and are not sensitive to e
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example 2: let U =
[
u1 u2 · · · un

]
uncertainty in A is prescribed as upper bounds of 2-norm of each columns in U

A = {Ā + U | ∥uj∥2 ≤ aj, j = 1, 2, . . . , n}

it can be shown that

sup
∥uj∥2≤aj

∥Āx− y + Ux∥2 = aT |x| + ∥Āx− y∥2

where the supremum is attained when each column of U is selected as

uj =
cjsign(xj)

∥Āx− y∥2
· (Āx− y), j = 1, 2, . . . , n

• the robust LS can be cast as a second-order cone programming

• the term aT |x| can be viewed as a weighted ℓ1-regularization
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Worst-case Chebyshev approximation

setting: find supU ∥(Ax− y∥∞ where uncertainty in A is prescribed as upper bounds
of ∞-norm of each columns in U

A = {Ā + U | ∥uj∥∞ ≤ aj, j = 1, 2, . . . , n}

it can be shown that

sup
∥uj∥∞≤aj

∥Āx− y + Ux∥∞ = aT |x| + ∥Āx− y∥∞

where the supremum is attained when

• let j be the index for which ∥w∥∞ = |wj|

• for each column uk, for k = 1, . . . , n, set all entries as zero, except the jth as

(uk)j = sign(xkwj) · ak =

{
ak, if xk and wj has the same sign
−ak, otherwise
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Stochastic robust least-squares

when A is a random variable, so we can describe A as

A = Ā + U,

where Ā is the average value of A and U is a random matrix

use the expected value of ∥Ax− y∥ as the objective:

minimize
x

E∥Ax− y∥22

expanding the objective gives

E∥Ax− y∥22 = (Āx− y)T (Āx− y) + ExTUTUx

= ∥Āx− y∥22 + xTPx

where P = E[UTU ]
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this problem is equivalent to

minimize
x

∥Āx− y∥22 + ∥P 1/2x∥22

with solution x = (ĀT Ā + P )−1ĀTy

• a form of a regularized least-squares
• balance making Āx− y small with aiming to get a small x

(so that the variation in Ax is small)
• Tikhonov regularization is a special case of robust least-squares:

when U has zero mean and uncorrelated variables, i.e., E[UTU ] = δI

example: uij ∼ U(−aj, aj) and assume columns of U are uncorrelated

Pij = 0, Pii = E[uT
i ui] = E

[
m∑
k=1

u2
ki

]
= mvar[uki] = ma2j/3
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Comparison between robust and stochastic LS

two comparable formulations

• robust LS: A ∈ A = {Ā + U | |uij| ≤ aj, j = 1, 2, . . . , n}

• stochastic LS: A = Ā + U where uij ∼ U(−aj, aj)

• Ā ∈ R20×15 and aj ranges from 0.01 to 0.03
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robust LS solution is most robust to uncertainty while LS solution is most sensitive to
α and stochastic LS performance lies in between
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Summary

• variants of least-squares problems are regarded as optimization problems with
quadratic cost objective

• most of them are convex programs and can be solved by many existing algorithms

• regularized least-squares are proposed to promote a certain structure in the
solutions
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