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9. Expectation-Maximization Algorithm

• background on ML

• two-component mixture model

• EM algorithm in general

• applications
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Maximum likelihood estimates

suppose y(1), y(2), . . . , y(N) be available samples from a distribution f (y; θ)

the maximum likelihood estimate is obtained by

θ̂ml = argmaxθ log f (y(1), y(2), . . . , y(N); θ)

• θ̂ml gives the distribution that most agrees with the data

• many distributions have a closed-form expression of ML estimate

• most of ML estimates are very intuitive and natural, e.g.,
– Gaussian: µ̂ is the sample mean and σ̂2 is the sample variance
– binomial: X ∈ {0, 1} where parameter is p = P (X = 1)

p̂ =
1

N

N∑
i=1

x(i) (portion of samples that are equal to 1)
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ML estimation of Gaussian distribution

let Y ∼ N (µ,Σ) and we have samples {y(i)}Ni=1

log-likelihood function of one Gaussian sample is

log f (y) = −n

2
log(2π)− 1

2
log detΣ− 1

2
(y − µ)TΣ−1(y − µ)T

for i.i.d. samples, the log-likelihood function of {y(i)}Ni=1 is the sum of individuals:

L(Θ) = −nN

2
log(2π) + N

2
log detΣ−1 − 1

2

N∑
i=1

(y(i) − µ)TΣ−1(y(i) − µ)T

if we define C = 1
N

∑N
i=1(y

(i) − µ)(y(i) − µ)T
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the log-likelihood function (up to constant) and to be maximized is

L(Θ) = N

2
log detΣ−1 − N

2
tr(CΣ−1)

the zero gradient conditions are

∂L
∂µ

=

N∑
i=1

Σ−1(y(i) − µ) = 0

∂L
∂Σ−1

= Σ− C = 0 (use ∂ log detX
∂X

= X−1 and ∂ tr(ATX)

∂X
= A )

we can solve for the ML estimates as

µ̂ =
1

N

N∑
i=1

y(i), Σ̂ = C =
1

N

N∑
i=1

(y(i) − µ̂)(y(i) − µ̂)T

(ML estimates are sample mean and (a biased) sample covariance)
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ML estimation of multinomial distribution

two possible ways of explaining X ∼ Multinomial(ϕ)

• X = (X1, X2, . . . , Xm) where a sample of X is

X = (0, . . . , 0, 1︸︷︷︸
kth

, 0, . . . , 0) with probability ϕk, k = 1, 2, . . . ,m

p(x) = ϕx1
1 ϕx2

2 · · ·ϕxm
m

• X ∈ {1, 2, . . . ,m} where P (X = k) = ϕk for k = 1, 2, . . . ,m

p(x) = ϕ
I{x=1}
1 ϕ

I{x=2}
2 · · ·ϕI{x=m}

m

where I{x ∈ C} is an indicator function that returns 1 if x ∈ C and 0 otherwise
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to obtain ML estimate of ϕ, we maximize the cost function:

g(ϕ) = log p(x;ϕ)− λ(ϕ1 + ϕ2 + · · ·ϕm − 1)

(constrained optimization due to the constraint:
∑

i ϕi = 1)

• suppose we have data {x(i)}Ni=1 available

• first form of X :

log p(x(1), . . . , x(N);ϕ) =

N∑
i=1

x
(i)
1 logϕ1 + x

(i)
2 logϕ2 + · · · + x(i)

m logϕm

∂g

∂ϕj
=

N∑
i=1

x
(i)
j

ϕj
− λ = 0 ⇒ ϕj =

1

λ

N∑
i=1

x
(i)
j
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then we can the summation over j

1 =

m∑
j=1

ϕj =
1

λ

N∑
i=1

m∑
j=1

x
(i)
j =

N

λ
⇒ λ = N

the ML estimate of ϕj is then the portion of x(i)
j = 1 out of N samples

ϕj =
1

N

N∑
i=1

x
(i)
j , j = 1, 2, . . . ,m

• second form of X :

log p(x(1), . . . , x(N);ϕ) =

N∑
i=1

I{x(i) = 1} logϕ1 + · · · + I{x(i) = m} logϕm
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log p(x(1), . . . , x(N);ϕ) =

N∑
i=1

I{x(i) = 1} logϕ1 + · · · + I{x(i) = m} logϕm

∂g

∂ϕj
=

N∑
i=1

I{x(i) = j}
ϕj

− λ = 0 ⇒ ϕj =
1

λ

N∑
i=1

I{x(i) = j}

then we can the summation over j in the same way and obtain λ = N

ϕj =
1

N

N∑
i=1

I{x(i) = j}, j = 1, 2, . . . ,m

the result is the same: ϕj is the portion of x(i) = j from N samples
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Bayes rule

from Bayes rule:
P (A|B) =

P (B|A)P (A)

P (B)

let Z be latent variable, Y be data measurement, and θ be model parameter

one important identity used in EM algorithm is

P (Z|Y ; θ) =
P (Y |Z; θ)P (Z; θ)

P (Y ; θ)

=
P (Y |Z; θ)P (Z; θ)∑
z P (Y |Z; θ)P (Z; θ)

the latter is obtained from the total probabilities
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Two-component mixture model

we explain a density estimation of mixture model as an example of EM

mixture model

Y1 ∼ N (µ1,Σ1)

Y2 ∼ N (µ1,Σ1)

Y = (1− Z)Y1 + ZY2

Z ∈ {0, 1} with P (Z = 1) = π

• bi-modal shape in histogram suggests us to use a mixture model instead of a
Gaussian

• the problem is to estimate Θ = (µ1,Σ1, µ2,Σ2, π) where Z is unobservable
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suppose data Y = {y(i)}Ni=1 are available

• density function of Y is followed from

FY (y) = (1− π)P (Y1 ≤ y)︸ ︷︷ ︸
Z=0

+πP (Y2 ≤ y)︸ ︷︷ ︸
Z=1

, fY (y) = (1− π)f1(y) + πf2(y)

• loglikelihood function of Θ:

L(Y ; Θ) =

N∑
i=1

log
[
(1− π)f1(y

(i)) + πf2(y
(i))
]

difficult to solve ML even numerically due to the sum of the term inside log(·)
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assumption: if Z is known

• density function of (Y, Z) is

f (Y, Z; Θ) = f (Y |Z; Θ)f (Z; Θ), fY |Z is normal and f (Z; Θ) = πz(1− π)1−z

• loglikelihood function is

L(Y, Z; Θ) =

N∑
i=1

[
(1− z(i)) log f1(y(i)) + z(i) log f2(y(i))

]

+

N∑
i=1

[
(1− z(i)) log(1− π) + z(i) logπ

]

• ML estimate of (µi,Σi): sample mean and covariance

• ML estimate of π: the portion of z(i) = 1
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ML estimate of Θ when Z is assumed to be measurable

π̂ =
1

N

N∑
i=1

I{z(i) = 1}

µ̂1 =

∑N
i=1 I{z(i) = 0}y(i)∑N
i=1 I{z(i) = 0}

, Σ̂1 =

∑N
i=1 I{z(i) = 0}(y(i) − µ̂1)(y

(i) − µ̂1)
T∑N

i=1 I{z(i) = 0}

µ̂2 =

∑N
i=1 I{z(i) = 1}y(i)∑N
i=1 I{z(i) = 1}

, Σ̂2 =

∑N
i=1 I{z(i) = 1}(y(i) − µ̂2)(y

(i) − µ̂2)
T∑N

i=1 I{z(i) = 1}

note that I{X} is the indicator function that returns 1 if the event X holds and
returns 0 otherwise

conclusion: ML estimate is very natural and easy to obtain when Z is known
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EM algorithm of two-mixture model

since Z is actually unknown, we propose an iterative EM algorithm

1. E-step: guess the values of Z(i) by its expected value

γi(Θ) = E[Z(i) | Θ, Y ] = P (Z(i) = 1 | Θ, Y ), i = 1, 2, . . . , N

γi is called responsibility of model 2 for observation i

2. M-step: update the estimates using weight from responsibilities

µ̂1 =

∑N
i=1(1− γ̂i)y

(i)∑N
i=1(1− γ̂i)

, Σ̂1 =

∑N
i=1(1− γ̂i)(y

(i) − µ̂1)(y
(i) − µ̂1)

T∑N
i=1(1− γ̂i)

µ̂2 =

∑N
i=1 γ̂iy

(i)∑N
i=1 γ̂i

, Σ̂2 =

∑N
i=1 γ̂i(y

(i) − µ̂2)(y
(i) − µ̂2)

T∑N
i=1 γ̂i

π̂ = 1
N

∑N
i=1 γ̂i
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• we iterate E and M-steps until convergence

• the responsibilities can be computed by Bayes rule on page 9-9:

P (Z = 1 | Θ, Y ) =
f (Y |Z = 1;Θ)P (Z = 1;Θ)

f (Y |Z = 1;Θ)P (Z = 1;Θ) + f (Y |Z = 0;Θ)P (Z = 0;Θ)

=
πf2(y)

πf2(y) + (1− π)f1(y)

γi =
π̂f2(y

(i))

π̂f2(y(i)) + (1− π̂)f1(y(i))

(soft guess for the values of z(i) instead of using the indicator function)

• initial guess of Θ is needed for the first iteration

• we try several initial guesses to find many local maxima solutions
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Mixtures of M Gaussians

we can extend to mixture of M Gaussians with the setting:

• Z is a random variable with sample space of {1, 2, . . . ,M}

• Z ∼ multinomial(ϕ) with P (Z = j) = ϕj, j = 1, 2, . . . ,M

ϕ ⪰ 0, 1Tϕ = 1

• when Z = j, Y is drawn from N (µj,Σj)

• samples {y(i)}Ni=1 are generated by random hidden variables z(i)

problem:

• only Y are observed but Z is latent (hidden) variable

• we aim to estimate Θ = (µ1,Σ1, . . . , µM ,ΣM , ϕ)

Expectation-Maximization Algorithm 9-16



• loglikelihood function

L(Y ; Θ) =

N∑
i=1

log f (y(i); Θ) =
N∑
i=1

log
M∑

z(i)=1

f (y(i)|z(i);µ,Σ)f (z(i);ϕ)

(difficult to find ML estimate in closed-form)

• if Z was known, the log-likelihood function and ML estimate would be

L(Y, Z; Θ) =

N∑
i=1

log f (y(i)|z(i);µ,Σ) + log f (z(i);ϕ)

ϕ̂j = (1/N )

N∑
i=1

I{z(i) = j}, µ̂j =

∑N
i=1 I{z(i) = j}y(i)∑N
i=1 I{z(i) = j}

Σ̂j =

∑N
i=1 I{z(i) = j}(y(i) − µ̂j)(y

(i) − µ̂j)
T∑N

i=1 I{z(i) = j}

Expectation-Maximization Algorithm 9-17



EM algorithm for M-mixture model

1. E-step: for each i, j guess the values of Z(i) by its expected value

γ
(i)
j = P (Z(i) = j | Θ, y(i)), j = 1, 2, . . . ,M

(posterior probability of Z(i) given y(i) using the current estimate of Θ)

2. M-step: update the estimates using soft guess of Z(i)

ϕ̂j =
1

N

N∑
i=1

γ
(i)
j , µ̂j =

∑N
i=1 γ

(i)
j y(i)∑N

i=1 γ
(i)
j

, Σ̂j =

∑N
i=1 γ

(i)
j (y(i) − µ̂j)(y

(i) − µ̂j)
T∑N

i=1 γ
(i)
j

for j = 1, 2, . . . ,M

3. repeat 1) and 2) until the convergence
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notes on EM algorithm for mixture models

• the difference in the M-step

– Z(i) were known: use hard guess as the indicator function
– Z(i) is not known: use soft guess as the posterior probability

• in the E-step, we calculate γj using Bayes rule on page 9-9

P (Z = j|y; Θ) =
f (y|Z = j;µ,Σ)P (Z = j;ϕ)∑M
j=1 f (y|Z = j;µ,Σ)︸ ︷︷ ︸

Gaussian density

P (Z = j;ϕ)︸ ︷︷ ︸
ϕj

γ
(i)
j =

ϕjfj(y
(i))∑M

j=1 ϕjfj(y(i))
, i = 1, 2, . . . , N

where fj is the Gaussian density function of the jth model governed by the current
estimate of µj,Σj
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EM algorithm in general

applied to maximum likelihood estimation problems with latent variables

problem assumptions:

• (Y, Z) are random variables; only Y is observed but Z is a latent

• log-likelihood function is

L(Θ) =
N∑
i=1

log f (y(i); Θ) =
N∑
i=1

log
∑
z

f (y(i), z(i); Θ)

explicit ML estimate is hard to obtained; but easy when z(i) were observed
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Ingredients in EM
Jensen’s inequality: if X is and RV and ϕ(·) is a convex function then

E[ϕ(X)] ≥ ϕ(E[X ])

let ϕ(x) = log(x) (concave) and let f (y, z; θ) and q(z) be any density functions

log
(∑

z

q(z)
f (y, z; θ)

q(z)

)
≥
∑
z

q(z) log f (y, z; θ)
q(z)

(here it is the expectation of f/q and is w.r.t. to distribution q)

• if f (y, z; θ)/q(z) does not depend on z (constant) then ineq. becomes tight

• this is achieved when q(z) = f (z | y; θ) (sufficient choice)

since we can choose q(z) =
f (y, z; θ)∑
z f (y, z; θ)

=
f (y, z; θ)

f (y; θ)
= f (z | y; θ)
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Expectation and Maximization steps

we start with the exact loglikelihood function (to be maximized) on page 9-20

L(Θ) =
N∑
i=1

log
∑
z

f (y(i), z(i); Θ)

and its lower bound using Jensen’s inequality

L(Θ) ≥
N∑
i=1

∑
z(i)

qi(z
(i)) log f (y

(i), z(i); Θ)

qi(z(i))

• E-step: for each i, set qi’s to be the posterior of z(i) given y(i) and current Θ

qi(z
(i)) = f (z(i) | y(i); Θ)

and the inequality becomes equality (LB is the expectation w.r.t. qi )
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• M-step: maximize the lower bound w.r.t. Θ

Θ+ = argmax
θ

N∑
i=1

∑
z(i)

qi(z
(i)) log f (y

(i), z(i); Θ)

qi(z(i))

monotonic property: let Θ and Θ+ be updates from successive iterations

we can show that EM always monotonically improve the log-likelihood

L(Θ+) ≥ L(Θ)

convergence test is to check if small improvement in L(Θ) (set by a threshold)
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Proof of monotonic property

• when we start with Θ in E-step, we choose qi(z
(i)) = f (z(i)|y(i); Θ)

L(Θ) =
N∑
i=1

∑
z(i)

qi(z
(i)) log f (y

(i), z(i); Θ)

qi(z(i))
(Jensen’s ineq holds with eq.)

• recall Jensen’s inequality also holds with

L(Θ+) ≥
N∑
i=1

∑
z(i)

qi(z
(i)) log f (y

(i), z(i); Θ+)

qi(z(i))

≥
N∑
i=1

∑
z(i)

qi(z
(i)) log f (y

(i), z(i); Θ)

qi(z(i))
= L(Θ)

(since Θ+ maximizes the RHS of ineq when Θ is treated as a dummy variable)
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Application on fitting mixture model

geyser at Yellowstone national park, U.S

data are eruption time and waiting time

bimodel shapes are apparent
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results of fitting two Gaussian mixture model using EM

40 50 60 70 80 90 100
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• Gaussian parameters are

µ1 =

[
79.97
4.29

]
,Σ1 =

[
36.04 0.94
0.04 0.17

]
, µ2 =

[
54.48
2.04

]
,Σ2 =

[
33.7 0.44
0.44 0.07

]

• MATLAB (file exchange) codes by Mo Chen
• the result can be compared with k-mean clustering
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