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Maximum likelihood estimates

2) (N)

suppose y'1, 2 ... yN) be available samples from a distribution f(y;6)

the maximum likelihood estimate is obtained by

éml — al'ginaXy 1Og f(y(1)7 y(2)7 ceen Y ;

e 0, gives the distribution that most agrees with the data
e many distributions have a closed-form expression of ML estimate

e most of ML estimates are very intuitive and natural, e.g.,

— Gaussian: i is the sample mean and 62 is the sample variance
— binomial: X € {0,1} where parameter is p = P(X = 1)

N
1 .
5 (2) i
D=7 .El X (portion of samples that are equal to 1)
1=
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ML estimation of Gaussian distribution

let Y ~ AN (i,%) and we have samples {y¥}

log-likelihood function of one Gaussian sample is

1

n 1 _
log f(y) = —=log(2m) — = logdet ¥ — =(y — )" S (y — p)"
2 2 2

for i.i.d. samples, the log-likelihood function of {y¥}¥ is the sum of individuals:

N
L(@)——ﬂlo (2 >+51 dtz—l—EZ( @ — )T~y — )T
= — 5 loglm) + - log de 5 Y v Y v
=1

if we define C' = LS (y® — 1) (yD — p)”
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the log-likelihood function (up to constant) and to be maximized is

N N
L(O) = Elog det X7 — ?tr(C’Z_l)

the zero gradient conditions are

ZZ —,u =0
1=1

(92]{1 =YX —C=0 (use 810§§(etX = X! and 8trg;1(TX>
we can solve for the ML estimates as
N ) | N
ﬂ=N;y“), Z=C=N;<y”—A i)

(ML estimates are sample mean and (a biased) sample covariance)
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ML estimation of multinomial distribution

two possible ways of explaining X ~ Multinomial(¢)
o X =(X1,Xy,...,X,,) where a sample of X is

X =(0,...,0,, 1h,,0,...,0) with probability ¢, k=1,2,...,m
Lt

p(x) = ¢1'dy° - o
o X €{1,2,...,m} where P(X =k)=¢p fork=1,2,...,m
pla) = ¢y gy gl

m

where I{x € C'} is an indicator function that returns 1 if x € C' and 0 otherwise
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to obtain ML estimate of ¢, we maximize the cost function:

g(¢) = logp(x; ) — AMp1 + P2+ -+ Py — 1)

(constrained optimization due to the constraint: ) . ¢; = 1)

e suppose we have data {:z:(i) NV | available

e first form of X:

logp(a™, ..., 2™ 6) = 2" log ¢y + 2 log o + -+ + 2 log Gy
1=1
dg N oW 1 Y (0
L =N =0 = ¢==>
%, ~ 20, PO
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then we can the summation over j

m

1 s N
122%‘:;22% =

>
[
Z

the ML estimate of ¢; is then the portion of xgi) = 1 out of N samples

e second form of X:

N
logp(zW, ... W) ) = Zl{x(i) = 1}log s + - - - + I{z'D = m} log épn,
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N
logp(zV, ... WM. ¢) = Zl{x(i) = 1}og ¢y + - - + I{z'Y = m}log ¢,
i=1

09~z = j} IS
— = —A=0 = L= — Izl =

then we can the summation over j in the same way and obtain A = N

N
1 S
qu:NZI{x():]}, j=12....m
i—1

the result is the same: ¢; is the portion of 29 = j from N samples
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Bayes rule

from Bayes rule:

P(B|A)P(A)
P(B)

P(A|B) =

let Z be latent variable, Y be data measurement, and 6 be model parameter

one important identity used in EM algorithm is

P(Y|Z.0)P(Z;6)
P(Y;0)

P(Y|Z:0)P(Z;0)
S _P(Y|Z.0)P(Z:0)

P(Z|Y0)

the latter is obtained from the total probabilities
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Two-component mixture model

we explain a density estimation of mixture model as an example of EM

0.05

mixture model

0.045 |

0.04

| j Vi o~ N, S)
YZ ~ N(Mlazl)

0.015 [ ‘"mm | Y — (1—Z)H—|—Z)/2
 Ze{0,1}with P(Z=1)=n

frequency
o
o ©
] o
w w

©
o
[}

-6 -4 -2 0 2 4 6 8 10

e bi-modal shape in histogram suggests us to use a mixture model instead of a
Gaussian

e the problem is to estimate © = (1, 1, 2, X9, ) where Z is unobservable
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suppose data Y = {yW}X  are available

e density function of Y is followed from

Fy(y) = (1 — 7T)PV(Yl < y2+zTP(Y3 <vy), fr(y)=00-—m)fily)+7fay)

e loglikelihood function of O:

LV;0) =Y log |(1 = ) Aly™) + ()

difficult to solve ML even numerically due to the sum of the term inside log(-)
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assumption: if Z is known
e density function of (Y, Z) is

fY,Z2;0)=f(Y|Z,0)f(Z;0), fy|zisnormaland f(Z;0)=7*(1— m)i*

e loglikelihood function is

N
L(Y,Z,0)= Z[l—z )log f1(y'Y) + z(i)logfz(y@ﬂ

+ 37 (1= =) log(1 —m) + 20 log

1=1

e ML estimate of (p;,2;): sample mean and covariance

e ML estimate of 7: the portion of z(9) = 1
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ML estimate of © when Z is assumed to be measurable

N i i N i i ~ i ~
gy — i HET =00 o S e = 0h - i) - )"

S I =0} >oity Iz =0}

SN Iz =1} S I{z0 =1}

note that /{ X} is the indicator function that returns 1 if the event X holds and
returns 0 otherwise

conclusion: ML estimate is very natural and easy to obtain when Z is known
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EM algorithm of two-mixture model

since Z is actually unknown, we propose an iterative EM algorithm
1. E-step: guess the values of Z¥) by its expected value
v(0)=E[ZY|0,Y]=P(Z%=1|0,Y), i=12,...,N
v, is called responsibility of model 2 for observation

2. M-step: update the estimates using weight from responsibilities

ol (=AY e B (=) — ) — )"

M1 = N R ’ 1 — N R
Zi:l(l — %’) Zizl(l — ’Yz')
N A i N . i ~ i ~
ey e N Y — )y — )"
/’LQ _ N “ 9 2 — N N
Zi:l Vi Zi:l%

. N .
72%21:1%
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e we iterate E and M-steps until convergence

e the responsibilities can be computed by Bayes rule on page 9-9:

f(Y|Z=1.0)P(Z =1.0)

P(Z=1|0,Y) = fY|Z=1,0)P(Z=1,0)+ f(Y|Z=0,0)P(Z =0,0)
_ 7 fo(y)
mfaoy) + (1 =) fi(y)
- 7ATf2(?/(i)>

wfoly™) + (1 — ) fi(y™)

(soft guess for the values of 2% instead of using the indicator function)
e initial guess of © is needed for the first iteration

e we try several initial guesses to find many local maxima solutions
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Mixtures of M Gaussians
we can extend to mixture of M Gaussians with the setting:

e 7 is a random variable with sample space of {1,2,..., M}
o 7 ~ multinomial(¢) with P(Z =j)=¢;, j=1,2,...,.M

$=0, 1¢=1
e when Z = j, Y is drawn from N (p;, ;)
e samples {y IV | are generated by random hidden variables z(?)
problem:

e only Y are observed but Z is latent (hidden) variable

e we aim to estimate © = (,LL1, 2ily ey UM 2M ¢>
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e loglikelihood function

N
=Y log £y 0 Zlog Z Fy129; 1, 5) f(21; ¢)
=1

(difficult to find ML estimate in closed-form)

o if Z was known, the log-likelihood function and ML estimate would be

L(Y, Z:;6) Zlogf MN2D; 1, 0) + log £(217; ¢)

EL [{Z(i) _ j}y(z’)
N - .
Zz’:1 ]{Z(Z) =7}

N i . i ~ i ~
S Zz’:1 I{Z( ) = ]}<?/( ) — Uj)(y( ) — ,Uj)T
j = : .
SN (=0 = j)

- <1/N>Zf{z<@‘> =i}, =
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EM algorithm for AM/-mixture model

1. E-step: for each i, j guess the values of Z(¥) by its expected value
W=PzV=j|6,y"), j=12..M
(posterior probability of Z) given y(¥) using the current estimate of O)
2. M-step: update the estimates using soft guess of Z(%)

N ) i N ) i ~ i ~
ol 25 A WY = )y — )T
¢J T NZW] 9
=1

27;21 7](' ! Zi:1 ’7; )

fory =1,2,..., M

3. repeat 1) and 2) until the convergence
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notes on EM algorithm for mixture models

e the difference in the M-step

— 7 were known: use hard guess as the indicator function
— Z'% is not known: use soft guess as the posterior probability

e in the E-step, we calculate ; using Bayes rule on page 9-9

P(Z = jly;0) = U2 =i D) PE = i)
S w2 =g %) P < =J:9)
Gau55|an density %
| ((0)
vﬁz) _ ngj(y ) . i=1,2,....N
Zj:l ¢jfj<y<z>>

where f; is the Gaussian density function of the jth model governed by the current
estimate of 115, 2;
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EM algorithm in general

applied to maximum likelihood estimation problems with latent variables

problem assumptions:

e (Y, Z) are random variables; only Y is observed but Z is a latent

e log-likelihood function is
LO)=> logfy'";0)=> log> f(y"”,21;0)
i=1 i=1 2

explicit ML estimate is hard to obtained; but easy when z(*) were observed
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Ingredients in EM

Jensen’s inequality: if X is and RV and ¢(-) is a convex function then
E[p(X)] = ¢(E[X])

let ¢(x) = log(x) (concave) and let f(y, z;0) and q(z) be any density functions

log(Zq y’29>>2q ) log y,z)@)

(here it is the expectation of f/q and is w.r.t. to distribution ¢)

o if f(y,2;:0)/q(z) does not depend on z (constant) then ineq. becomes tight

e this is achieved when ¢(2) = f(z | y;0) (sufficient choice)

fly,z,0)  fly,20) |
S .20 fe v

since we can choose ¢(z) =
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Expectation and Maximization steps

we start with the exact loglikelihood function (to be maximized) on page 9-20

N
LO)=> log> fy", 2" 0)
1=1 z

and its lower bound using Jensen's inequality

N | (i) (). 9
£(6) 2 30 3 i) g L2
i=1 (i) ¢

o E-step: for each i, set ¢;'s to be the posterior of z(¥) given y'*) and current ©
qi(z(i)) _ f(z(i) | y(i);@>
and the inequality becomes equality (LB is the expectation w.r.t. ¢; )
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e M-step: maximize the lower bound w.r.t. ©

f(y fy), 2. O)
— argmax Z Z qi(z log 22(20)

monotonic property: let © and ©" be updates from successive iterations

we can show that EM always monotonically improve the log-likelihood

L(OT) > L(O)

convergence test is to check if small improvement in £(©) (set by a threshold)
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Proof of monotonic property

e when we start with © in E-step, we choose ¢;(2%) = f(2V|y¥); O)

6) 0.0
Z Zqz N log Iy e ) (Jensen’s ineq holds with eq.)
: qz<z(@))

e recall Jensen's inequality also holds with

| V

g3
>

1V

Z

(i) ().
S i) log Y250 _ pi)
2(1)

1=1

(since ©F maximizes the RHS of ineq when O is treated as a dummy variable)
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waiting time (min)
w »
w (&)1 N [3;]
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n
[¢)]
T

n
T

Application on fitting mixture model

geyser at Yellowstone national park, U.S

data are eruption time and waiting time

bimodel shapes are apparent
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results of fitting two Gaussian mixture

55

5

45

e Gaussian parameters are

 [79.97
M1 =1 429

model using EM

721:

36.04  0.94
0.04 0.17

Y

fo =

e MATLAB (file exchange) codes by Mo Chen

e the result can be compared with k-mean clustering
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54.48
2.04

722:

33.7 0.44
0.44 0.07
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