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To read this note

m the response variable Y is categorical, and often mapped to 1,2,..., K (discrete
random variable, RV)

m the predictor/feature vector X = (X1, X»,...,X,) can be mixed; some X;'s can
be continuous and others can be discrete

m this note does not use a rigorous notation of distribution function (either f(x) or
p(x)) to distinguish between discrete and continous RV as X can be mixed

m the typically used subscripts x,y of distribution functions as in p,(z), p,(y) are
omitted for notation simplicity

m the notation f(z) may be referred to as a parametric model, or a density function;
please interpret from the local context
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What is a classification? Why NOT a linear regression 7
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What is a classification ?

classification is a process that assigns the observation to a class

m often, a method first predicts the probability of each category/class of a
qualitative variable; or it provides rules to assign observations to a class

m a classification technique is called

example: the default data set: incomes and monthly credit card balances

= shows those who defaulted
on credit card payment (failed to
II pay the debt); and those who did

50000

Income
40000
Balance
Income

not in blue

20000

20000

| I m individuals who defaulted tended
e v 5w to have higher balances

Default

action: if the balance of a new individual is given, predict the probability of default
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example: classify patients heart disease condition: , , severe (3 classes)
using z =(LDL, BMI, alcohol, age) as predictors
m a classifier can provide threshold-based rules on z to predict the class, e.g.,

m Y=mild if LDL < 40 and BMI < 30

Y= if (LDL in [100,120] and alcohol > 10) OR (LDL in [120,200] and age
> 40) OR (BMl-alcohol in [1,100])

m V=severe if (LDL > 200) OR (BMl-alcohol > 200)

m a classifier approximates the probability of each class (given an observed value of
X)) via mathematical functions

F:R" = 0,15, fu(2:0) = P(Y = k|X =)

where 6 is the model parameter needed to be identified

training process: involves how to find good thresholds or the best parameter 6, using
training data

test process: given a new value of X, we predict Y using the estimated model

Statistical inference and modeling Jitkomut Songsiri 7/75



Why Not linear regression?

suppose we try to predict a medical condition of three cases: stroke, drug overdose,

we can encode values for the (qualitative) response Y in many ways

1, stroke 1,
choice 1: Y =< 2, drug overdose choice 2: Y =< 2, stroke
3, 3, drug overdose
m since the values of Y do not have a , the two codings would

produce different linear models that give different predictions

m but if Y takes a natural ordering such as mild, moderate and severe, and the gaps

between (mild,moderatee) and (moderate,severe) are similar, then encoding Y as
1,2,3 would be reasonable
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Encoding a binary response
if there are only two possibilities: stroke, drug overdose, only two different codings

0, stroke 0, drug overdose

choice 1: Y = { choice 2: YV = {

1, drug overdose 1, stroke

m we can fit a linear regression using the first choice of encoding and predict drug
overdose if Y > 0.5 (or for choice 2, predict stroke if Y > 0.5)

m D it can be shown that the two flip codings produce the same predictions

Y=1-Y, Y=X8, Y= X7, unseen predictor is 2T = [1 ET}
show that 27 B > 0.5 < ZTMS < 0.5

m however, some of Y could lie outside [0, 1] making hard to interpret as probabilities
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Logistic regression
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Binary classification

consider the problem of classifying data into two classes: Y € {0, 1}

setting:
m we have data (Y, X) where Y is the response variable and X is the predictor
m example: defaults on credit card payment

m X = (X3, X5, X3) contains balance, income, student status
m Y is default status; Y =1is 'yes' and Y =0 is 'no’

goal: find a model that provides P(Y =1 | X = )

P(default = yes | balance = 10,000baht, income = 200kbaht, student = no)
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Logistic model
a logistic function is used to gives output between 0 and 1

fla) = — -

"1 +e 7 1 + e*
(this is a nominal form of logistic, aka. sigmoid function)
a logistic model uses the logistic function to explain Y from predictors through:
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Logistic regression

problem: fitting the logistic model
B X

PO=10 =

from a training data set {(y;,7;)}, to estimate parameters 3

the linear predictor term is 37X = By + 1. X1 + -+ + BpXp

if an intercept By is needed, we assume X must contain 1

estimation method: maximum likelihood estimation (more on this later)

for new X =z, if P(Y = 1|X) > 0.5 we classify that this data belong to class
'l", and '0" otherwise

m the threshold of 0.5 is up to the user
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m the following quantitiy, called odds,

PY =1X) g
1—P(Y:1\X)_6BX € (0,00)

indicates the ratio of the chance that class '1" occurs to class '0’

m the log of odds, called logit

PY =1X) \ _
log (1 “ Py = 1|X)> =p'X

provides a link function between the probability and the linear regression
expression

m if X is one-unit changed

m in linear regression, the average in Y is changed by S
m in logistic regression, the log odds change by %
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Estimating regression coefficients
denote the logistic function: p(z) = €7 #/(1 + ¢/ )
Bo, 8 are chosen to maximize the likelihood function

)= [ p) J] @ -plzx)

iiy;=1 k:yr=0
I
o 1+ bl 1+ ePfler
iy, =1 k:yr=0

since log(-) is increasing, it is the same as maximizing the log-likelihood

log L(B Z pla; — Zlog 1+eﬂ F)

iy;=1

this is a nonlinear unconstrained optimization problem (can be solved by
Newton/Quasi-Newton)
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Derivation of loglikelihood

suppose {(y;,x;)}i—, are available where y; = 0,1
m we can write P(Y =y | X = 2;8) = p(z)¥(1 — p(z))1 7Y
m if we have n independent observations, the likelihood function is expressed as

n

Ly, yn |2 B8) = [[PY =wi | 23 8) = [ [ pla)V (1 — pla)) ¥
7 =1
10g L(y1, - yn | 2:8) = _yilogp(x;) + (1 — y;) log(1 — p(a;))
=1
n Bz, 1
e
= ;Z/z’ log (W) + (1 — i) log <1+65Tx>

m substitute y; = 1 for some ¢ and y; = 0 otherwise; this gives log £ on page 15
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Default on credit card payment

example of running logistic regression for the default data on page 11

Coefficient  Std. error Z-statistic =~ P-value

Intercept —10.8690 0.4923 —22.08 <0.0001
balance 0.0057 0.0002 24.74  <0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] —0.6468 0.2362 —2.74 0.0062

prediction: use B from the table we can make an estimate of Y
m student/non-student with balance of 1,500 dollars and income of 40, 000

student P(Y =1| X = (1500,40000,1)) = 0.068
non-student P(Y =1| X = (1500,40000,0)) = 0.105

m with the same balance and income, a non-student is more likely to default
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Correlated predictors

compare the results between one predictor (student status) and three predictors

Coefficient  Std. error  Z-statistic ~ P-value

Tntercept —10.8690 0.4923 —22.08 <0.0001

balance 0.0057 0.0002 24.74  <0.0001 Coefficient  Std. error Z-statistic =~ P-value
income 0.0030 0.0082 0.37  0.7115 Intercept —3.5041 0.0707 —49.55 <0.0001
student [Yes]  —0.6468 0.2362 —2.74  0.0062 student [ Yes] 0.4049 0.1150 3.52  0.0004

m the coefficient of student status is negative (left) and positive (right)

m negative coefficient of student status indicates that students are less likely to
default (than non-students) — here we can have contradictory results ?

/ non-students

E - regress on balance only

T T T T
500 1000 1500 2000 No Yes

Credit Card Balance Student Status

Default Rate
04
Credit Card Balance
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observations:

m in multiple regression (left table), negative coefficient for student indicates that
for a fixed value of balance and income, a student is less likely to default than a
non-student (confirmed by that the orange line is lower than the blue line)

m the horizontal lines show the default rates that are averaged over all values of
balance and income — but here the orange line is higher than the blue line

m the box plots suggest that students tend to have higher credit card balance —
associated with high default rates

explanations:
m 'student status’ and 'balance’ are correlated (students tend to have higher debt)
m an individual student with a given balance tends to have a lower chance of
default, while students on the whole tend to have higher credit card balance which
further tend to have a higher default rate
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conclusions:

m a student is riskier than a non-student if no information about credit card balance
is available
m a student is less risky than a non-student with the same credit card balance

m a confounding problem: a result obtained from one predictor is different from
using multiple predictors when there is correlation among the predictors
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K-label classification
the logistic regression can be extended to classify data into K categories

m define the response as indicator variable: Y = (Y1, Ys,..., Yk ) where
Y, =1 if the response fall into kth category and Y; =0, Vj #k
e.g. three medical conditions:

(1,0,0), if stroke;
Y =4¢(0,1,0), if drug overdose ;
(0,0,1), if epileptic seizure.

m the choice of generalized Bernoulli distribution is suitable for the conditional
distribution; 7, is the probability of Y, =1

P(Y = (y1,-. . y) | X) = i m -t
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Multinomial logistic model

denote GG the variable indicating the group: Y is in kth group iff G = k

Y =(0,0,..., 1 ,0,...,0) <= G=k
~—
kth
model: log-odd of each response is linear function of predictors

e = B{X =B+ X1+ -+ BpX

logP((G K [X)
lgp((GﬂX) = BIX =P+ PuX1+- -+ BpX

G=K |X)

P(G=K—1]| X)

log PC=KX) = BE X =Bk-10+ Brk-11X1+ + Br-1,Xp

the last class (G = K) is chosen to be called the referenced or nominal model

|
m [0 is the log odds of class £ versus nominal given that all X1,..., X, are zero
m if X increases by one unit, then P(G = k|X)/P(G = K|X) increases by i
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Log-likelihood function

m the conditional probabilities can be expressed as

PLX
P(G=k|X)= TSR k=12, K1,
1
PG=K|X)= o (chosen to be the referenced class)
L+ e X

(the sum of K probabilities is one)
m denote pi(z; 8) = P(G = k |z) (the conditional pdf of Y| X)
m the log-likelihood function of y|x is given by replacing 7, with the model

K
logp(y | x; 8) = log(n{'n§? - - 7¥) = > "y log pi(x; B

(1-sample log-likelihood); entries of y = (y1,...,yK) are either 0 or 1
m if y|x belongs to class k, it reduces to log p(y|x; 8) = log pr(z; B)
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Log-likelihood function

model parameters are 3 = (f1, B2, ..., Bk _1) and using

log pi(x; B) = ,le—log[1+zl | Lep T’] fori=1,2,...,. K -1

N K
log £(8) £ logp(y™,...,y™M |z, =33 logpi(=?; B)y;
=1 [=1
= Y logpi(aD;B)+--+ Y logpi-1(z7;B)
i€class 1 i€class K — 1
+ Y logpi (=1 8)
i€class K
' N K1
S oDk S BE 2@ S leg |14 Y € M]
i€class 1 i€class K — 1 i=1 =1
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Estimation of multinomial logistic coefficients

suppose data {(y®, z() ™, are available (independent samples)
m we aim to maximize log £(/) (hence, minimize the negative log-likelihood)
m [ can be solved numerically from optimization methods

m the Newton algorithm can be expressed as iterative reweighted least-square
algorithms (see ESL in chapter 4.4)

m softwares: multinom in R, mnrfit in MATLAB, scikitlearn:linear model in
Python
m if a nominal class is changed

m the estimated coefficients (/3;) would change (and its interpretation is up to the
choice of the nominal class)

m however, the log odds between any pair of classes, and the fitted values (predictions)
will remain the same
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Softmax coding

instead of estimating coefficients for K’ — 1 classes, we estimate for all K classes

ePie eHie

leileﬁlTX B eﬁlTX+ef3§X+..._|_e,3;T<X’

P(G=kX) = k=1,2,... K

m also known as the softmax function used in neural network

m in neural network, the softmax is defined with variable z which is the transformed
variable before the output layer

m the log odds ratio between the kth and [th classes is

P(G=k|X)

PC=1X) (Be — )X

log
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Bayesian decision theory
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Expected loss

setting: Y is categorical variable taking values € G = {1,2,..., K}
m loss function matrix: L € RE>*X taking zero values on the diagonal where ¢}; is
the penalty for classifying group k as [

m zero-one loss function: L has all-one entries (except the diagonal) meaning
missclassfications are charged with equal weights

m L(Y =k, Y =1) =4 is a loss function for classifying Y as Y (X)

define the as the expected value of loss function over all X,Y
A~ K A
=E,[LY,Y(X))] =E, |> LY, Y(X))P(Y = k|X)
k=1

using conditional expectation

the expected loss is also referred to as expected prediction error or risk function
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Bayes classifier

for a given X = z, it suffices to minimize the classification error pointwise:

K
Y(z) =argmin Y LY =k, Y (z) =)P(Y = k|X = z)
leg 1

(minimize the sum of weighted penalty; weight = chance of Y when X is observed )

with the zero-one loss function, this reduces to

Y(xz) = argmin[l — P(Y = | X = z)] = argmax P(Y = [|X = z)
leg leg

Bayes classifier: classify to the most class using the conditional P(Y'|X)
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Bayes error rate

assumption: using zero-one loss function

the corresponding error rate of the Bayes classifier is called the Bayes error rate:
1-E, (maxP(Y =X = :U))
leg

using [* that maximizes the posterior probability, this follows from

optimal error = E, | Y P(Y = k|X)| = E,[1 - P(Y = I"|X = )]
k£L*

m the Bayes error rate is , equivalent to noise variance in regression
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Terminology in Bayesian theory

m prior probability, p(y), is the knowledge we have before looking at an observed z

m the class likelihood or class-conditional density, p(x|y), gives distribution
information of features in each class (once we know the response variable belongs
to the class )

] , p(x) is the marginal probability that a value z is observed (regardless of
the class of Y') — can be computed using total probability

m posterior probability, p(y|x) is the likelihood of response after z is seen

lass likelih i
Bayes' rule: posterior = cass | e_l ood x prlor’ p(ylx) = ]w
evidence p(x)
P(Y =l|z) = plY =P =1)
p(z)
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Bayes decision boundary

setting: two-class data (Y = 1,2) where given Y =k, X|Y ~ N (ug, Xk)
m given: (p1,%1) and (ug2, 32) are estimated using maximum likelihood

m goal: gives the decision rule based on posterior probability to classify Y when X is
observed

plole) = EDEO) g ol =~ ogdet Dy - Go — )55 o )

PY =1|X) > P(Y =2|X) & log f(z|1) + log P(Y = 1) > log f(z|2) + log P(Y = 2)
decision rule: classifying to Y = 1 if the given z satisfies g(z) > 0 where

1. det, Py

)

N | =

g(x) =

1
— ) T8 Nz — o) — (. — p) T2 (2 — —1 1
[(z — p2)" 55 (@ — p2) — (# — )" BT (= Ml)]+2 8 Jors, T8 By =3

and classify to Y = 2 otherwise
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Bayes decision boundary: scalar case

an example of posterior densities for two cases of prior probabilities

PY=1)=P(Y=2)=05  P(Y=1)=03,P(Y =2)=0.7

o 4 - =
o
~
IN
&
o
o
IN

4 2

m for a given test observation x, assign to the class for which the density is highest;
either class 1 or class 2

m when the prior of class 2 is higher, the decision boundary is shifted to the left
(more favor to class 2)
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example: conditional 2D Gaussians

o =0~ (L[4 5]) e e =2 (2[5 )

Histogram of X; |V Histogram of X,|Y"

=T mxy -1 By =1
;= 9| x|y =2 Xy =2

°
]T !—H—\w L 0

) 1|y ly

m Bayes decision boundary of Gaussian case leads to a quadratic function

m what happen to the decision boundary as P(Y = 1) increases ?

Statistical inference and modeling Jitkomut Songsiri 34 /75



k-nearest neighbor (kNN)

idea sketch:

m the optimal Bayes classifer requires the knowledge of p(y|x) which is typically
unknown for real data

m kNN classifies Y to the class with highest estimated conditional probability
algorithm description:

m given a positive integer k and a test observation xg, find k£ points in the
data that are closet to xy denoted by set X

m estimate the conditional probability:

number of points in X’ that belongs to class j

P(Y = jlxg) = A

m kNN applies Bayes rule, classifying the test point zq to the class with the largest
conditional probability
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[lustration of kNN

kNN does not assume the true distribution structure of the data ( )
@ | o \ | o

m Ist: using k = 3, locate the three closest points to xg (black cross)

m the blue points win the majority vote (2/3), so x is assigned to the blue class

m 2nd: apply kNN with k£ = 3 at all points, giving kNN decision boundary

m 3rd-4th: 1NN decision boundary is a Voronoi tessellation; each x; has a tile
bounding region for which it is the closest input point; INN has zero training error
rate; none of training data are misclassified
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effect of £ in kNN

KNN: K=10 KNN: K=1 KNN: K=100

m left: using k = 10, kNN and Bayes decision boundaries are similar

m middle: using k = 1, kNN boundary finds pattern in the data, and is very flexible
with low bias — it is quite different from Bayes boundary

m right: using k = 100, kNN is less flexible and the boundary is close to linear

m k is generally taken to be an number to minimize ties
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Further notes of kNN

m the optimal value of k depends on the bias-variance tradeoff; small k£ provides
the most flexible fit which has low bias but high variance

m we can choose k from a plot of cross-validated MSE versus 1/k

m when using kNN in regression problems, the output prediction when x = xg is the
average of all training responses in the neighborhood of xg

A 1
f(UCO):% Z Yi
z EN (z0)

m the scale of variable matters because kNN detects the distance between
observations (the variable with a larger scale affects more)

m it is advised to standardize data to have zero mean and unit variance
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Linear discriminant analysis (LDA)
Y takes values in G = {1,2,..., K}

the posterior probability to classify Y into class [ is

flaly =P =1) = _
) ;yxw k)P(Y = k)

P(Y =X =)=

to decide the class with highest posterior, it is required to estimate:

m the prior: m; = P(Y = k) — via computing the fraction of each class from the
training data (easy)

m the class likelihood: f(z|Y = k) — requires more assumptions about distribution
structures

LDA makes a Gaussian assumption with equal covariances, leading to linear decision
boundary
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Gaussian case with equal covariance

assumptions:

m f(x|Y = k) is Gaussian with mean py; and equal covariance X for k =1,2,...

m u; and X are estimated beforehand; in practice, we can use

K

K
. 1 . .
(= i — E @ — 5 ) (2@ — )T
[, = sample mean of X in class k, X = N g (z ax)(x k)

k=14:Y;=k
the posterior probability p;(z) £ P(Y = | X = z) is

6_%($_/~LZ)TZ_1($_MZ)7T

l
r) =
pl( ) 2521 e_%(x—uk)TZ*l(iU_Mk)ﬂ'k

to decide the highest p;(z) for I = 1,2,..., K, the denominators are the same,
regardless of the density assumption
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take the log of p;(z) and neglect the term 27Xz, we predict the class I for which
1
discriminant function: g;(x) = 'Yy — §uf§flm + logm
is among [ =1,2,..., K (note that we use estimates of 1, X))

the decision boundary of LDA between class [ and k is the set of x that

gi(x) = gr(z) <= 2" S (i — i) = (1/2) (0 37" fu — g 327" fu) + log (/1)

m the decision boundary is linear in = or a hyperplane in R" (so called linear in LDA)

m D for scalar x and when prior densities are equal, the boundary is the midpoint of
two sample means: = = 3 (i + i)
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Decision boundaries for scalar

T T
-4 -2 0 2 4

m setting: true densities are Gaussian with p; = —1.25, o = 1.25 and unit variance;
drawn 20 observations from each class

m Bayes decision (dashed line) is then x = (u1 + p2)/2 = 0 (unknown in real-life)
m the area for which the two densities overlapped is the classification error

m LDA decision boundary (solid line) is a little off from Bayes since it uses the
sample mean computed from the training data
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LDA decision boundaries
setting: 3-class, true distribution is Gaussian with equal 3, 20 samples for each class

m left: Bayes decision boundary and 95 %-confidence ellipsoid (plotted by using the
true parameters: i, )

m right: solid lines are LDA decision boundaries (using jix, 3.); dash lines are Bayes
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Quadratic discriminant analysis (QDA)

like LDA, QDA assumes observations in each class are Gaussian but each has its own

covariance matrices — the posterior probability p;(z) £ P(Y =1|X = ) is

e—%(ftf—uz)TEfl(x—uz)p<Y =1)

pl($) = (27‘()"/2(th 25)1/2 /f(l’)

QDA follows Bayes classifer to perform the prediction, choosing the class [ for which
L . 1 Ta—l 1
discriminant function: g¢;(x) = —i(a: — ) X (=) — 3 logdet ¥; +log P(Y =1)

is among [ =1,2,..., K ; however, it uses estimates of u;, >

m the decision boundary between class [ and k is given by the set of = that
g1(x) = gr(x) — becoming quadratic function in z

m QDA has more number of parameters to estimate — leading to bias-variance
trade-off, if compared to LDA
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Comparison between LDA and QDA

assume n predictors and K class

method number of parameters model property
LDA nk low flexibility, low variance
QDA n(n+1)K/2 high flexibility, high variance

comparison: Gaussian classes have common (left) and different (right) covariances

\ m /eft: Bayes decision boundary is
N linear and accurately

< - approximated by LDA

m right: now Bayes decision

, , boundary is quadratic and QDA is
- VS S more accurate
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Quadratic boundaries
feature spaces: original and its mapping by a quadratic function

original: {X1,Xs,...,X,}, augmented: {Xy,Xo,...,X,, X X3,..., X2}

LDA LDA QDA
original feature space augmented feature space original feature space

m middle: linear functions of LDA performed on the augmented space results in
quadratic functions in the original space

m while preferring QDA, the differences between QDA and LDA (middle) are small
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Further notes on LDA and QDA

we choose a class of interest, assumed to be class K
m we test against the [th classes for [ # K (hence, there are K — 1 tests)

m compute the difference between discriminant functions:
choose class K if gx(x)— ¢gi(x) > 0, and choose class [ otherwise

m reasons for using LDA and QDA are i) simple decision boundaries such as linear or
quadratic are sufficient for the data and ii) when the estimates provided via
Gaussian models are stable

m extension to regularized discriminant analysis (RDA) where the regularized
covariance is a combination of individual and the common covariance:
Yreghk = X+ (1 —a)X - see ELSR section 4.3.1
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Kernel density estimation (KDE)

we are often required to have the probability density f(x) at some point z
m suppose a random sample x1,x9,...,x N are drawn from f(x)

let B(xg) be a small metric neighborhood around z( of width kA — or a bin

a natural local estimate of f(z() has the form

Flzo) = no. of]\:;’i.iB(mo)

(often returns a bumpy estimate)

we often prefer a smooth estimate using Parzen window of the form
1N
f(zo) = N ;Kh(l‘o,:l?l'), (K}, is a kernel function)
1=

m a kernel function has weights that decreases with distance from xg, e.g., the
Gaussian kernel K, (zo,x) = ¢(|x — xo|/h)
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Non-parametric classification

from Bayes theorem, when making a decision based on the posterior probability

P(Y =j|X =x) =

a non-parametric approach
and prior densities (replace

0.020

Density Estimates

0.010

0.0

CHD
no CHD

100 140 180
Systolic Blood Pressure
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220

Posterior Estimate

falY = k)PY =1)
f(z)

uses a non-parametric density estimate of class-conditional
f(z|y), P(Y =) above with the estimates)

. ji=1,2,....K

m classification of coronary heart
disease (CHD) where X is
systolic blood pressure

m a Gaussian kernel density
estimate for each f(z]Y)

00 02 04 06 08 1.0

100 140 180 220
Systolic Blood Pressure

Jitkomut Songsiri 49 / 75



Naive Bayes
again, consider the posterior probability
f=lY = k)r(5)
f(z)

when X = (X1,...,X,) and p is high (the feature space is high-dimensional)
Naive Bayes assumes that the inputs X}'s are conditionally independent:

P(Y:J|X:x): Y j:]‘?2?"'7K7 ﬂ(]):P(Y:j)7

fi(x) & f(z|]Y =j) H fjk(xr) (class-conditional is the products of marginals)

m each class-conditional marginal f;; can each be estimated separately using

m one-dimensional Gaussian densities (called Gaussian Naive Bayes)
m one-dimensional kernel density estimates
m multinomial distribution

depending on the assumption of predictor distribution
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m if some xj, is discrete, one can use a histogram estimate; useful when x contain
both discrete and continuous variables

m the conditionally independent assumption is usually violated in practice, and Naive
Bayes may yield biased class-conditional density estimates

m even so, the resulting posterior tends to be robust to the biased class-density
estimates near the decision boundary

m the logit-transform has a connection with generalized additive model (GAM)

PY =I1X) mfi(X) m [T fu(X5)
8 By = KIX) B (X % 1°gm<n (X0
= log —+Zl Jfl £ oq+Zgh

the latter term ), g;,(X;) is a form of generalized additive models
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Softwares

Methods MATLAB Python (scikit-learn)
logistic regression fitglm linear__model.LogisticRegression
multinomial logistic regression mnrfit linear_model.LogisticRegression
naive Bayes fitcnb naive_bayes

kNN fitcknn neighbors.KNeighborsClassifier
LDA, QDA fitcdiscr discriminant_analysis
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Classification performance evaluation
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Confusion matrix

suppose a response variable (y) has two outcomes; either positive or negative
m true positive (TP): a correctly identified

Predicted outcomes s
positive

Predicted . . i
,r;,s'iti:e m true negative (TN): a correctly identified
negative
Positive (P) True positive . . . .
(TP) m false positive (FP): an incorrectly identified

positive — type | error

Actual outcomes

m false negative (FN): an incorrectly
identified negative — type Il error

m sensitivity or TPR: probability of predicting positive given the truth is positive
m specificity or TNR: probability of predicting negative given the truth is negative
m FPR: probability of predicting positive given the truth is negative
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Standard classification indices

tl dicted iti TP
sensitivity or recall: TPR = correctly pre |c.e. positive _
total positive TP+FN
incorrectly predicted positive FP
FPR = _ =
total negative FP+ TN
I i i TN
specificity. TNR = correctly predlcted. negative _ _1_FPR
total negative TN+ FP
ENR — incorrectly predlc?ce?d negative _ FN _1_TPR
total positive TP+ FN
accuracy: ACC — all correctly pred.ictions _ TP+ TN
total population P+N

m by adjusting a classifier's hyperperameters, if TPR increases, so does FPR
m in medical applications when positive is rare, it's more challenging to obtain a low
FPR (aka false alarm) or high specificity
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More classification performance indices

when observations contain an imbalance between two classes

prevalence = total positive = P (proportion of positive)
total population P+ N
false discovery rate: FDR — incorrectly predicted positive _ FP
predicted positive FP+ TP
. o correctly predicted positive TP
positive predictive value: PPV = oredicted positive =Tp =
= 1—FDR (or precision)
F1 score = harmonic mean of precision and sensitivity
_ o PPV-TPR 2TP

“PPV+TPR _ 2TP+FP 1 FN

F1 score finds the (harmonic) mean of two rates and the precision rate takes into
account the portion of positive in data
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Trade-off in classification
sensitivity-specificity trade-off in medical applications

m a classifier is associated with a threshold or some hyperparameters which control
the fraction of TP and FP

m if a classifier is aimed to detect a disease condition more correctly, it has a high
sensitivity (sensitive to detect such disease)

m however, when it detects more positives, out of those detected positives may be
incorrect; it pays a price for FP and a drop in specificity (the prediction is not
specific enough to distinguish between the actual and false positives)

precision-recall trade-off in information retrieval

m a user creates a search query (from a universe of data items) and a relevant list of
items is retrieved for the user

m the query has high precision if a large fraction of the retrieved results are relevant

m the query has high recall if it retrieves a large fraction of all relevant items in the
universe — this application focuses less on TNR because it is typically high
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Trade-off in detecting brain tumor

a neuro surgeon makes a decision to remove a brain tumor

tumor area extracted cells - extracted tumor

SEDS

precision = 1 precision
low recall recall
specificity = 1 specificity

precision = — recall = — low precision

1
1 recall = 1
1  specificity =@/@ low specificity

m a conservative move (A): avoid to remove healthy cells by extracting only little
m a bold move (D): all tumor must be gone, but unavoidably remove healthy cells

m always consider a combination of (sens,spec) or (precision,recall) — there is a price
to pay; when one index increases, the other index would drop
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Trade-off in information retrieval

a user creates a search query and a list is retrieved (some are relevent, some are not)

universe relevant items irrelevant items retrieved lists

A B C D

m each case refers to a specific search algorithm, or a parameter value in an
algorithm

m explain about classification performance indices for each case
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Example: LDA performance on default data

seting: 10,000 training samples, 3.33% of training samples defaulted

performance of LDA on training data:

Predicted default ;
Yes No Total m FPR = 23/9,667 = 0.238%, FNR
Yes 81 252 333 = 252/333 = 75.7%
default | No 23 9,644 9,667 m ACC = (8149,644)/10,000 =
Total 104 9,896 10,000 97.25%, F1 = 37.07%

m type | error (FP): incorrectly predicted defaults, type Il error (FN): incorrectly
predicted non-defaults — a credit card company may wish to avoid FN (more
serious) while FP is probably less problematic

m in this example, LDA has a low sensitivity of 24.3% and specificity of 99.76%

m overall accuracy is high while a low sensitivity can tell us the type of error that is
more concerned: LDA missed a lot of true defaulters
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Adjust a threshold for LDA

the Bayes classifier and LDA uses a threshold of 0.5 for the posterior

P(default = Yes|X =) > ¢, t:=0.5

0.6

Predicted default
Yes No Total
Yes 195 138 333
default | No 235 09,432 9,667
Total 430 9,570 10,000 : : 2 resnon o4 o8

Error Rate
0.4

0.2

0.0

m if ¢ decreases = 0.2, more defaults are predicted (more TPR and FPR) — FNR =
41.4%, FPR = 2.43% (higher sens, but slightly lower spec), overall accuracy is
96.27% so overall error rate slightly drops

m as ¢ increases, less predicted defaults, so we have less TPR (hence, higher FNR)

and less FPR, shown in the plot
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Receiver operating characteristic (ROC)
a plot between FPR and TPR, showing the ability of a binary classifier

example: assign Y to the class '1" if P(Y = 1|X = z) > threshold

m each point on ROC is associated with a

s cesnera —— threshold /hyperparameter of a classifer
2 m a classifer performs better than a random
S e guess if ROC lies above the diagonal line
2° m a better classifier has the ROC curve
834 toward the
o
o m overall performance is summarized over all
possible thresholds is given by area under
= curve (AUC) (also called the c-statistic)

0.0 0.2 0.4 0.6 0.8 1.0
FPR (1-Specificity)
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Matthews correlation coefficient (MCC)

The phi coefficient describes the association of two binary RVs as

Predicted
Y=1 Y=0 total positive negative
N11Ngo — N1gN,
¢ — 11:Y00 10-Y01 X=1 NM N10  N1: positive TP FN
Vv N:lN:ONI:NO:

Actual

total N:1 N:0 N
MCC is calculated from the confusion matrix as

negaﬁve-

TP-TN — FP-FN
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC
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Precision-Recall curve

ROC PR curve
! ! 0s
0s 0s 0 ,,,//-
-
o o7
o
o 5
o os D s /
= 2 04 | -~—ACC
04 Qo
03 o 03 o | +F1
M / MCC
oz oz ® Max ACC
01 o ot m Max F1
02 04 06 08 1 Da 02 04 06 08 1 aa 2 4 6 8 10 12 14 18
FPR Recall

m black square is the point for which ACC is maximum
m red is the point for which F1 is maximum

m both black and red points lie on the top-left corner of ROC, and on the top-right
corner of PR curve, indicating that these points are efficient

m in practice, an operating point can be chosen by selecting the classifer’s
hyperparameter that maximizes some index (F1,MCC,ACC) on validated data
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Confusion matrix of K-class

assume K-class classification labeled as G1,G2,G3,G4,G5 (K = 5)

RKXK

the confusion matrix € contains the number of samples in each predicted class

calculate according to binary classification indices by picking a class of interest
positive, and regard the remaining classes as negative

Predicted Predicted
o [l - - pick G3 as a class of interest
‘ o9 |2 ‘]2 - TP is the diagonal entry (3,3)
3 T g, 150 : . - FP is the sum along the 3rd
< e column except (3,3) = 8
@1 2 2 8 - FN is the sum along the 3rd

3= positive EN = except (3v3) =13

we can calculate precision, recall, and F1 of class G3 as

n 14 14 2x 14
precision = oo = 63.6%, recall = 5 = 51.9%, F1= X IAr8 13 57.1%
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Aggregated F1 score of K-class classsification

given that we have calculated TP, TN, FP, FN for each class as TP, k =1,2,..., K

three common ways to compute F1 score of a K-classifier as one value
. take a sum of all TP;'s and then compute precision/recall
macro F1: compute each precision; and then average

weighted F1: weight each F1; with proportion of samples in each class

TP,  TPi
= harmonic mean of precision = E:l(%w, and recall = Zzi P,
K K
1 TP; 1 5~ TP
macro F1 = harmonic mean of precision = e ; (TPH-FPz) » and recall = 7 ; Pi

K
1
weighted F1 = Ve E w; F1;
i=1
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Classification methods
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Common classifiers

m |ogistic regression

m k-nearest neighbor (kNN)

m linear/quadratic discrimination analysis
m Naive Bayes

m support vector machine (SVM)

m tree-based methods

m neural networks
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Method comparisons: kNN, logistic regression, LDA, QDA

data generation: 2 predictors; there are 6 scenarios

m Bayes decision boundary are linear in three scenarios, and non-linear in the
remaining three

m for each scenario, there are 100 random training data sets
m fit each method and compute the test error rate on a large test set

m kNN uses K = 1 and the value selected by cross-validation
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linear cases:

m case 1: 20 training samples, data in each class are uncorrelated normal Gaussian
with a different mean

m case 2: as in case 1, but within each class, the two predictors had a correlation of
-0.5

m case 3: X1, X, are generated from t-distribution with 50 samples in each class;
this set up violates LDA assumption but the decision boundary is still linear

nonlinear cases:

m case 4: data are Gaussian with a correlation of 0.5 between (X7, X2) in the first
class, and correlation of -0.5 in the second class

m case 5. within each class, the samples are Gaussian with uncorrelated predictors;
however, Y is sampled from the logistic function using X7, X3 and X; X5

m case 6: as in previous case, but Y are sampled from a more complicated
non-linear function
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Boxplots of the test error rate: linear case

SCENARIO 1 SCENARIO 2 SCENARIO 3

045
030
045

0.40
0.40

KNN-1 KNN-GV DA  Logisic QDA KNN-1 KNN-GV  LDA  Logistic QDA KNN-1 KNN-GV LDA  Logisic QDA

035
025
035

025 030
020
025 030

015

020

m case 1,2: LDA performed well (as the setup follows LDA assumptions); kNN
performed poorly (too complex); QDA was worse than LDA (more flexible than
necessary); as logistic model assumes a linear decision boundary, it is slightly
inferior to LDA

m case 3: logistic regression outperformed LDA; QDA performed poorly due to
violation of non-normality

Statistical inference and modeling Jitkomut Songsiri 71/ 75



Boxplots of the test error rate: nonlinear case

040

035

030

SCENARIO 4 SCENARIO 5 SCENARIO 6

025

020

018 020 022 024 026 028 030 032

KNN-1 KNN-CV LDA Logisc QDA

KNN-1 KNN-CV LDA  Logistc QDA

KNN-1 KNN-CV LDA  Logistc QDA

m case 4: fits to QDA assumption, hence QDA outperformed others

m case b: the setup suggests a quadratic decision boundary; QDA performed best,

followed by kNN-CV

m case 0: the setup suggests nonlinear boundaries; kNN-CV had the best result,

followed by QDA ; INN had the worst result of all methods
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Summary of method comparisons

logistic regression: the model gives the range of Y as probability values for each
class; parameters are estimated by maximum likelihood principle

kNN, LDA, and QDA apply Bayes classifier rule by choosing the class for which
the posterior probability is highest

kNN is a non-parametric method to estimate the posterior probability so no
assumptions are made about the shape of decision boundary

LDA and QDA requires assumption about Gaussian form of the class likelihood:
LDA assumes a common covariance, while QDA does not

for 2-class, both LDA and logistic regression have one thing in common: the log
of odds is a function of x; they differ by how the linear function coefficients
are obtained

QDA serves as a compromise between non-parametric kNN and linear methods
since QDA assumes a quadratic decision boundary

QDA may perform better than kNN in the presence of low training samples
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Generative vs Discriminative models

The posterior probability

P(class k) = f(m|c|assfk&])3(class k)

three approaches to solve a decision problem
generative models: explicitly or implicitly model the joint distribution f(z, class k)
or model the class-conditional density and prior density to form the posterior
» naive Bayes, LDA, QDA
»» generative model can generate samples of target and response from the joint
distribution
discriminative models: determine the posterior probabilities directly

» |ogistic regression, SVM, kNN, decision trees
» discriminative models separate classes directly; they can't be used to generate

new data points

find a function g(z) called a that maps « directly to a class
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