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Multiple linear regression

Statistical inference and modeling Jitkomut Songsiri Multiple linear regression 3 / 33



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Description of linear regression

a linear relationship between variables y and xk using a linear function:

y = β1x1 + β2x2 + · · ·+ βnxn ≜ xTβ

where y ∈ R, x ∈ Rn, β ∈ Rn

y contains the measurement variables and is often called the
regressed/response/explained/dependent variable
xk’s are the input variables that explain the behavior of y; called the
predictor/explanatory/independent variables
β is the regression coefficient
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Linear regression in matrix form
given a data set: {(xi, yi)}mi=1 we can form a matrix equation

y1
y2
...
yN

 =


x11 x12 · · · x1n
x21 x22 · · · x2n
... ... ...

xN1 xN2 · · · xNn



β1
β2
...
βn

 ≜ y = Xβ

the matrix X ∈ RN×n is sometimes called the design/regressor matrix
given y and X, one would like to estimate β that gives the linear model output
match best with y

in practice, in the presence of noise and disturbance, more data should be collected
in order to get a better estimate – leading to overdetermined linear equations
an exact solution to y = Xβ does not usually exist; however, it can be solved by
linear least-squares formulation
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Problem statement
setting: y is linear in X but corrupted by some noise

y = Xβ + e, X ∈ RN×n with N > n

e is the error term

linear least-squares formulation:

minimize
β

∥y −Xβ∥2 =

 N∑
i=1

(

n∑
j=1

Xijβj − yi)
2

1/2

r = y −Xβ is called the residual error
β with smallest residual norm ∥r∥ is called the least-squares solution
equivalent to minimizing ∥y −Xβ∥2
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Fitting linear least-squares
left: explain the sale amount by advertising on TV
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2 00
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left: sum squared distance of data points to the line is minimum (this line fits
best)
right: for two predictors, LS solution is the normal vector of hyperplane that lies
closest to all data points of y
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Example: data fitting
given data points {(ti, yi)}mi=1, we aim to approximate y using a function g(t)

y = g(t) := β1g1(t) + β2g2(t) + · · ·+ βngn(t)

gk(t) : R → R is a basis function
polynomial functions: 1, t, t2, . . . , tn

sinusoidal functions: cos(ωkt), sin(ωkt) for k = 1, 2, . . . , n

the linear regression model can be formulated as
y1
y2
...
ym

 =


g1(t1) g2(t1) · · · gn(t1)
g1(t2) g2(t2) · · · gn(t2)

... ...
g1(tm) g2(tm) · · · gn(tm)



β1
β2
...
βn

 ≜ y = Xβ

often have N ≫ n, i.e., explaining y using a few parameters in the model
Statistical inference and modeling Jitkomut Songsiri 8 / 33
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fitting a 6th-order polynomial to data points generated from f(t) = 1/(1 + t2)
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6th-order polynomial fit
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(right) the weighted sum of basis functions (xk) is the fitted polynomial
the ground-truth function f is nonlinear, but can be decomposed as a sum of
polynomials
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Closed-form solution to LS problem

setting the gradient of ∥y −Xβ∥22 gives

normal equation: XTXβ = XT y

if X ∈ RN×n with N ≥ n is full rank, then
least-squares solution can be found by solving the normal equations
n equations in n variables with a positive definite coefficient matrix
the closed-form solution is β = (XTX)−1XT y and unique
(XTX)−1XT is a left inverse of X

note: rank(X) = n ⇒ N (X) = {0} ⇒ XTX ≻ 0 (hence, XTX is invertible)

in MATLAB, a LS solution is solved by X\y
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Geometric interpretation of a LS problem

∥y −Xβ∥2 is the distance from y to Xβ = β1x1 + β2x2 + · · ·+ βnxn
solution βls gives the linear combination of the columns of X closest to y

ŷ = Xβls is the orthogonal projection of y to the range of X
P = X(XTX)−1XT is an orthogonal projection matrix (aka hat matrix)
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Interpreting regression coefficients
advertising data: sale is explained by advertising costs in TV, radio and newspaper
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given β̂, a predicted output is ŷ = Xβ̂ = x1β̂1 + · · ·+ xnβ̂n

βj is the average effect on y of a one unit increase in xj , holding all other
predictors fixed
in real data, predictors can have correlation (when x1 changes then x2 cannot be
assumed constant)
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Properties of LS estimate
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Analysis of the LS estimate

assumptions:
data generating process is y = Xβ + u

u is white noise with zero mean and covariance matrix Σ

the least-square estimate is given by β̂ = argminβ ∥Xβ − y∥2
the regressor X is deterministic

then the following properties hold:
β̂ is an unbiased estimate of β (Eβ̂ = β, or β̂ = β when u = 0)
the covariance matrix of β̂ is given by

cov(β̂) = (XTX)−1XTΣX(XTX)−1
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short proof: we can write the LS estimate as

β̂ = (XTX)−1XT y = (XTX)−1XT (Xβ + u) = β + (XTX)−1XTu

since X is deterministic and u is zero mean, we have Eβ̂ = β

the covariance of β̂ is derived by

cov(β̂) = E[(β̂ −Eβ̂)(β̂ −Eβ̂)T ]

but Eβ̂ = β and that β̂ −Eβ̂ = (XTX)−1XTu, hence,

cov(β̂) = cov[(XTX)−1XTu]

= (XTX)−1XT cov(u)X(XTX)−1

= (XTX)−1XTΣX(XTX)−1

if Σ = σ2I, then it reduces to cov(β̂) = σ2(XTX)−1
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BLUE property
assumptions: u is white noise with zero mean and unit covariance (cov(u) = I)

the estimator defined by
β̂ls = (XTX)−1XT y

is the optimum unbiased linear least-mean-squares estimator of β

assume β̂ = By is any other linear estimator of β
require BX = I in order for ẑ to be unbiased
cov(β̂) = BBT

cov(β̂ls) = BX(XTX)−1XTBT (apply BX = I)
Using I −X(XTX)−1XT ⪰ 0, we conclude that

cov(β̂)− cov(β̂ls) = B(I −X(XTX)−1XT )BT ⪰ 0
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BLUE property is also known as Gauss-Markov theorem
the assumption that cov(u) = I (or could be σ2I) is equivalent to

var(ui) = σ2 for all i, i.e., the error terms have the same variance
(homoskedasticity)
cov(ui, uj) = 0 for i ̸= j, i.e., the error terms are uncorrelated

the proof on the optimality use the fact that P = X(XTX)−1XT is an
orthogonal projection matrix which have properties:

PT = P
P 2 = P
∥Px∥ ≤ ∥x∥ for all x ∈ Rn

these properties imply that I − P ⪰ 0
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Properties of estimation errors
under the homoskedastic assumption ui ∼ N (0, σ2) and define

û = y −Xβ̂ls, RSS =

N∑
i=1

û2i , s2 = RSS/(N − n) = ∥û∥22/(N − n)

s2 is an unbiased estimate for σ2

(N − n)s2/σ2 ∼ χ2(N − n) (require Gaussian assumption of ui)
an estimate of covariance and standard error of β̂ are

cov(β̂) = s2(XTX)−1, SE(β̂k) =
√
cov(β̂)kk

using more samples gives smaller cov(β̂)
if predictors are highly correlated, the covariance is big
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Accuracy of the model
R2 is based on the decomposition of the total sum of squares (TSS)∑

i

(yi − ȳ)2︸ ︷︷ ︸
TSS

=
∑
i

(yi − ŷi)
2

︸ ︷︷ ︸
RSS

+
∑
i

(ŷi − ȳ)2︸ ︷︷ ︸
ESS

+2
∑
i

(yi − ŷi)(ŷi − ȳ)

TSS (total), RSS (residual) and ESS (explained) sum of squares
for OLS, the last term on RHS is zero if the model has a constant term, so

TSS = RSS + ESS

R2 is defined as
R2 =

ESS

TSS
= 1− RSS

TSS

R2 is between 0 and 1 and it measures the proportion of variability in Y that can be
explained using X
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Variable selection
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Hypothesis testing

a significance test of regression coefficients involves

H0 : βk = 0 versus H1 : βk ̸= 0

we compute a t-statistic given by

T =
β̂k

SE(β̂k)
=

β̂k√
s2[(XTX)−1]kk)

∼ tN−n

and compute the probability of observing any value equal to |T | or larger

p-value = P (tN−n ≥ |T |)

if p-value < α (a given significance level) then we reject H0 (xk is significant)
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Results on advertising data
run simple regression versus multiple regression

top left: a 1,000 USD increase in radio ad budget is associated with an average
increase in sales by around 203 units
top right: a 1,000 USD increase in newspaper budget is associated with an
average increase in sales by around 55 units
bottom: the coefficient of newspaper is by contrast close to zero in multiple
regression — p-value is high and newspaper is not significant
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when examining the correlation matrix of predictors and response

note that the correlation between radio ad and newspaper is 0.35
markets with high newspaper ad tend to also have high radio ad
multiple regression shows that newspaper ad is not directly associated with sales
however, when running a simple regression, newspaper is a surrogate for radio ad
and get credit for explaining sales
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Deciding important predictors

which predictors should be used to explain the response ?

common methods in variable selection:
best subset selection: consider all possible model candidates
forward selection: searching starts from a null model
backward selection: searching starts from a dense model
shrinkage method (regularization techniques)
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Best subset selection

consider x1, x2, . . . , xp as p predictors

Sk: the model class that each contains k predictors (S0 has only constant term)
there are

(
p
k

)
sub-models in Sk and no. of all possible sub-models is

∑p
k=1

(
p
k

)
= 2p
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we would like to pick the ’best’ model according to some model selection criterion
steps in variable selection

1 for k = 1, . . . , p
2 for j = 1, . . . ,

(
p
k

)
1 fit all ’p choose k’ sub-models that contain k predictors
2 pick the best among

(
p
k

)
models and call it Mj

3 here ’best’ is defined as having the smallest RSS on training data
3 select a single best model among M0,M1, . . . ,Mp using cross-validated prediction

error, AIC, BIC or adjusted R2

step 3 is one of the two approaches to obtain the best model having a low test error
indirectly estimate test error by adjusting training error to account for bias due to
overfitting (here, using model selection score instead)
directly estimate the test error, using a validation set/CV approach

Statistical inference and modeling Jitkomut Songsiri 26 / 33



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stepwise selection
when p is large, the best subset selection suffers from looking in a large search space

Forward selection

Backward selection

stepwise selection explores over a a more restricted set of models
forward selection starts from a null model, while backward selection starts from a
full model
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Forward stepwise selection

we start to consider the null model and add more predictors one at a time
1 let M0 be the null model which contains no predictors
2 for k = 0, . . . , p

1 consider all p− k models that augment the predictors in Mk with one additional
predictor

2 choose the best among these p− k models and call it Mk+1

3 the best model here is to have the smallest RSS or largest R2

3 select a single best model among M0,M1, . . . ,Mp using cross-validated AIC, BIC
or adjusted R2

there are
∑p−1

k=0(p− k) = 1 + p(p+ 1)/2 models involved in this algorithm (much
less than 2p)
it may fail to find the best possible model out of all 2p models
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Backward stepwise selection

we start to consider the full model and remove more predictors one at a time
1 let M0 be the full model which contains all p predictors
2 for k = p, p− 1 . . . , 1

1 consider all k models that contain all but one of the predictors in Mk, for a total of
k − 1 predictors

2 choose the best among these k models and call it Mk−1

3 the best model here is to have the smallest RSS or largest R2

3 select a single best model among M0,M1, . . . ,Mp using cross-validated AIC, BIC
or adjusted R2

there are
∑p−1

k=0(p− k) = 1 + p(p+ 1)/2 models involved in this algorithm (much
less than 2p)
it may fail to find the best possible model out of all 2p models
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Softwares and practical issues
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Softwares

MATLAB: Statistical and machine learning toolbox
fitlm: linear regression fit
stepwiselm: stepwise regression (users can select criterion to add/remove terms)

Python modules:
statmodels
scikit-learn: linear model
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Practical issues

colinearity: two or more predictors are closely related
correlation of error terms: error is not likely white
non-constant variance of error terms: violate the homoskedastic assumption
outliers: some data points are far from others
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