Linear regression

Jitkomut Songsiri

Department of Electrical Engineering Faculty of Engineering Chulalongkorn University

CUEE

January 13, 2023

Statistical inference and modeling

Jitkomut Songsiri

Outline

1 Multiple linear regression

2 Properties of LS estimate

3 Variable selection

4 Softwares and practical issues

Statistical inference and modeling

Jitkomut Songsiri

≡ nar

* ロ ト * 同 ト * 三 ト * 三 ト

Multiple linear regression

Statistical inference and modeling

Jitkomut Songsiri Multiple linear regression

3 / 33

・ロト・(型ト・モー・モー・ ヨー・クタク

Description of linear regression

• a linear relationship between variables y and x_k using a linear function:

$$y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n \triangleq x^T \beta$$

where $y \in \mathbf{R}$, $x \in \mathbf{R}^n$, $\beta \in \mathbf{R}^n$

- y contains the measurement variables and is often called the regressed/response/explained/dependent variable
- x_k's are the input variables that explain the behavior of y; called the predictor/explanatory/independent variables
- β is the *regression coefficient*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Linear regression in matrix form

• given a data set: $\{(x_i, y_i)\}_{i=1}^m$ we can form a matrix equation

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Nn} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} \quad \triangleq \quad y = X\beta$$

• the matrix $X \in \mathbf{R}^{N imes n}$ is sometimes called *the design/regressor matrix*

- \blacksquare given y and X, one would like to estimate β that gives the linear model output match best with y
- in practice, in the presence of noise and disturbance, more data should be collected in order to get a better estimate – leading to *overdetermined* linear equations
- an exact solution to $y = X\beta$ does not usually exist; however, it can be solved by **linear least-squares** formulation

Statistical inference and modeling

Problem statement

setting: y is linear in X but corrupted by some noise

$$y = X\beta + e, \quad X \in \mathbf{R}^{N \times n} \quad \text{with} \ N > n$$

 \boldsymbol{e} is the error term

linear least-squares formulation:

minimize
$$||y - X\beta||_2 = \left(\sum_{i=1}^N (\sum_{j=1}^n X_{ij}\beta_j - y_i)^2\right)^{1/2}$$

• $r = y - X\beta$ is called *the residual error*

- β with smallest residual norm ||r|| is called *the least-squares solution*
- ${\ensuremath{\,\bullet\,}}$ equivalent to minimizing $\|y-X\beta\|^2$

Statistical inference and modeling

Fitting linear least-squares

left: explain the sale amount by advertising on TV

- left: sum squared distance of data points to the line is minimum (this line fits best)
- right: for two predictors, LS solution is the normal vector of hyperplane that lies closest to all data points of y

Statistical inference and modeling

Jitkomut Songsiri

Example: data fitting

given data points $\{(t_i, y_i)\}_{i=1}^m$, we aim to approximate y using a function g(t)

$$y = g(t) := \beta_1 g_1(t) + \beta_2 g_2(t) + \dots + \beta_n g_n(t)$$

•
$$g_k(t): \mathbf{R} o \mathbf{R}$$
 is a basis function

- polynomial functions: $1, t, t^2, \ldots, t^n$
- sinusoidal functions: $\cos(\omega_k t), \sin(\omega_k t)$ for $k = 1, 2, \dots, n$

• the linear regression model can be formulated as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} g_1(t_1) & g_2(t_1) & \cdots & g_n(t_1) \\ g_1(t_2) & g_2(t_2) & \cdots & g_n(t_2) \\ \vdots & & & \vdots \\ g_1(t_m) & g_2(t_m) & \cdots & g_n(t_m) \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} \quad \triangleq \quad y = X\beta$$

• often have $N \gg n$, *i.e.*, explaining y using a few parameters in the model

Statistical inference and modeling

Jitkomut Songsiri

fitting a 6th-order polynomial to data points generated from $f(t) = 1/(1 + t^2)$

- (right) the weighted sum of basis functions (x^k) is the fitted polynomial
- the ground-truth function f is nonlinear, but can be decomposed as a sum of polynomials

Statistical inference and modeling

< ∃⇒

Closed-form solution to LS problem

setting the gradient of $\|y-X\beta\|_2^2$ gives

normal equation: $X^T X \beta = X^T y$

if $X \in \mathbf{R}^{N \times n}$ with $N \ge n$ is full rank, then

- least-squares solution can be found by solving the normal equations
- n equations in n variables with a positive definite coefficient matrix
- \blacksquare the closed-form solution is $\beta = (X^TX)^{-1}X^Ty$ and unique
- $(X^TX)^{-1}X^T$ is a left inverse of X

note: $\operatorname{rank}(X) = n \Rightarrow \mathcal{N}(X) = \{0\} \Rightarrow X^T X \succ 0$ (hence, $X^T X$ is invertible)

in MATLAB, a LS solution is solved by X y

Statistical inference and modeling

Geometric interpretation of a LS problem

||y - Xβ||₂ is the distance from y to Xβ = β₁x₁ + β₂x₂ + ··· + β_nx_n
solution β_{ls} gives the linear combination of the columns of X closest to y
ŷ = Xβ_{ls} is the orthogonal projection of y to the range of X
P = X(X^TX)⁻¹X^T is an orthogonal projection matrix (aka hat matrix)

Statistical inference and modeling

Jitkomut Songsiri

그는 소프는

Interpreting regression coefficients

advertising data: sale is explained by advertising costs in TV, radio and newspaper

given $\hat{\beta}$, a predicted output is $\hat{y} = X\hat{\beta} = x_1\hat{\beta}_1 + \cdots + x_n\hat{\beta}_n$

- β_j is the average effect on y of a one unit increase in x_j, holding all other predictors fixed
- in real data, predictors can have correlation (when *x*₁ changes then *x*₂ cannot be assumed constant)

Statistical inference and modeling

Jitkomut Songsiri

▶ < ∃ ▶</p>

Properties of LS estimate

Statistical inference and modeling

Jitkomut Songsiri Properties of LS estimate

13 / 33

Analysis of the LS estimate

assumptions:

- \blacksquare data generating process is $y=X\beta+u$
- $\blacksquare \ u$ is white noise with zero mean and covariance matrix Σ
- \blacksquare the least-square estimate is given by $\hat{\beta} = \operatorname{argmin}_{\beta} \| X\beta y \|_2$
- the regressor X is *deterministic*

then the following properties hold:

- $\hat{\beta}$ is an unbiased estimate of β ($\mathbf{E}\hat{\beta}=\beta$, or $\hat{\beta}=\beta$ when u=0)
- \blacksquare the covariance matrix of $\hat{\beta}$ is given by

$$\mathbf{cov}(\hat{\beta}) = (X^T X)^{-1} X^T \Sigma X (X^T X)^{-1}$$

Statistical inference and modeling

Jitkomut Songsiri

short proof: we can write the LS estimate as

$$\hat{\beta} = (X^T X)^{-1} X^T y = (X^T X)^{-1} X^T (X\beta + u) = \beta + (X^T X)^{-1} X^T u$$

since X is deterministic and u is zero mean, we have E\$\heta\$ = \$\beta\$
the covariance of \$\heta\$ is derived by

$$\begin{aligned} \mathbf{cov}(\hat{\beta}) &= \mathbf{E}[(\hat{\beta} - \mathbf{E}\hat{\beta})(\hat{\beta} - \mathbf{E}\hat{\beta})^T] \\ \text{but } \mathbf{E}\hat{\beta} &= \beta \text{ and that } \hat{\beta} - \mathbf{E}\hat{\beta} = (X^T X)^{-1} X^T u, \text{ hence,} \\ \mathbf{cov}(\hat{\beta}) &= \mathbf{cov}[(X^T X)^{-1} X^T u] \\ &= (X^T X)^{-1} X^T \mathbf{cov}(u) X (X^T X)^{-1} \\ &= (X^T X)^{-1} X^T \Sigma X (X^T X)^{-1} \end{aligned}$$

if $\Sigma=\sigma^2 I$, then it reduces to $\mathbf{cov}(\hat{\beta})=\sigma^2 (X^TX)^{-1}$

Statistical inference and modeling

Jitkomut Songsiri

・ロ・・ 白・・ キャー キー うくぐ

BLUE property

assumptions: u is white noise with zero mean and **unit** covariance (cov(u) = I) the estimator defined by

$$\hat{\beta}_{\rm ls} = (X^T X)^{-1} X^T y$$

is the **optimum unbiased linear least-mean-squares** estimator of β

assume $\hat{\beta}=By$ is any other linear estimator of β

• require
$$BX = I$$
 in order for \hat{z} to be unbiased
• $\mathbf{cov}(\hat{\beta}) = BB^T$
• $\mathbf{cov}(\hat{\beta}_{ls}) = BX(X^TX)^{-1}X^TB^T$ (apply $BX = I$)
Using $I - X(X^TX)^{-1}X^T \succeq 0$, we conclude that

$$\mathbf{cov}(\hat{\beta}) - \mathbf{cov}(\hat{\beta}_{ls}) = B(I - X(X^T X)^{-1} X^T) B^T \succeq 0$$

Statistical inference and modeling

Jitkomut Songsiri

- BLUE property is also known as Gauss-Markov theorem
- the assumption that $\mathbf{cov}(u) = I$ (or could be $\sigma^2 I$) is equivalent to
 - $var(u_i) = \sigma^2$ for all *i*, *i.e.*, the error terms have the same variance (homoskedasticity)
 - $\mathbf{cov}(u_i, u_j) = 0$ for $i \neq j$, *i.e.*, the error terms are uncorrelated
- the proof on the optimality use the fact that $P = X(X^TX)^{-1}X^T$ is an orthogonal projection matrix which have properties:

$$P^T = P$$

$$\bullet P^2 = P$$

 $\blacksquare \ \|Px\| \le \|x\| \text{ for all } x \in \mathbf{R}^n$

these properties imply that $I-P\succeq 0$

ABAABA B SQQ

Properties of estimation errors

under the homoskedastic assumption $u_i \sim \mathcal{N}(0, \sigma^2)$ and define

$$\hat{u} = y - X\hat{\beta}_{ls}, \quad RSS = \sum_{i=1}^{N} \hat{u}_i^2, \quad s^2 = RSS/(N-n) = \|\hat{u}\|_2^2/(N-n)$$

an estimate of covariance and standard error of \hat{eta} are

$$\mathbf{cov}(\hat{\beta}) = s^2 (X^T X)^{-1}, \quad \mathsf{SE}(\hat{\beta}_k) = \sqrt{\mathbf{cov}(\hat{\beta})_{kk}}$$

- using more samples gives smaller $\mathbf{cov}(\hat{\beta})$
- if predictors are highly correlated, the covariance is big

Statistical inference and modeling

Jitkomut Songsiri

ABAABA B SQQ

Accuracy of the model

 R^2 is based on the decomposition of the total sum of squares (TSS)

$$\underbrace{\sum_{i} (y_i - \bar{y})^2}_{\text{TSS}} = \underbrace{\sum_{i} (y_i - \hat{y}_i)^2}_{\text{RSS}} + \underbrace{\sum_{i} (\hat{y}_i - \bar{y})^2}_{\text{ESS}} + 2\sum_{i} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y})$$

TSS (total), RSS (residual) and ESS (explained) sum of squares for OLS, the last term on RHS is zero if the model has a constant term, so

TSS = RSS + ESS

 R^2 is defined as

$$R^2 = \frac{\text{ESS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

 R^2 is between 0 and 1 and it measures the proportion of variability in Y that can be explained using X

Statistical inference and modeling

Jitkomut Songsiri

19 / 33

Variable selection

Statistical inference and modeling

Jitkomut Songsiri Variable selection

20 / 33

・ロト・(型ト・モー・モー・ ヨー・クタク

Hypothesis testing

a significance test of regression coefficients involves

$$H_0: \beta_k = 0$$
 versus $H_1: \beta_k \neq 0$

we compute a *t*-statistic given by

$$T = \frac{\hat{\beta}_k}{\mathsf{SE}(\hat{\beta}_k)} = \frac{\hat{\beta}_k}{\sqrt{s^2[(X^T X)^{-1}]_{kk})}} \quad \sim t_{N-n}$$

and compute the probability of observing any value equal to $\left|T\right|$ or larger

$$p$$
-value $= P(t_{N-n} \ge |T|)$

if p-value $< \alpha$ (a given significance level) then we reject H_0 (x_k is significant)

Statistical inference and modeling

Jitkomut Songsiri

Results on advertising data

run simple regression versus multiple regression

	Simple regression of sales on radio				Simple regression of sales on nonspaper				
	Coefficient	Std. error	t-statistic	<i>p</i> -value		Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	9.312	0.563	16.54	< 0.0001	Intercept	12.351	0.621	19.88	< 0.0001
radio	0.203	0.020	9.92	< 0.0001	newspaper	0.055	0.017	3.30	0.00115

Coefficient Std. error *t*-statistic *p*-value Intercept 2.9390.31199.42< 0.00010.0460.0014 32.81< 0.0001TV 0.1890.0086 21.89< 0.0001radio -0.0010.0059-0.180.8599newspaper

- top left: a 1,000 USD increase in radio ad budget is associated with an average increase in sales by around 203 units
- top right: a 1,000 USD increase in newspaper budget is associated with an average increase in sales by around 55 units
- bottom: the coefficient of newspaper is by contrast close to zero in multiple regression — p-value is high and newspaper is not significant

Statistical inference and modeling

Jitkomut Songsiri

Simple regression of sales on newspaper

when examining the correlation matrix of predictors and response

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

note that the correlation between radio ad and newspaper is 0.35

- markets with high newspaper ad tend to also have high radio ad
- multiple regression shows that newspaper ad is not directly associated with sales
- however, when running a simple regression, newspaper is a surrogate for radio ad and get credit for explaining sales

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Deciding important predictors

which predictors should be used to explain the response ?

common methods in variable selection:

- best subset selection: consider all possible model candidates
- forward selection: searching starts from a null model
- backward selection: searching starts from a dense model
- shrinkage method (regularization techniques)

Best subset selection

consider x_1, x_2, \ldots, x_p as p predictors

 S_k : the model class that each contains k predictors (S_0 has only constant term) there are $\binom{p}{k}$ sub-models in S_k and no. of all possible sub-models is $\sum_{k=1}^{p} \binom{p}{k} = 2^p$

Statistical inference and modeling

Jitkomut Songsiri

<<p>Image: 1

we would like to pick the 'best' model according to some model selection criterion steps in variable selection

- for k = 1,..., p
 for j = 1,..., (^p_k)
 fit all 'p choose k' sub-models that contain k predictors
 pick the best among (^p_k) models and call it M_j
 here 'best' is defined as having the smallest RSS on training data
- 3 select a single best model among M_0, M_1, \ldots, M_p using cross-validated prediction error, AIC, BIC or adjusted R^2

step 3 is one of the two approaches to obtain the best model having a low test error

- *indirectly* estimate test error by *adjusting* training error to account for bias due to overfitting (here, using model selection score instead)
- directly estimate the test error, using a validation set/CV approach

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろく⊙

Stepwise selection

when p is large, the best subset selection suffers from looking in a large search space

- stepwise selection explores over a a more *restricted* set of models
- forward selection starts from a null model, while backward selection starts from a full model

Statistical inference and modeling

Jitkomut Songsiri

э

Forward stepwise selection

we start to consider the $\ensuremath{\textbf{null}}$ model and add more predictors one at a time

- **1** let M_0 be the *null model* which contains no predictors
- **2** for k = 0, ..., p
 - **1** consider all p k models that augment the predictors in M_k with **one** additional predictor
 - 2 choose the best among these p-k models and call it M_{k+1}
 - 3 the best model here is to have the smallest RSS or largest R^2
- 3 select a single best model among M_0, M_1, \ldots, M_p using cross-validated AIC, BIC or adjusted R^2
- there are $\sum_{k=0}^{p-1}(p-k) = 1 + p(p+1)/2$ models involved in this algorithm (much less than 2^p)
- it may fail to find the best possible model out of all 2^p models

Statistical inference and modeling

Jitkomut Songsiri

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Backward stepwise selection

we start to consider the $\ensuremath{\textbf{full}}$ model and remove more predictors one at a time

- **1** let M_0 be the *full model* which contains all p predictors
- **2** for $k = p, p 1 \dots, 1$
 - \blacksquare consider all k models that contain all but one of the predictors in $M_k,$ for a total of k-1 predictors
 - **2** choose the best among these k models and call it M_{k-1}
 - 3 the best model here is to have the smallest RSS or largest R^2
- 3 select a single best model among M_0, M_1, \ldots, M_p using cross-validated AIC, BIC or adjusted R^2
- there are $\sum_{k=0}^{p-1}(p-k) = 1 + p(p+1)/2$ models involved in this algorithm (much less than 2^p)
- it may fail to find the best possible model out of all 2^p models

Statistical inference and modeling

Jitkomut Songsiri

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Softwares and practical issues

Statistical inference and modeling

Jitkomut Songsiri Softwares and practical issues

30 / 33

Softwares

MATLAB: Statistical and machine learning toolbox

- fitlm: linear regression fit
- stepwiselm: stepwise regression (users can select criterion to add/remove terms)

Python modules:

- statmodels
- scikit-learn: linear model

- colinearity: two or more predictors are closely related
- correlation of error terms: error is not likely white
- non-constant variance of error terms: violate the homoskedastic assumption
- outliers: some data points are far from others

A B A B A B A A A

Figures and examples are taken from the first two references (ISLR, ESL)

- Chapter 3 in T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, Second edition, 2009
- 2 Chapter 3 in G. James, D. Witten, T. Hastie, and R. Tibshirani, *An Introduction to Statistical Learning: with Application in R*, Springer, 2013
- 3 Appendix in W.H. Greene, *Econometric Analysis*, Prentice Hall, 2008