Nonlinear models

Jitkomut Songsiri

Department of Electrical Engineering
Faculty of Engineering
Chulalongkorn University

CUEE

February 14, 2023

Statistical inference and modeling Jitkomut Songsiri

1/38



Outline

Regression splines

Generalized additive models

Feedforward neural network

Statistical inference and modeling

Jitkomut Songsiri

2/38



Regression splines

m basis function
m regression splines

m smoothing splines
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Basis functions

fit a response y; with a linear combination of basis functions

yi = f(x;) = o+ Brgi(xi) + Paga(xi) + -+ + Bugm(xi) + e, i=1,2,...,N

m the basis functions g1(+),...,gan(+) are known and fixed

m example of g;: polynomial, piecewise constant, sine/cosine in Fourier series
m gj(x) =x; for j =1,...,p recovers the original linear model
mgi(z) = xf or gj(x) = xjxy, yields higher-order polynomial terms

gj(z) = log(z;), /Zj, ... permits other nonlinear transformations

gj(z) = I(l <z}, < u), an indicator function for a region of zy,

m the model is linearly parametrized in f, ..., 3p; they can be estimated using
linear least-squares
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Example: Wage dataset

piecewise-constant fit on Wage dataset

Piecewise Constant

take age as ordered categorical variable

gj(z) = I(cj < x < cjy1) (step function)

the breakpoints in x must be chosen to capture a
trend change in y

Wage
|
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next,

m a general goal is to devise a flexible f that explains y

m polynomials are one of good choices but limited by their global nature (adjusting
coefficients by little can make the function not generalize well for other x)

m we focus on regression splines that are used for local polynomial representation
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Regression splines

piecewise polynomial fit with K knots

¥ ) L .
,-inear use different polynomials in each inter-
val of x
( .
pl(xz‘), if x; < C1,
pQ(xZ-), ifc1 <z <o,
Yi =
pr (), if cx—1 < < cg
pr+1(x;), ifz;>ck

m placing K knots into the range of X results in fitting K + 1 polynomials
m fitting n-degree polynomial with K knots use (n + 1)(K + 1) degree of freedoms
m immediate flaw: the fitted function is not continuous
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Splines: polynomial fit with constraints

we can impose additional constraints at ¢ (breakpoints)

Piecewise Cubic Continuous Piecewise Cubic

u u m continuity: p;(c) = pjy1(c)
S /\\f\ ’ /“\ m smoothness:
R P =P (@), Pe) = (o
(derivatives are continuous)
m each constraint frees up one
Sy S I Pr-av N degree of freedom

Age age

definition: a degree-d spline is a piecewise degree-d polynomial with continuity in
derivatives up to degree d — 1 at each knot
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Basis representation of splines

example: let number of knots be K (here, two knots at ¢; and ¢3 )

no.of parameters = (no.of knots+1) x (no. parameters per region) - (no.of knots) x
(no. of constraints per knot)

m linear spline: no.parameters = (K +1)(2) - K-1=K +2
gix) =1, gz) =z, g3(x) = (r—c1)y, ga(2) = (z —c2)4
m cubic spline: no.parameters = (K +1)(4) — K -3=K +4
gix) =1, ga(w) =w, gs(w)=a? ga(a) =2’

g5(2) = (x — 1)}, goz) = (x —2)}

the notation z; £ max(z,0) denotes the positive part of z
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Spline knots: number and locations

guideline: more knots in regions for which the model should be more flexible

Natural Cubic Spline

300
|

m we specified 4 degrees of freedom

250
|

m knot locations were chosen automatically
as the 25th, 50th and 75th percentiles of
age (in fact, there are 5 knots including
the boundary for natural cubic spline)

Wage
200
I

150
|

100
|

m the number of knots can be tried out by
using cross-validation

50

20 30 40 50 60 70 80

Age
there are many rules to choose the locations of knots
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Example: cubic spline
fit a cubic spline using spap2 in MATLAB

cubic polynomial fit w/o constraints

data
3 knots
5 knots

cubic splines
10 T ™ T T T T T

m knots assigned by aptknt (MATLAB) (others include optknt,augknt ,newknt)
m the function changes more rapidly when more number of knots is used
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Natural cubic splines

each line is the fitted regression spline with 3 knots to different subset of Wage data

—— Natural Cubic Spline
ic Spline
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m splines can have high variance at the outer range of X

m a natural spline is a regression spline with additional boundary constraints — that
is required to be linear at the boundary (two constraints for each endpoint)

m natural cubic spline have K +4 — 4 = K basis functions
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Comparison to polynomial regression

a natural cubic spline with 15 df versus polynomial of degree 15

~—— Natural Cubic Spline
7 —— Polynomial

Wage
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|

the polynomial wiggles abruptly at the boundary, while natural spline still provides a
reasonable fit
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Smoothing splines

among all functions f(z) with two continuous derivatives, find one that minimizes

N
RSS(A) =Y [(yi — f(x:)) +)\/f” )|2dt

=1

1" (t) measures how the slope of f is changing (the larger, the more wiggly f is)
[1£"(t)|?dt is the total change in f’, indicating smoothness of f

A is a fixed smoothing parameter

the penalized RSS is a trade-off between the goodness of fit and the curvature of f
when A =0, f can be any function that interpolates the data

|
|
|
|
|
m when A — o0, f is close to the simple least-squares line fit
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Solution of penalized RSS

it can be shown that the solution to minimization on page 13 has properties:
m a piecewise cubic polynomial with knots at every unique values of x1,..., 2N
m it has continuous first and second derivatives at each knot
m it is linear in the region outside of the extreme knots

(exercise 5.7 in ESL book)

conclusion:

m [ that minimizes the penalized RSS is, in fact, a natural cubic spline with knots
at z1,..., N

m however, it is a shrunken version of a natural cubic spline (not the same one we
would obtain from the basis function approach)
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Example

let hj(x) for j =1,..., N be basis functions of a natural cubic spline

N
y=f(x)=>_ Bih;()
j=1

H e RVN Hyp = hj(z;), GeRVN Gy = /h;f(t)h’,;(t)dt
the penalized RSS can be represented as
RSS(\) = (y — HB)" (y — HB) + \B" G
the minimizer 3 can be seen as a generalized ridge solution
B=H"H+XG)'HTy

however, the computation part of smoothing spline is done more efficiently via B-spline
basis representation — further read in ESL book
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Smoother matrix

we can represent f as a smoothing operation on y
= f(a:) = HHTH+)XG)'HTy & Sy

we call Sy as smoother matrix (which depends only x and \) with properties:

m symmetric and positive semidefinite with rank(Sy) = N
m 5)\S\ < S\ (a meaning of shrinking nature)

we define the effective degrees of freedom of a smoothing spline to be

N

df(\) = tr(Sy) = Z(S)\)ii

i=1
generally speaking, it gives a sum of (diagonal) weights from each y; to y

larger A gives smaller effective df — the resulting model is simpler
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Choosing a smoothing parameter
one approach is to find A that makes cross-validated RSS small
LOOCV cross-validation error

N

RSSIOOCV(A) = Z(yz - f)(iZ) (xl))2

=1

f/&*i) is the fitted A-smoothing spline trained on all observations except ith sample

it can be shown that the CV error can be computed efficiently by the formula

N [y~ A
B Yi — JaTi)
RSS1ooev (A) = ; [ 1— (S ]

fA is the fitted A-smoothing spline trained on all observations
benefit: can compute LOOCV error using only the original fit to all data
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Example: smoothing spline fit
smoothing spline fit to (left) simulated (right) Wage data

Smoothing splines

12 Smoothing Spline
o data
1o 0 —A=10"* ° ] — ;SB?)seggrrs:essa;'FF've:::u’:‘n (Loocv)
. A —X=02 s
2 —A=5 7

Wage
200
L

0 50 100
I

m (left) MATLAB: check fit with smoothingspline option
m (right) A was choosen by LOOCV, which resulted in 6.8 effective df
m little difference between two splines — a simpler model is preferred
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Reinsch form of smoother matrix
it can be shown that the smoother matrix can be presented as the Reinsch form
Sy=(I+AK)™!
where K does not depend on A and known as penalty matrix
(use SVD of H = UXVT to show that, in fact, K = UTS"'VTGVE~1U)

fact: K is symmetric and admits K = UDU?T with d; =dy =0

this gives the eigenvalue decomposition of S as

N N T
1 upy
S ngpk( Jurpuy,  pr(A) vl Sy 321 (1+>\dk> ug,

smoothing splines operate by projecting y onto the basis uj and shrink the kth
contribution with weight 1/(1 + Adg)
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Generalized additive models
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Feedforward neural network

m structure and parameters
m mathematical relations
m loss functions for regression and classification
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Feedforward NN structure

fully connected L-hidden layers; each of which has n; units and the weight matrix W
L

Wy Wy w W,
x1 1 1 0
Xo d £ .
2 2 § —>o2 :
E :%: £ ! : %ym
In ny ng & nr,

input layer hidden layer 1 hidden laye'r 2 ' hidden layer L output layer

x = (x1,22,...,Tp) is the input (assume the first element is constant)

y = (y1,%2,...,Ym) is the output (or target)

hidden-layer weight matrices: W7 € R"**P and W; € R%*™-1, j =2 ... L
output-layer weight: W, € R™* (£ +1)

h: R? — R% is an activation function for units in hidden layer

g : R™ — R™ is a transformation for output layer
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Compact mathematical representations

linear transform of input and pass through a nonlinear activation function

m (W})i; is the weight of the kth layer that maps input ¢ to output j
(assume x; =1, so (W});1 is a bias term)

m the functions h and g are element-wise operations

m activation function examples: step (heaviside), sigmoid, RelLU, tanh, RBF

m example: single hidden-layer of n units; tanh activation:

tanh[(W1)11 - 1+ (Wh)iaze + - - - (W1)1p7,) ha
W) — tanh[(W7)er - 1 + (W%)zzm +o (W)l | hg
tanh[(W1)n1 - 14+ (Wh)naza + - - - (W) ppp) hy,

Z = (WO)O -1 + (Wo)lhl + (Wo)2h2 + -+ (Wo)nhn S R™
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Task of NN
the transformation of output unit depends on the task of NN

m regression: g is linear; y = z = W,h(Wix)

= multi-class classification: g is softmax function: gx(z) = % k=1,...,m
=1

y = g(2) = g(Wo(h(W1z)))

(yx is the probability of classifying the input to class k)

m binary classification: y has a single node; g reduces to the sigmoid function

Statistical inference and modeling Jitkomut Songsiri 24 / 38



Feedforward NN as composites of nonlinear functions

example of L hidden-layer: y = g(W,h(Wrh(Wr_1h(--- h(Whix)))))

to differentiate the notation of NN output from the true description y, we often use

g=f(z;0)
as the output of NN

m conceptually, a nonlinear function of x, parametrized by © = (W1,..., W, W,)
m nonlinearity of a model is introduced via a choice of activation function

m the overall number of parameters is specified by the depth (number of hidden
layers) and number of units
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Regression task of NN
let § = f(x;©) be the output of neural network using input data =
{;,y;})¥, are N-sample of input/output data; §; is a model output from sample i

regression: loss functions that are tied with the regression task

= MSE: (1/N) 0L, i — 9ill3
s MAE: (1/N) XN, llyi — ills
= huber: (1/N) >N, huber(r;) where r; = y — §i;

huber(z) = (1/2)a?, lz] < M
M(|z| = M/2), z>M
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Interpretation of MSE

in regression task, the output are linear units

m we can model the output to be an estimate of the mean of a conditional
Gaussian distribution

flyle) = N(y; 9(2:0),1)
m the log likelihood of Gaussian distribution is a negative quadratic function (in ¥)

m using the maximum likelihood estimation (MLE), it is known that the problem is
equivalent to minimizing the MSE

N A~
>y~ fla ©)13
i=1
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Example: function approximation

data are generated from nonlinear functions: y = f(z) + e, 100 samples, 02 = 2
fi(x) = sin(5x) — e 3tanh@)+eos(@) 4 cog(22), fo(z) = 8cos(5z) + 0.5 cosh(z), fz(x) = b

comparison of using 1 and 3 hidden layers with 10 neurons

10 Output 1 0 Output 2 “ Output 3

0 60 ‘ 20
.10 © m NN can adapt to
- | 0 . . .
g2 ZOW /—f(r)f() high fluctuation in

20 Y NN T Tager

. ° N s y due to

40 20 40 . .

s o s s 0 s g o s nonlinearity of f

% 5 m test result shows

.

2 “0 w0 the models cannot
§°\\/J\x . 7] i generalize well for
82 /\\_/ 20

. ol = y1 and y3

® 20 10

3 35 4 45 5 3 35 4 45 5 3 35 4 45 5

E: T 3
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Example: solar power forecasting

data: solar irradiance (I), solar power (P), ambient temperature (7') every 15-min

time and station: Jan-Aug, 2022, collected at RAMA IV, max power = 250 kW
target: P and input: I,T
consider four experiments with different data arrangement patterns

date-time vectors of target and input are delay shifted by 1 hour

date-time vectors of target and input are corresponding

date-time vectors of target and input are delay shifted by 30 minutes

date-time vectors of target and input are delay shifted by 30 minutes and one
additional input

TIema(t +1) = BI(t) + (1 — B)Iema(t), B €[0.8,1)
this is an exponentially moving average of I(t)
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Example: data arrangement

left: target datetime, right: input datetime

CASE 1: CASE 4: date-time as CASE 3 but with additional input
2022-01-01 08:00:00 2022-01-01 07:00:00 500 movlng‘average(EMA) :
2022-01-01 08:15:00  2022-01-01 07:15:00

2022-01-01 08:30:00  2022-01-01 07:30:00
2022-01-01 08:45:00  2022-01-01 07:45:00
2022-01-01 09:00:00  2022-01-01 08:00:00

CASE 2:

2022-01-01 08:00:00  2022-01-01 08:00:00
2022-01-01 08:15:00  2022-01-01 08:15:00
2022-01-01 08:30:00  2022-01-01 08:30:00
2022-01-01 08:45:00  2022-01-01 08:45:00
2022-01-01 09:00:00  2022-01-01 09:00:00

CASE 3:

2022-01-01 08:00:00  2022-01-01 07:30:00
2022-01-01 08:15:00  2022-01-01 07:45:00
2022-01-01 08:30:00  2022-01-01 08:00:00
2022-01-01 08:45:00  2022-01-01 08:15:00

2022-01-01 09:00:00  2022-01-01 08:30:00 ’ ” “© S . 10 0

Solar irradiance (W/sqm)

m can you interpret this input-output mapping into a mathematical form 7 write
y(t) as some function of z(t) or (¢t — 1) 7 and specify time step of ¢

m which cases correspond to a practical setting ?
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Solar forecast results by NN

test with 3 hidden-layer with 20 neurons which case would you use 7

case: 1 NRMSE = 37.23%, NMAE

ccase: 2 NRMSE = 6.401%, NMAE )% Correlation = 0.991
250 250 20 2SI ZNAMSE = 6401% NMAE =4.50% )
[T
20 20 200 3
B 150 S0 _150 =
N H 5 2
H T H H
5 Z100 Z100 200 g
3 3
E B B
o ERE ) I R T ER )
Estimated power (kW) Step Estimated power (kW)
Correlation = 0.752 case: 4 NRMSE = 30.35%, NMAE = 23.14% Correlation = 0.771
250 =0752 250 250
o
e

s R S R
5 g 5 g
: : £ H
g E H E
5
2 100 lo’ 100 <100
] H]
o wls %
, kel
e e w5 w FTa I I T e
Step Estimated power (kW) Step Estimated power (kW) .
o = = =
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Brief summary on data mapping in NN

® a mapping between input and target corresponds to a mathematical
representation of model — even we use the same architecture of NN

m when presenting a feedforward NN with lagged inputs y(t) = f(z(t — 1)), it can
represent a form of dynamical model

m arranging data to train a NN should be verified if it is also meaningful when
implementing the model in practice

m when using with time series, the concept of ‘causal system’ should be realized —
no output can occur before an input starts
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Binary classification task

the output unit predicts the probability of one class

m class labels have two choices: y € {1, -1} or y € {1,0}
m y is modeled to have a Bernoulli distribution: p(y|z) = 7¥(1 — m)'~Y
m the negative loglikelihood is aka cross-entropy:
-log p(ylz) = —[ylogm + (1 — y)(1 — 7)]
m modeling: predict m = P(y = 1|x) using NN (or other models); replace 7 by
T =9(x;0)
loss functions used to train NN for binary classification

m cross-entropy: labels are 0,1; §; = §;(x;; ©) = P(y; = 1]x;) (classify to class 1)

N

joss = — >y log (i) + (1 — yi) log(1 — )
=1
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Binary classification task

m hinge loss (or ReLU, perceptron cost): labels are 1, —1; normalize g; to (—1,1)

N
loss = Z max(0,1 —y; - ;), (when g; # y; the loss is 2)
i=1

m scores motivated from F1 or dice similarity coefficient

_ 2TP
- 2TP +FP +FN’

meaning: TP =5, y;0;, FP =3 ".(1 —y:)9;, and FN = >, v;(1 — %)
®m minimizing these losses is similar to maximizing F1 score
N A~
N A~
> i (Wi +3i)

F1

(no TN, predicting majority samples correctly)

N ~
2 5 Yili

soft-dice loss =1 — =~ 2 2.
Zi:l(yi +9;)

, squared-dice loss =1 —
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K-class classification using NN
label y is a standard unit vector in RX

y=(y1,y2, -, YK)

(only one of y1,¥2,...,yx has value of 1; the rest is all zero)
m denote 7y the probability that y = (0,0, 1 ,0,...,0) where Zf; m=1
kth

m generalize Bernoulli distribution to an K-dimensional binary variable y

p(ylz) = m{' s - miE

m the (conditional) loglikelihood is called (multi-class) cross entropy
logp(y|x) = y1 logmi + yalogme + - - - + yi log Tk
m modeling: NN has K-dimensional output units that predictds 7;'s
e =T ~m, k=1,...,K
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K-class classification using NN
let ¢ be a sample index, i =1,..., N

cross-entropy loss: j; is the output of the softmax function

loss = — Y _ yin log(#i1) + iz l0g(fiz) + - - + yir log(fixc)

=1

N e~i,correct class
= - § 1Og(:’;/i,correct class = § log

. Z ezik

i=1 i=1 k=1

z € R is predicted output from a model; before being mapped to probabilities

(alo referred to multi-class softmax cost, softplus cost, multi-class cross entropy loss)
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Considerations in learning NN

m hidden units: properties and recent choices of activation functions
(leaky/parametric ReLU, softplus, etc.)

m architecture design: determine overall structure of the network (theoretical result:
universal approximation theorem

m recent advances in proposing new choices of
m model training
m gradient-based learning requires computing derivatives of the composition: concept
of based on chain rule in calculus
m how a learning algorithm in optimization process affects a model capacity (which are
the effective capacity, and representational capacity; the latter defined by the
family of model)
®m computation: automatic differentiation, justification of non-differentiability of some
activation functions by numerical point of view, batch/

m regularization: ¢ and /2, dropout
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