Robust regression

Jitkomut Songsiri

Department of Electrical Engineering Faculty of Engineering Chulalongkorn University

CUEE

January 17, 2023

Outline

- 1 Outliers in measurements
- 2 Outlier diagnostics
- 3 Robust methods
- 4 Softwares and summary

Outlines

- lacktriangle outliers in measurements: outlying x and outlying y
- outlier diagnostics
 - studentized residuals
 - hat matrix
 - Cook's distance
- robust regression
 - weighted least-squares (WLS)
 - M-estimator

setting: $y = X\beta + e$ where $X \in \mathbf{R}^{N \times n}$, n: the number of coefficients

Outliers in measurements

Outliers in measurements

data contains outliers: some samples are not generated from the same dgp

OLS estimate can be biased and pulled towards the outliers robust regression is a method to overcome problems violating OLS assumptions note: robust LS also refers to a method that is insensitive to parameter uncertainty

Outlying in y-space

number of international phone calls from Belgium during 1950-1975

- contamination during 1964-1969: another recording system was used and gave total number of *minutes*
- full dataset LS fit: the slope is affected much (tilted upward) by the vertical outliers

6 / 26

Outlying in x-space

- 43 stars lie on the main sequence, whereas the 4 remaining stars are called giants
- these giants are called (bad) leverage points, not errors but come from different populations

7 / 26

Outlier diagnostics

Residual analysis

we can use residual analysis to identify potentially unusual y values

setting of dgp: $y=X\beta+e$, e_i 's are i.i.d. with variance σ^2

- (raw) residual: $r = y \hat{y}$ (from a full regression)
- MSE = $s^2 = \hat{\sigma}^2 = ||r||_2^2/(N-n)$ (unbiased estimate of σ^2)
- 1 standardized residual: $z_i = r_i/s$
- 2 studentized (or jackknifed) residual: $t_i = \frac{r_i}{\sqrt{\mathsf{MSE}_{(-i)}(1-h_{ii})}}$
- $lacktriangleq \mathsf{MSE}_{(-i)}$ is mean square error based on the estimated model with ith data removed
- lacksquare potential outliers on observations with z_i or t_i larger than 3 (threshold)
- \blacksquare another way to explain t_i through deleted residual:

$$d_i = y_i - \hat{y}_i^{(-i)}, \quad t_i = \frac{d_i}{s(d_i)}, \quad s(d_i) : \text{standard deviation of all } d_j$$

Hat matrix

the hat matrix is defined as

$$H = X(X^T X)^{-1} X^T$$

that maps y to the prediction \hat{y} (check $\hat{y} = X \hat{\beta} = H y)$

- h_{ij} : effect exerted by the jth observation on \hat{y}_i
- h_{ii} : equal to $\partial \hat{y}_i/\partial y_i$, giving the effect of the *i*th observation on its own prediction
- lacksquare facts: using H is symmetric and idempotent, it holds that

$$(1/N) \sum_{i=1}^{N} h_{ii} = n/N, \quad 0 \le h_{ii} \le 1, \quad i = 1, 2, \dots, N$$

■ the *i*th observation is called to have **high leverage** if

$$h_{ii} > \frac{2n}{N}$$
 (h_{ii} is large by some threshold)

example: diagonals of hat matrix (star and telephone datasets); X is standardized

- h_{ii} 's of the giant stars are larger than 2n/N (0.085)
- h_{ii} 's of the telephone data do not point out outlying observations
- the hat matrix, which is only based on X, can detect potential outliers in the x-direction
- lacktriangle whether the data point is influential or not also depends on y_i

11 / 26

Cook's distance

a distance measuring how far $\hat{\beta}$ moves when (x_i,y_i) is removed

$$D_{i} = \frac{(\hat{y} - \hat{y}^{(-i)})^{T}(\hat{y} - \hat{y}^{(-i)})}{n\hat{\sigma}^{2}} = \frac{(\hat{\beta} - \hat{\beta}^{(-i)})^{T}(X^{T}X)(\hat{\beta} - \hat{\beta}^{(-i)})}{n\hat{\sigma}^{2}}$$

- $\hat{y}, \hat{y}^{(-i)}$ are the fitted responses with all data and with ith case removed, resp
- $\hat{\beta}^{(-i)}$ is the LS estimate on the dataset without ith observation
- lacksquare D_i measures the effect of the ith observation on the fitted vector and coefficients
- lacksquare D_i is algebraically equivalent to $D_i = rac{r_i^2}{n\hat{\sigma}^2} \cdot rac{h_{ii}}{(1-h_{ii})^2}$
- D_i is made up of two components: 1) how well the model fits the response and 2) how far x_i is from the rest of x_i 's
- any ith observation that has relatively high D_i deserves a closer look (often, a threshold can be 4/N or $3 \cdot \bar{D}$)

□ ▶ < □ ▶ < ≧ ▶ < ≧ ▶○

12 / 26

Example

Cook's distance calculated on star and telephone datasets

- telephone indices of high D_i are 20, 23, 24 (years 1969, 1972, 1973)
- **star** indices of high D_i are 20,30,34 (three of the giant stars)

Robust methods

Weighted least-squares

given W a positive definite matrix that can be factorized as $W=L^TL$ a weighted least-squares (WLS) problem is

$$\underset{x}{\mathsf{minimize}} \ (X\beta - y)^T W (X\beta - y)$$

- equivalent formulation: minimize_x $||L(X\beta y)||^2$
- can be solved from the modified normal equation

$$X^T W X \beta = X^T W y$$

- the solution is $\hat{\beta}_{wls} = (X^T W X)^{-1} X^T W y$ (if X is full rank)
- $X\beta_{\text{wls}}$ is the *orthogonal projection* on $\mathcal{R}(X)$ w.r.t the new inner product

$$\langle x, y \rangle_W = \langle Wx, y \rangle$$

Interpretation of WLS

when m-measurements contain some outliers (samples 3,9,10)

using
$$W = \mathbf{diag}(w_1, w_2, \dots, w_m)$$
 gives WLS objective: $\sum_{i=1}^m w_i (y_i - x_i^T \beta)^2$

- use relatively **low** w_3, w_9, w_{10} to penalize **less** on those samples
- the linear model tends not to adapt to outliers making WLS a more robust method than LS

Loss functions for robust regression

Huber and ℓ_1 losses do not highly penalize large residuals

- large residuals resulted from outliers should be less taken into account
- lacksquare compared to square loss, Huber and ℓ_1 have less penalty for large r
- for $r = y X\beta$ (linear models), using all losses results in convex problems

Regression M-estimators

minimize a penalty function of estimation residual: $r=y-X\beta$

$$\underset{\beta}{\operatorname{minimize}} \sum_{i=1}^{N} \rho\left(\frac{r_i(\beta)}{\hat{\sigma}}\right), \qquad \hat{\sigma} \text{ is a preliminary scale estimate}$$

- ${\color{red} \bullet}$ for $\rho(r)=r^2$, we obtain LS estimate $\hat{\beta}_{\rm ls}$
- lacksquare for ho(r)=|r|, we obtain the least absolute deviation (LAD)

$$\hat{\beta}_{\text{lad}} = \underset{\beta}{\operatorname{argmin}} \|y - X\beta\|_{1}$$

this allows us to compute the scale estimate

$$\hat{\sigma} = \frac{1}{0.675}$$
median $_i |r_i(\hat{eta}_{\mathrm{lad}})|$

and use it as initial scale parameter for other M-estimators

Median absolute deviation

for samples $x = (x_1, x_2, \dots, x_N)$,

$$\mathsf{MAD} = \mathsf{median}(|x_i - \mathsf{median}(x)|)$$

MAD is the median of absolute deviations from data's median

- MAD is a robust estimate of scale parameter, which tells statistical dispersion
- MAD can be an estimator for the standard deviation

$$\hat{\sigma} = k \cdot \text{MAD}$$
, where $k = 1/\Phi^{-1}(3/4) \approx 1.4826$ for normal distribution

this follows from that $\pm \mathsf{MAD}$ covers between 1/4 and 3/4 of the normal CDF

$$\frac{1}{2} = P(|X - \mu| \leq \mathsf{MAD}) = P\left(|Z| \leq \frac{\mathsf{MAD}}{\sigma}\right) \Rightarrow \Phi\left(\frac{\mathsf{MAD}}{\sigma}\right) - \Phi\left(-\frac{\mathsf{MAD}}{\sigma}\right) = \frac{1}{2}$$

and using
$$\Phi(-x)=1-\Phi(x)$$
 to show that $\Phi\left(\frac{\rm MAD}{\sigma}\right)=3/4$

Iterative reweighted LS

- **1** start with calculating OLS and the corresponding residual $r=(r_1,\ldots,r_N)$
- **2** compute LS fit leverage values $h = (h_1, \ldots, h_N)$ (higher h_i , larger effect on LS fit)
- 3 compute the adjusted residuals: $\tilde{r}_i = \frac{r_i}{\sqrt{1-h_i}}$
- 4 standardize the residuals: $u_i = \frac{\tilde{r}_i}{Ks} = \frac{r_i}{Ks\sqrt{1-h_i}}$, s is an estimate of SD of error

5 compute the robust weights w_i as a function of u_i (larger u_i , smaller w_i)

bisquare :
$$w_i = \begin{cases} (1 - u_i^2)^2, & |u_i| < 1, \\ 0, & |u_i| \ge 1 \end{cases}$$
, $W = \mathbf{diag}(w_1, w_2, \dots, w_N)$

see other weight functions in robustfit (MATLAB guide)

Iterative reweighted LS

bisquare and talware use zero weight on the observation with large residual

- **6** compute the robust estimate: $\hat{\beta} = (X^T W X)^{-1} X^T W y$ (WLS estimate)
- **7** estimate the WLS error

$$e = \sum_{i=1}^{N} w_i (y_i - \hat{y}_i)^2$$

iteration stops if the fit converges or the maximum number of iterations is reached; otherwise, go to the second step

Result using robust methods

- telephone dataset has outliers in *y*-direction; robust methods can ameliorate the effects of outliers quite well
- star dataset has bad leverage points; most robust methods (WLS, huber, L1) do not perform well on this dataset
- LTS (least trimmed square estimator) finds a subset of observations with small residuals and estimate $\hat{\beta}$ based on that subset of data (more detail in P. J. Rousseeuw book)

Softwares and summary

Summary

- robust regression is a broad term referring to extended methods that ameliorate issues in OLS (here, we focus on outlier problems)
- outliers cause OLS estimate to have large residuals
- a remedy for outlier issues can be done by using loss functions that *less* penalize large residuals (huber, 1-norm or MAE, (iterative) weighted LS)
- iterative WLS adjusts the weight function according to fitted residual in each step
- other methods/algorithms exist: least median square (LMS), least trimmed squares estimator (LTS), random sample consensus (RANSAC)

Softwares

MATLAB: Statistical and machine learning toolbox

- fitlm with robust options
- robustfit: robust regression fit

Python modules:

- statmodels: robust linear model
- scikit-learn: robust linear model

References

- P. J. Rousseeuw, and A.M. Leroy, Robust regression and outlier detection, John Wiley & Sons, 1987
- P. J. Rousseeuw, Lecture note on Robust Statistics Part 3: Regression analysis, LARS-IASC School, May 2019
- MATLAB instruction, Reduce Outlier Effects Using Robust Regression, https://www.mathworks.com/help/stats/ robust-regression-reduce-outlier-effects.html