

Outline

- 1 Separating hyperplane
- 2 Hard and soft margin classifier
- 3 Computation of SVC and the dual
- 4 SVM: Nonlinearity and Kernels
- 5 Related formulations, extensions, and algorithm
- 6 Support Vector Regression (SVR)

Separating hyperplane

Linear function

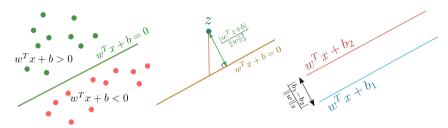
a linear function $f: \mathbf{R}^n \to \mathbf{R}$ is of the form

$$f(x) = w^{T}x = w_{1}x_{1} + w_{2}x_{2} + \dots + w_{n}x_{n}$$

- $w = (w_1, w_2, \dots, w_n)$ is a given parameter
- lacktriangle the contour of f is a hyperplane with the normal vector w
- $\nabla f(x) = w$ (constant, not depend on x)
- for $b \neq 0$, $f(x) = w^T x + b$ is called an affine function
- \blacksquare the ℓ_2 -norm distance from a point z to the hyperplane $w^Tx+b=0$ is $|w^Tz+b|/\|w\|_2$
- s the distance between two parallel hyperplanes described by $w^Tx + b_1$ and $w^Tx + b_2$ is $|b_1 b_2|/||w||_2$

Halfspaces

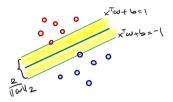
a hyperplane splits the space into two halfspaces



- for a given x, finding w, b so that $w^T x + b > 0$ can have many solutions because the linear inequality is homogeneous in w and b
- many ways to restrict some solutions:
 - find w, b so that $w^T x + b > M$ (just add a constant M)

Separating hyperplane

setting: given $\{(x_i,y_i)\}_{i=1}^N$ where $x_i \in \mathbf{R}^n$ are data with label $y_i \in \{1,-1\}$



modeling:

- lacktriangle the goal is to find a hyperplane x^Tw+b to classify data into two classes
- \blacksquare the distance between two hyperplanes $x^Tw+b=\pm 1$ is $2/\|w\|_2$
- lacksquare feasibility problem: for $i=1,2,\ldots,N$, data from each class satisfy

$$y_i = 1: x_i^T w + b \ge 1$$
, and $y_i = -1: x_i^T w + b \le -1 \implies y_i(x_i^T w + b) \ge 1$

Hard and soft margin classifier

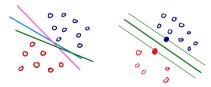
Hard-margin classifier

problem parameters:
$$x_i \in \mathbb{R}^n$$
 and $y_i \in \{-1,1\}$ for $i=1,\ldots,N$

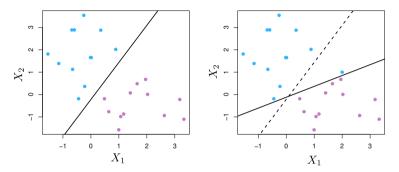
optimization variables: $w \in \mathbb{R}^n, b \in \mathbb{R}$

minimize
$$||w||_2^2$$
 subject to $y_i(x_i^T w + b) \ge 1, i = 1, 2, \dots, N$

- data are classified by separating hyperplane with maximized margin (right figure)
- if feasible, the data from two classes are separated perfectly
- the problem is a convex quadratic program (QP)
- the decision boundary pass through points from both classes— these points are called support vectors



Sensitivity to individual observations

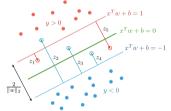


- left: hard-margin classifier with max margin
- right: by only adding a pair of data, the hyperplane dramatically changes; it may overfit the training data
- having the max-margin is no longer useful we need something more robust to individual observations

Soft-margin support vector classifier (C-SVC)

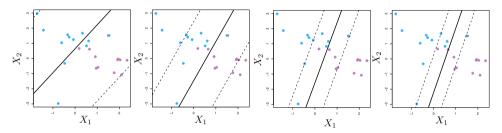
problem parameters: $x_i \in \mathbf{R}^n$ and $y_i \in \mathbf{R}$ for $i=1,\ldots,N,C>0$ optimization variables: $w \in \mathbf{R}^n, b \in \mathbf{R}, z \in \mathbf{R}^N$

$$\begin{array}{ll} \text{minimize} & (1/2)\|w\|_2^2 + C\mathbf{1}^Tz\\ \text{subject to} & y_i(x_i^Tw+b) \geq 1-z_i, \quad i=1,2,\dots,N\\ & z \succeq 0 \end{array}$$



- \blacksquare z_i is called a **slack variable**, allowing some of the hard constraints to be relaxed
- lacksquare if $z_i>0$ at optimum, the ith point is relaxed to be on the wrong side of its class
- lacktriangle the regularization (penalty) parameter C controls the trade-off between maximizing the margin and the total distance of points on the wrong side
- the problem is a convex quadratic program

Varying penalty parameter (C)



- left. C is the smallest (low penalty for observations being on the wrong side, so $\|w\|_2^2$ is small and the margin is large); C is larger from left to right
- lacktriangle when C is large, we get narrow margins that are rarely violated and the classifier is highly fit to the data (low bias, high variance)
- lacktriangledown C is typically chosen via a cross-validation

Classification rule

after we have trained the classifier and obtain \hat{w},\hat{b} , the class prediction based on a new input x is

$$\hat{y} = \hat{f}(x) = \mathbf{sign}(x^T \hat{w} + \hat{b}) = \begin{cases} 1, & x^T \hat{w} + \hat{b} \ge 0, \\ -1, & x^T \hat{w} + \hat{b} < 0 \end{cases}$$

it turns out that \hat{w} and \hat{b} are computed using only *some* of the training observations

this can be explained by the optimality conditions for the soft-margin SVC problem

Computation of SVC and the dual

Derivation of dual

let α and λ be Lagrange multipliers (w.r.t. 1st and 2nd inequalities on page 10)

$$L(w, b, z, \alpha, \lambda) = \frac{1}{2} \|w\|_2^2 - \sum_{i=1}^N \alpha_i y_i x_i^T w - b \sum_{i=1}^N \alpha_i y_i + (C\mathbf{1} - \alpha - \lambda)^T z + \mathbf{1}^T \alpha$$

note that L is quadratic in w: $\frac{1}{2}\|w\|_2^2 - d^Tw$ and L is linear in b and z

lacksquare $\inf_w L$ occurs when $w=d=\sum_i lpha_i y_i x_i$ and the infimum is

$$-(1/2)\|d\|_2^2 = -(1/2)d^Td = -(1/2)\sum_i \sum_i \alpha_i \alpha_j y_i y_j x_i^T x_j$$

■ since L is linear in z, b, $\inf_z L$ and $\inf_b L$ exist (and are zero) only when

$$\sum_{i} \alpha_{i} y_{i} = 0, \quad C\mathbf{1} - \alpha - \lambda = 0$$

• dual function: $g(\alpha) = -(1/2) \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} + \mathbf{1}^{T} \alpha$

Karush-Kuhn-Tucker conditions of soft-margin SVC

primal feasibility:
$$y_i(x_i^T w + b) \ge 1 - z_i, \quad i = 1, 2, \dots, N,$$

$$z \succeq 0$$

dual feasibility:
$$\sum_{i=1}^{N} \alpha_i y_i = 0,$$

$$0 \le \alpha_i \le C, \quad i = 1, 2, \dots, N$$

or equivalently,
$$\lambda \succeq 0, \ \alpha = C\mathbf{1} - \lambda$$

zero-gradient of
$$L$$
: $w = \sum_{i=1}^{N} \alpha_i y_i x_i$

complementary slackness:
$$\alpha_i[y_i(x_i^T w + b) - (1 - z_i)] = 0$$

$$\lambda_i z_i = 0, \ i = 1, 2, \dots, N$$

Implications of SVC's KKT

dual feasibility and complementary slackness characterize three groups of points

$$\alpha_i = C - \lambda_i, \ \lambda_i z_i = 0, \ \alpha_i [y_i(x_i^T w + b) - (1 - z_i)] = 0$$

correct side of the margin

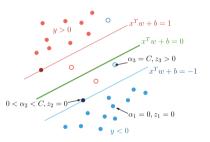
$$\alpha_i = 0, \ \lambda_i = C, \ z_i = 0, \ y_i(x_i^T w + b) \ge 1$$

edge of the margin

$$0 < \alpha_i < C, \ \lambda_i > 0, \ z_i = 0, \ y_i(x_i^T w + b) = 1$$

wrong side of the margin

$$\alpha_i = C, \ \lambda_i = 0, \ y_i(x_i^T w + b) = 1 - z_i, \ z_i > 0$$



- the observations x_i for which $\alpha_i > 0$ are called **support vectors** because w is a linear combination of only those terms: $w = \sum_{i=1}^{N} \alpha_i y_i x_i$
- margin points: $y_i(x_i^T w + b) = 1 \Leftrightarrow b = -x_i^T w + y_i$ (averaging all solutions)

Support vectors

interesting properties of the soft-margin SVC problem on page 10

- observations that lie directly on the margin or on the wrong side of the margin for their class, are known as support vectors
- only the observations that are support vectors affect the support vector classifiers
- SVC's decision rule is based only on the support vectors (small subset of training observations), it is robust to the behavior of observations that are far away from the hyperplane
- this is distinct from LDA; LDA classification rule depends on the mean of *all* observations within each class, as well as the covariances of the class conditional distribution (which use *all* observations)

Dual of soft-margin support vector classifier

dual problem of soft-margin classifier on page 10 with variable $\alpha \in \mathbf{R}^N$

$$\begin{array}{ll} \text{maximize}_{\alpha} & \mathbf{1}^{T}\alpha - (1/2)\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}^{T}x_{j} \\ \text{subject to} & \sum_{i=1}^{N}\alpha_{i}y_{i} = 0, \quad 0 \leq \alpha_{i} \leq C, \quad i = 1, 2, \dots, N \end{array}$$

or a compact (vector) form

$$\begin{array}{ll} \text{minimize} & (1/2)\alpha^T G\alpha - \mathbf{1}^T\alpha \\ \text{subject to} & \alpha^T y = 0, \ 0 \preceq \alpha \preceq C\mathbf{1} \\ \end{array}$$

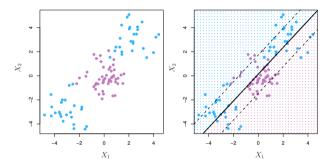
where
$$G \in \mathbf{R}^{N \times N}$$
, $G_{ij} = \langle y_i x_i, y_j x_j \rangle$ (called a **Gram** matrix); clearly, $G \succeq 0$

- it is a quadratic program with a linear equality and a box constraint
- this formulation is called C-SVC (C-support vector classification)

SVM: Nonlinearity and Kernels

Non-separable by linear boundary

sometimes we face with nonlinear class boundaries and SVC may perform poorly



instead of fitting SVC using X_1, \ldots, X_n , we could map input using nonlinear functions

$$X_1, X_2, \dots, X_n, X_1^2, X_2^2, \dots, X_n^2$$

or using nonlinear mappings $h_1(x), h_2(x), \dots, h_m(x)$ in an enlarged space

Statistical inference and modeling Jitkomut Songsiri 20 / 48

How the classifier is computed

the computation involves only the inner products of observations: $\langle x,z\rangle=x^Tz$

from the KKT conditions, we see that

- $\mathbf{1}$ $w = \sum_{i=1}^{N} \alpha_i y_i x_i$ and the sum can be taken only those terms that $\alpha_i \neq 0$
- 2 the linear support vector classifier can be represented as

$$f(x) = b + x^T w = b + x^T \sum_{i=1}^{N} \alpha_i y_i x_i = b + \sum_{i=1}^{N} \alpha_i y_i \langle x, x_i \rangle$$

it seems to require $\langle x, x_i \rangle$ between all pairs but it actually involves far fewer terms

3 now we can introduce a nonlinearity by replacing the inner product with a generalization in a form of **Kernel functions**:

$$K(x,z): \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$$
 that satisfies certain properties

Support Vector Machine

SVM is an extension of SVC using input features

$$h(x) = (h_1(x), h_2(x), \dots, h_p(x))$$

and produce the nonlinear function $f(x) = h(x)^T w + b$

- the dimension of the enlarged space is allowed to get very large
- following the dual of SVM (as before), the computation of SVM becomes easier using a Kernel trick

$$w = \sum_{i=1}^{N} \alpha_i y_i h(x_i), \quad f(x) = h(x)^T w + b = \sum_{i=1}^{N} \alpha_i y_i \langle h(x), h(x_i) \rangle + b$$

it involves h(x) only through inner products

Primal and dual (nonlinear) SVM

the primal (nonlinear) SVM is to replace the linear function by a nonlinear \hbar

minimize_{w,b}
$$(1/2) \|w\|_2^2 + C\mathbf{1}^T z$$

subject to $y_i(h(x_i)^T w + b) \ge 1 - z_i, \quad i = 1, 2, \dots, N$
 $z \succeq 0$

the dual SVM is similar to the dual SVC on page 18

but just replace the inner product with a kernel function $K(x,z) = \langle h(x), h(z) \rangle$

$$\begin{array}{ll} \text{maximize}_{\alpha} & \mathbf{1}^{T}\alpha - (1/2)\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_{i}\alpha_{j}y_{i}y_{j}\underline{K(x_{i},x_{j})} \\ \text{subject to} & \sum_{i=1}^{N}\alpha_{i}y_{i} = 0, \quad 0 \leq \alpha_{i} \leq C, \quad i = 1,2,\ldots,N \end{array}$$

important note: solving SVM on the dual and computing f does NOT require the nonlinear mapping h(x) at all, but only knowledge of the kernel function

Kernel functions

the SVM has the form

$$f(x) = b + \sum_{i=1}^{N} \alpha_i K(x, x_i)$$
 $(\alpha_i \neq 0 \text{ for support vectors})$

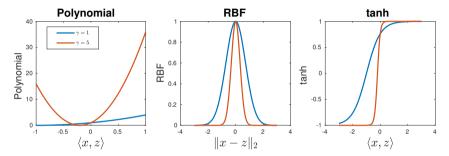
condition: a kernel function K(x,z) is symmetric and positive semidefinite

$$K(x,z) = K(z,x), \quad K(x,x) \ge 0$$

- **1 linear:** $\langle x,z\rangle=z^Tx$: the similarity of a pair using Pearson (standard) correlation
- **2** polynomial: $(\gamma \langle x, z \rangle + r)^d$ where d is a positive integer and r is a coefficient
- 3 radial basis function (RBF): $e^{-\gamma \|x-z\|_2^2}$ where $\gamma>0$
- 4 hyperbolic tangent: $tanh(\gamma\langle x,z\rangle+r)$

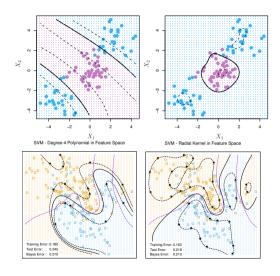
Parameters in kernel functions

set
$$r=1, d=2$$
 and adjust $\gamma=1,5$



- lacktriangleright polynomial kernel amounts to fitting SVC in a high-dim space involving polynomials of degree d
- RBF: if x^* (test point) is far from x_i then $K(x^*, x_i)$ is small; observations far from x^* play a small role in the predicted class label for x^* (RBF has a local behavior)

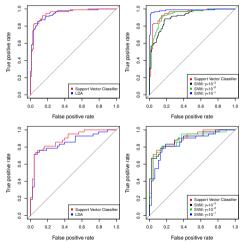
Polynomial and radial basis kernels



- left. polynomial right. RBF (either kernel is capable of capturing the nonlinear decision boundaries)
- bottom. ground truth is mixture Gaussians; RBF performs the best which is close to Bayes optimal

ROC curves tested on heart data

detect heart data using predictors such as age, sex, and cholesterol



- top. ROC is evaluated on training dataset
- top left. varying threshold $f(x) \le t$ in LDA and SVC
- top right. vary γ of RBF in SVM; as γ increases, the fit is more nonlinear, the ROC improves
- bottom. ROC is evaluated on test set; SVMs with $\gamma=10^{-2},10^{-3}$ perform comparably to SVC; SVC has a slight advantage over LDA

How to choose SVM parameters?

 ${\cal C}$ is the penalty parameter common to all choices of kernel

- **high** *C*: focus on classifying all the training points correctly
- **low** C: less penalty on points on the wrong side; the decision surface is smoother γ is the decay rate of RBF (in $e^{-\gamma ||x-z||^2}$)
 - lacksquare γ can be regarded as the inverse of radius of influence a training point has

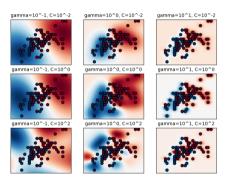
same influence = same
$$K \Rightarrow \gamma_{\text{small}} \|x_i - x_j\|_2^2 = \gamma_{\text{large}} \|x_i - x_j\|_2^2$$

- **high** γ : only a close single training point can reach
- lacktriangle low γ : a far single training point can reach and affect the model

these two parameters affect SVM's performance (typically chosen via cross-validation)

Effect of RBF parameter

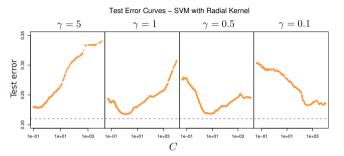
decision function in a grid as ${\cal C}$ and γ of RBF vary



- lacktriangleright intermediate γ gives smooth models that detect data pattern; can be made more complex by increasing C
- $lack \$ if γ is too large, the radius of influence area only includes the support vector itself

figure from https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

test error as a function of C, using different γ in RBF



- for each γ , choose C that corresponds to the minimum test (cross-validated) error
- lacktriangle when γ is large (narrow peaked kernel), a small C is chosen which is less penalty on misclassified points
- hence, a path algorithm to compute w for many values of C is required see ESL section 12.3.5

Related formulations, extensions, and algorithm

Hinge primal SVM

the original hard constraint relates to the margin-perceptron cost

$$y_i(x_i^T w + b) \ge 1 \iff \max(0, 1 - y_i(x_i^T w + b)) = 0$$

another equivalent problem of soft-margin SVC is to use the hinge loss

$$y_i(x_i^T w + b) \ge 1 - z_i, \quad \mathbf{1}^T z = \sum_{i=1}^N \max(0, 1 - y_i(x_i^T w + b))$$

and put the formulation as a single cost function (aka hinge primal problem)

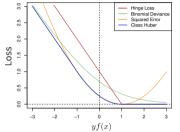
minimize
$$\frac{\lambda}{2} ||w||_2^2 + \sum_{i=1}^N \max(0, 1 - y_i(x_i^T w + b))$$

(role of λ is opposite to C in the soft-margin SVC)

■ hinge primal SVC can be regarded as a penalization method

Loss + Penalty

the hinge primal SVC takes 'loss+penalty' form: minimize_{β} $L(x, y; \beta) + \lambda P(\beta)$



loss	L(y, f(x))	
binomial deviance	$\log[1 + e^{-yf(x)}]$	
SVM hinge	$[1 - yf(x)]_+$	
square	$[1 - yf(x)]^2$	
Huberized	$\int -4yf(x),$	yf(x) < -1
Truberized	$\left\{ [1 - yf(x)]_+^2, \right.$	otherwise

- lacksquare P(eta) is a penalty function on eta whose effect is controlled by λ
- hinge loss is closely related to binomial deviance (logistic regression loss) and huberized square hinge loss
- SVM loss has zero penalty to points well inside the margin and linear penalty to points on the wrong side

Another form of soft-margin SVC

given parameters $B \geq 0$ as a tolerance that the margin can be violated

$$\begin{array}{ll} \text{maximize} & M \\ \text{subject to} & \|w\|_2^2 = 1 \\ & y_i(x_i^Tw + b) \geq M(1-z_i), \quad i = 1, 2, \dots, N \\ & z \succeq 0, \quad \mathbf{1}^Tz \leq B \end{array}$$

with variables $w \in \mathbf{R}^n, b \in \mathbf{R}$ and $z \in \mathbf{R}^N$

- lacktriangle seek to make the width (M) of the margin as large as possible, while allowing some data to be on the wrong side
- lacksquare z_i are slack variables that allow some data to be on the wrong side of the margin
- $\ \ \, w$ is normalized to have a unit norm because the linear inequality is homogenous in w,b,M
- lacktriangle large B means more tolerant of margin violations, so the margin will widen

ν -SVC

problem parameters: $x_i \in \mathbf{R}^n$ and $y_i \in \{-1,1\}$ for $i=1,\ldots,N$, $\nu>0$ optimization variables: $w \in \mathbf{R}^n, b \in \mathbf{R}, z \in \mathbf{R}^N$, $\rho \in \mathbf{R}$ the primal ν -SVC is

minimize
$$\begin{array}{ll} (1/2)\|w\|_2^2 - \nu \rho + \mathbf{1}^T z \\ \text{subject to} & y_i(x_i^T w + b) \geq \rho - z_i, \quad i = 1, 2, \dots, N \\ & z \succeq 0, \quad \rho \geq 0 \end{array}$$

it can be shown that (see Chapter 9 in Schökopf page 206)

- when z=0, the two classes are separated by the margin $2\rho/\|w\|_2$
- \blacksquare ν is an upper bound on the fraction of margin errors: no. of points for which $y_i(x_i^Tw+b)<\rho$
- lacksquare ν is a lower bound on the fraction of support vectors

Sparse SVC

from the soft-margin C-SVC, use $||w||_1$ in the objective instead

minimize
$$\lambda \|w\|_1 + \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(x_i^T w + b))$$

with optimization variables $w \in \mathbf{R}^n$ and $b \in \mathbf{R}$

- lacktriangle the ℓ_1 -norm encourages sparsity of the optimal w
- for such a sparse w, the product w^Tx involves only a few entries in x (use less features)
- the optimization can be formulated as a linear program

SVMs: Multi-class classification

how to perform SVMs when there are K>2 classes

- 1 one-versus-one classification
 - construct *K*-choose-2 SVMS; each of which compares a pair of classes
 - classify a test point using each of the K-choose-2 classifiers and count the number of times the test point is assigned to each class
 - assign the test point to the class that most frequently assigned in K-choose-2 classifications
- 2 one-versus-all classification
 - \blacksquare fit K SVMs; each time comparing one of the K classes to the remaining K-1 classes
 - lacksquare denote (w_k,b_k) for $k=1,2,\ldots,K$ the parameters of the kth SVM
 - assign a test point z to the class for which the $b_k + w_k^T z$ is largest (high level of confidence that z belongs to kth class)

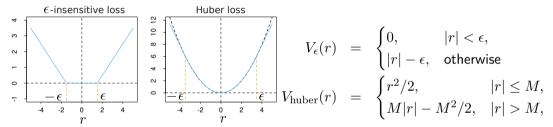
Available algorithms

- quadratic programming solvers (active-set, interior-point) on the dual
- sequential minimal optimization (SMO) on the dual
 - MATLAB: fitcsvm
 - Python sklearn.svm.SVC using libsvm library, which supports nonlinear classifiers)
- coordinate descent on the dual (large-scale linear SVM, used in liblinear)

Support Vector Regression (SVR)

ϵ -insensitive loss

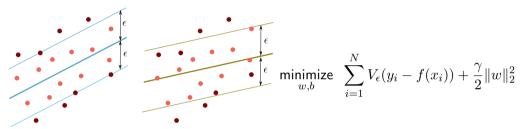
 ϵ -insensitive loss does not penalize errors below some $\epsilon \geq 0$



- lacktriangle Huber loss penalizes error with linear rate when residual greater than M
- ullet V_{ϵ} also has linear tails but it flattens the contributions of small residuals
- analogy to SVC: points on the correct side, and far away from it, are ignored in the optimization
- lacksquare another equivalent form: $V_{\epsilon}(r) = \max(0,|r|-\epsilon) = (|r|-\epsilon)_+$ or just notation $|r|_{\epsilon}$

Flatness vs Margin

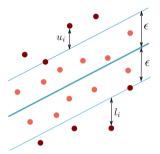
let $f(x) = w^T x + b$ be the regression model to estimate y



- we aim to estimate y by a linear function where small residual less than ϵ is not penalized and trade off with the model complexity (measured by ℓ_2 -norm)
- lacksquare small $\|w\|_2^2$ corresponds to a flat linear function, but the margin is large
- lacktriangle the region for which $|w^Tx+b| \leq \epsilon$ is an ϵ -slab (but sometimes called a tube)

Primal ϵ -SVR

the optimization (QP) on page 41 is equivalent to



$$\begin{array}{ll} \text{minimize} & (1/2)\|w\|_2^2 + C \sum_{i=1}^N (u_i + l_i) \\ \text{subject to} & y_i - (x_i^T w + b) \leq \epsilon + u_i, \quad i = 1, \dots, N, \\ & x_i^T w + b - y_i \leq \epsilon + l_i, \quad i = 1, \dots, N \\ & u \succeq 0, \quad l \succeq 0 \end{array}$$

with variables $w \in \mathbf{R}^n, b \in \mathbf{R}, u \in \mathbf{R}^N, l \in \mathbf{R}^N$

- the **primal** ϵ -SVR is similar to the concept of **soft-margin SVC**
- \blacksquare slack variables allow the ith residual error to exceed ϵ up to the value of u_i and l_i
- lacksquare a given C>0 controls the amount of slack variables (its effect is opposite to γ on page 41) when C is large, the linear function is more flat

42 / 48

Derivation of the dual

the primal SVR in vector form $(X \text{ contains } x_i^T \text{ as rows})$

$$\begin{array}{ll} \text{minimize} & (1/2)\|w\|_2^2 + C\mathbf{1}^T(u+l) \\ \text{subject to} & y - (Xw+b\mathbf{1}) - \epsilon\mathbf{1} - u \preceq 0 \\ & Xw+b\mathbf{1} - y - \epsilon\mathbf{1} - l \preceq 0 \\ & u \succeq 0, \ l \succeq 0 \end{array}$$

let L be the Lagrangian and the Lagrange multipliers are

- $lackbrace lpha^*, lpha \in \mathbf{R}^N$ correspond to the slab inequalities
- \bullet $\lambda^*, \lambda \in \mathbf{R}^N$ correspond to $u \succeq 0$ and $l \succeq 0$, respectively

$$L(w, b, \alpha^*, \alpha, \lambda^*, \lambda) = \frac{1}{2} \|w\|_2^2 + C\mathbf{1}^T (u+l) + \alpha^{*T} [y - Xw - b\mathbf{1} - \epsilon\mathbf{1} - u]$$
$$+ \alpha^T [Xw + b\mathbf{1} - y - \epsilon\mathbf{1} - l] - \lambda^{*T} u - \lambda^T l$$

Dual of SVR

take the infimum of L over (w, b, u, l) and use $\lambda^*, \lambda \succeq 0$ we have the conditions:

$$w = X^T(\alpha^* - \alpha), \quad \mathbf{1}^T(\alpha^* - \alpha) = 0, \quad C\mathbf{1} - \alpha^* \succeq 0, \quad C\mathbf{1} - \alpha \succeq 0$$

(from
$$\lambda^* = C\mathbf{1} - \alpha^*$$
 and $\lambda = C\mathbf{1} - \alpha$)

substitute these back to L and we have the dual function

$$g(\alpha^*, \alpha) = -(1/2)(\alpha^* - \alpha)^T X X^T (\alpha^* - \alpha) - \epsilon \mathbf{1}^T (\alpha^* + \alpha) + y^T (\alpha^* - \alpha)$$

the dual problem of SVR

with variables $\alpha^*, \alpha \in \mathbf{R}^N$

Karush-Kuhn-Tucker conditions

the estimated linear model of SVR is

$$w = \sum_{i=1}^{N} (\alpha_i^* - \alpha_i) x_i, \quad f(x) = w^T x + b = \sum_{i=1}^{N} (\alpha_i^* - \alpha_i) \langle x_i, x_i \rangle + b$$

the complementary slackness conditions are

$$\alpha_i^* (y_i - x_i^T w - b - \epsilon - u_i) = 0, \quad u_i(C - \alpha_i^*) = 0$$

 $\alpha_i (x_i^T w + b - y_i - \epsilon - l_i) = 0, \quad l_i(C - \alpha_i) = 0$

important conclusions:

- if $u_i > 0$, then $\alpha_i^* = C$; only data (x_i, y_i) with $\alpha_i^* = C$ can lie outside the slab
- if $|y_i (x_i^T w + b)| \le \epsilon$ then $\alpha_i^*, \alpha_i = 0$ we need only support vectors to compute w those with nonzero coefficients
- lacksquare if $0 < lpha_i^* < C$ then $u_i = 0$ OR if $0 < lpha_i < C$ then $l_i = 0$; we can compute b

$$b = y_i - x_i^T w - \epsilon, \quad \mathsf{OR} \quad b = y_i - x_i^T w + \epsilon$$

Nonlinear SVR

obtain by replacing the dot product with a nonlinear kernel function

$$f(x) = \sum_{i=1}^{N} (\alpha_i^* - \alpha_i) K(x_i, x) + b$$

which is solved from the dual for nonlinear SVR when XX^T is replaced by $K(x_i,x_j)$

$$XX^{T} = \begin{bmatrix} x_{1}^{T}x_{1} & \cdots & x_{1}^{T}x_{N} \\ \vdots & \ddots & \vdots \\ x_{N}^{T}x_{1} & \cdots & x_{N}^{T}x_{N} \end{bmatrix} \Rightarrow G = \begin{bmatrix} K(x_{1}, x_{1}) & K(x_{1}, x_{2}) & \cdots & K(x_{1}, x_{N}) \\ K(x_{2}, x_{1}) & K(x_{2}, x_{2}) & \cdots & K(x_{2}, x_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ K(x_{N}, x_{1}) & K(x_{N}, x_{2}) & \cdots & K(x_{N}, x_{N}) \end{bmatrix}$$

choice of kernel functions: polynomial, radial basis kernels

Softwares for SVR

- MATLAB: fitrsvm
- Python sklearn.svm.SVR using libsvm library)

References

some figures and examples are taken from the first two references (ISLR, ESL)

- Chapter 7 and 9 in B. Schökopf and A. J. Smola, Learning with Kernels: Support vector machines, regularization, optimization, and Beyond, The MIT Press, 2002
- Chapter 12 in T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, Second edition, 2009
- 3 Chapter 9 in G. James, D. Witten, T. Hastie, and R. Tibshirani, *An Introduction to Statistical Learning: with Application in R*, Springer, 2021
- A.Fan, K.Chang, C.Hsieh, X.Wang and C.Lin, LIBBLINEAR: A Library for large linear classification, JMLR, 2008, https://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf