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Separating hyperplane
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Linear function
a linear function f : R™ — R is of the form

f(@) =w's = wizy + wors + -+ + wyay

w = (w1, ws, ..., wy,) is a given parameter

the contour of f is a hyperplane with the normal vector w

V f(z) = w (constant, not depend on x)
for b # 0, f(x) = wlz + b is called an affine function

m % the fy-norm distance from a point z to the hyperplane w 'z +b=0is
w2+ b/ [[w]]2

m % the distance between two parallel hyperplanes described by w”z + b; and
le‘ + bz is |b1 - b2’/H’UJ||2
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Halfspaces

a hyperplane splits the space into two halfspaces

m for a given x, finding w, b so that w2z + b > 0 can have many solutions because
the linear inequality is homogeneous in w and b
® many ways to restrict some solutions:
m find w,b so that w”z +b > M (just add a constant M)
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Separating hyperplane

setting: given {(z;,v:)}, where z; € R™ are data with label y; € {1, -1}

o+ o=\
%o
o © Lwxlo="\
o
I\' o
o
o
= o
\\/,,3\\7,

modeling;:
m the goal is to find a hyperplane 27w 4 b to classify data into two classes
m the distance between two hyperplanes 7w + b = +1 is 2/||w||2
m feasibility problem: for ¢ =1,2,..., N, data from each class satisfy

yi=1l:xlw+b>1 andy; = —1:zlw+b< -1 = y@alw+b)>1

Statistical inference and modeling Jitkomut Songsiri 6 /48



Hard and soft margin classifier
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Hard-margin classifier
problem parameters: z; € R" and y; € {—1,1} fori=1,...,N

optimization variables: w € R",b € R

minimize ||w||3 subject to y;(z7w +0b)>1,i=1,2,...,N

m data are classified by separating hyperplane with maximized margin (right figure)

m if feasible, the data from two classes are separated perfectly

m the problem is a convex quadratic program (QP)

m the decision boundary pass through points from both classes— these points are
called support vectors
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Sensitivity to individual observations

m left: hard-margin classifier with max margin

m right: by only adding a pair of data, the hyperplane dramatically changes; it may
overfit the training data

m having the max-margin is no longer useful — we need something more robust to
individual observations
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Soft-margin support vector classifier (C-SVC)

problem parameters: z; € R" andy; e Rfori=1,...,N,C >0

optimization variables: w € R",b € R,z € RV

minimize  (1/2)|w||3 + C172
subject to y;(zfw+b)>1—2, i=1,2,...,N -
z>=0 s

m z; is called a slack variable, allowing some of the hard constraints to be relaxed
m if z; > 0 at optimum, the ith point is relaxed to be on the wrong side of its class

m the regularization (penalty) parameter C controls the trade-off between
maximizing the margin and the total distance of points on the wrong side

m the problem is a convex quadratic program
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Varying penalty parameter (C')

Xo
Xo

x X o Xl‘ 2 X
m /eft. C is the smallest (low penalty for observations being on the wrong side, so
lwl|3 is small and the margin is large); C is larger from left to right

m when C is large, we get narrow margins that are rarely violated and the classifier
is highly fit to the data (low bias, high variance)

m C is typically chosen via a cross-validation
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Classification rule

after we have trained the classifier and obtain w, b, the class prediction based on a new
input z is
. . 1, 2To+b>0
~ . T ~ 9 - %
= f(x) =sign(z"w+b) = .
§=J(x) = sign( ) {—1, 2T+ b < 0

it turns out that @ and b are computed using only some of the training observations

this can be explained by the optimality conditions for the soft-margin SVC problem
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Computation of SVC and the dual
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Derivation of dual

let @ and X\ be Lagrange multipliers (w.r.t. 1st and 2nd inequalities on page 10)
L(w,b, z, o, \) waHQ Zazyzx w—bZazyz +(C1—a-Nz2+1Ta

note that L is quadratic in w: i||w||3 — d”w and L is linear in b and z

m inf,, L occurs when w =d =), oyy;x; and the infimum is
~(1/2)ldlf = —(1/2)d"d = ~(1/2) Y Y aveyiy;af x;
i
m since L is linear in z,b, inf, L and inf}, L exist (and are zero) only when

Ziaiyi:O, C].—Oé—)\zo
m dual function: g(a) = —(1/2) >, >, aiajyyialz;+1Ta
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Karush-Kuhn-Tucker conditions of soft-margin SVC

primal feasibility:

dual feasibility:

zero-gradient of L:

complementary slackness:

Statistical inference and modeling

yi(zTw+b) >1—2, i=1,2,...,N,
z>=0
S oy =0,

0<e; <C, i=1,2,...,N

or equivalently, A =0, a=C1- A\
w= 3N aiyii

ailyi(zlw +b) — (1 - 2)] =0

Nz =0, i=1,2,...,N
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Implications of SVC's KKT

dual feasibility and complementary slackness characterize three groups of points

a; =C — N, Nz =0, ai[yi(xiTw + b) — (1 — Zz)] =0

correct side of the margin © 0t O _aTwsb=i
l'yl v+ 0=
a;i=0, \s=0C, z =0, yl(a:ZTw +b)>1 . “ v =0
. ag=C,z3>0
edge of the margin . wtb= 1

0<a;<C, A\>0, =0, yi(aTw+b) =1

°
0<as<Czg=0" ° °
° ™~

wrong side of the margin oo m=02=0

a; =C, X\ =0, yi(:L‘iTw—l—b):l—zi, zi >0

m the observations x; for which «; > 0 are called support vectors because w is a
linear combination of only those terms: w = Zf\il QY T
m margin points: y;(zlw +b) =1 & b= —aTw + y; (averaging all solutions)

Statistical inference and modeling Jitkomut Songsiri 16 / 48



Support vectors

interesting properties of the soft-margin SVC problem on page 10
m observations that lie directly on the margin or on the wrong side of the margin for
their class, are known as support vectors
m only the observations that are support vectors affect the support vector classifiers

m SVC's decision rule is based only on the support vectors (small subset of training
observations), it is robust to the behavior of observations that are far away from
the hyperplane

m this is distinct from LDA; LDA classification rule depends on the mean of all
observations within each class, as well as the covariances of the class conditional
distribution (which use all observations)
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Dual of soft-margin support vector classifier
dual problem of soft-margin classifier on page 10 with variable o« € RY

maximize, 17a — (1/2) N, Zjvzl aiajyyal e,
subjectto SN =0, 0<a;<C, i=1,2,...,N

or a compact (vector) form

minimize  (1/2)a’Ga — 1T«
subjectto afy=0, 0<a=<C1

where G € RV*N - G = (yiz;, yjx;) (called a Gram matrix); clearly, G = 0

m it is a quadratic program with a linear equality and a box constraint

m this formulation is called C-SVC (C-support vector classification)

Statistical inference and modeling Jitkomut Songsiri 18 / 48



SVM: Nonlinearity and Kernels
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Non-separable by linear boundary

sometimes we face with nonlinear class boundaries and SVC may perform poorly

X
.
.
e
3
X

instead of fitting SVC using X1,..., X,, we could map input using nonlinear functions

X1, Xo,..., X0, X2, X2,... X2

n

or using nonlinear mappings hi(x), ho(x), ..., hy,(x) in an enlarged space
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How the classifier is computed

the computation involves only the inner products of observations: (x,z) = Tz
from the KKT conditions, we see that

w = Zf\il a;y;x; and the sum can be taken only those terms that «; # 0

the linear support vector classifier can be represented as
N N
flx)=b+aTw=>0b+az" Z a;yix; = b+ Z i (T, z4)
i=1 i=1

it seems to require (x,x;) between all pairs but it actually involves far fewer terms

now we can introduce a nonlinearity by replacing the inner product with a
generalization in a form of Kernel functions:

K(z,z) : R" x R = R that satisfies certain properties
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Support Vector Machine

SVM is an extension of SVC using input features

hx) = (hi(@), ha(), ..., hy(2))

and produce the nonlinear function f(z) = h(z)"w + b
m the dimension of the enlarged space is allowed to get very large

m following the dual of SVM (as before), the computation of SVM becomes easier
using a Kernel trick

N N
w=) oyih(:), flr)=h(x)"w+b=2 aih(x),h(z:)+b
i=1 i=1

it involves h(z) only through inner products
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Primal and dual (nonlinear) SVM

the primal (nonlinear) SVM is to replace the linear function by a nonlinear h
minimize,, (1/2)||w]|3 + C172
subject to  y;(h(z)Tw+b) >1—2, i=1,2,...,N
z>=0
the dual SVM is similar to the dual SVC on page 18

but just replace the inner product with a kernel function K(x,z) = (h(z), h(2))

maximize, 17a — (1/2) Zf\il Z;VZI a0 Yy K (4, )
subject to SN iy, =0, 0<o;<C, i=1,2,...,N

important note: solving SVM on the dual and computing f does NOT require the
nonlinear mapping h(z) at all, but only knowledge of the kernel function
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Kernel functions

the SVM has the form
fx) =b+ N ;K (x,2;) (s # 0 for support vectors)

condition: a kernel function K (x, z) is symmetric and positive semidefinite
K(z,z) = K(z,z), K(z,z)>0

linear: (z,z) = 2T : the similarity of a pair using Pearson (standard) correlation
polynomial: (y(z,z) + )% where d is a positive integer and r is a coefficient
radial basis function (RBF): e 7=l where v > 0

hyperbolic tangent: tanh(y(x, z) + r)
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Parameters in kernel functions
setr=1,d=2 and adjust vy =1,5

Polynomial RBF tanh

40

0.5

©
S

tanh

Polynomial

-0.5

=)

=)

- 2 0 2 4 -4 2 0 2 4
(z,2) [z — 22 (z,2)

S
o
o
e
o
IS

m polynomial kernel amounts to fitting SVC in a high-dim space involving
polynomials of degree d

m RBF: if 2* (test point) is far from x; then K (z*, z;) is ; observations far from
z* play a role in the predicted class label for * (RBF has a local behavior)
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Polynomial and radial basis kernels

X,

m /eft. polynomial right. RBF (either
kernel is capable of capturing the
nonlinear decision boundaries)

X X . .
SVM - Degree-4 Polynomial in Feature Space SVM - Radial Kernel in Feature Space ™ bottom. ground truth is letUre
‘ Gaussians; RBF performs the best
which is close to Bayes optimal

Training Error: 0.180
Test Error
Bayes Eror

Bayes Eror: 0210
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ROC curves tested on heart data

detect heart data using predictors such as age, sex, and cholesterol

True positive rate

True positive rate
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False positive rate
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top. ROC is evaluated on training
dataset

top left. varying threshold f(x) <t
in LDA and SVC

top right. vary v of RBF in SVM;
as 7y increases, the fit is more
nonlinear, the ROC improves
bottom. ROC is evaluated on test
set; SVMs with vy = 1072,1073
perform comparably to SVC; SVC
has a slight advantage over LDA
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How to choose SVM parameters?

C'is the penalty parameter common to all choices of kernel

m high C: focus on classifying all the training points correctly

m low (' less penalty on points on the wrong side; the decision surface is smoother
~ is the decay rate of RBF (in e 7llz==I?)

m 7y can be regarded as the a training point has

same influence = same K = ~gpanl|zi — :c]||§ = Varge||Ti — :c]||§

m high ~: only a close single training point can reach

u a far single training point can reach and affect the model

these two parameters affect SVM's performance (typically chosen via cross-validation)
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Effect of RBF parameter

decision function in a grid as C' and ~ of RBF vary

gamma=10"-1, C=10"-2 gamma=10"0, C=10"-2 gamma=10"1, C=10"-2

- m if v is too small, the model cannot
¢ P, capture the complexity of data
4
gmma=l0T1 €100 gamma-lo0. €070 gamma-1071, €100 [ | intermediate Yy gives Smooth models
- that detect data pattern; can be
L 18 made more complex by increasing C
gamma=10"-1, C=10"2 gamma=10"0, c:lo;z gamma:m”l,cilo""z u If ,7 |S tOO Iarge, the radius of
. R 7 influence area only includes the
U | PN :
rj Ay $Fs support vector itself

figure from https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
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test error as a function of C, using different + in RBF

Test Error Curves — SVM with Radial Kernel
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m for each v, choose C' that corresponds to the minimum test (cross-validated) error

m when 7y is large (narrow peaked kernel), a small C'is chosen which is less penalty

on misclassified points

m hence, a path algorithm to compute w for many values of C is required — see ESL

section 12.3.5

Statistical inference and modeling Jitkomut Songsiri

30/ 48



Related formulations, extensions, and algorithm
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Hinge primal SVM
m the original hard constraint relates to the
yi(xTw+b) >1 <= max(0,1—y;(z]w+b) =0

m another equivalent problem of soft-margin SVC is to use the hinge loss
N

yi(aTw4b)>1—2, 11z2= ZmaX(O, 1 —y; (27w + b))
i=1

and put the formulation as a single cost function (aka hinge primal problem)
minimize 3 lw||3 + 3, max(0,1 — y;(z]w + b))

(role of \ is opposite to C' in the soft-margin SVC)

m hinge primal SVC can be regarded as a penalization method
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Loss + Penalty

0

— Hinge L

the hinge primal SVC takes 'loss+penalty’ form: minimizeg L(z,y; 3) + AP(B)

— loss L(y, f(z))
o : binomial deviance log[l + e_yf(m)]
2] SVM hinge 1= /()]

ii square [1 — yf(x)]2

e S Huberized —Ayf(@), yf(x) < -1
cor T oo [1—yf(x)]2, otherwise

yf(x)

P(B)is a pe(nalty function on 3 whose effect is controlled by A

m hinge loss is closely related to binomial deviance (logistic regression loss) and
huberized square hinge loss

m SVM loss has zero penalty to points well inside the margin and linear penalty to
points on the wrong side
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Another form of soft-margin SVC

given parameters B > ( as a tolerance that the margin can be violated

maximize M

subject to [Jw|2 =1
yi(zlw+0) > M1 -2), i=1,2,...,N
2+=0, 1T2<B

with variables w € R",b € R and z € RV
m seek to make the width (M) of the margin as large as possible, while allowing
some data to be on the wrong side
m z; are slack variables that allow some data to be on the wrong side of the margin
m w is normalized to have a unit norm because the linear inequality is homogenous
inw,b, M
m large B means more tolerant of margin violations, so the margin will widen
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v-SVC

problem parameters: z; € R" and y; € {—1,1} fori=1,...,N, v >0
optimization variables: w € R",be R,z RY, peR
the primal v-SVC is
minimize  (1/2)||w|j3 —vp+ 112
subject to  yi(zTw+b)>p—z, i=12,...,N
2720, p=20
it can be shown that (see Chapter 9 in Schokopf page 206)

m when z = 0, the two classes are separated by the margin 2p/||w||2

m v is an upper bound on the fraction of margin errors: no. of points for which
yilaj w+b) <p
m v is a lower bound on the fraction of support vectors
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Sparse SVC

from the soft-margin C-SVC, use ||w||; in the objective instead
« 0 e L N o T
minimize  Al|lw||y + & iy max(0,1 — y;(z; w + b))

with optimization variables w € R" and b € R
m the /1-norm encourages sparsity of the optimal w

m for such a sparse w, the product w” x involves only a few entries in = (use less
features)

m the optimization can be formulated as a linear program
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SVMs: Multi-class classification

how to perform SVMs when there are K > 2 classes

one-versus-one classification
m construct K-choose-2 SVMS; each of which compares a pair of classes
m classify a test point using each of the K-choose-2 classifiers and count the number
of times the test point is assigned to each class
m assign the test point to the class that most frequently assigned in K-choose-2
classifications

one-versus-all classification

m fit K SVMs; each time comparing one of the K classes to the remaining K — 1
classes

m denote (wy,b) for k =1,2,..., K the parameters of the kth SVM

m assign a test point z to the class for which the by, + w} z is largest (high level of
confidence that z belongs to kth class)
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Available algorithms

m quadratic programming solvers (active-set, interior-point) on the dual
m sequential minimal optimization (SMO) on the dual

m MATLAB: fitcsvm
m Python sklearn.svm.SVC using 1ibsvm library, which supports nonlinear
classifiers)

m coordinate descent on the dual (large-scale linear SVM, used in 1iblinear)
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Support Vector Regression (SVR)
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e-insensitive loss

does not penalize errors below some € > 0

€-insensitive loss Huber loss

- : ST : ;

® =N 0 T <e

o | 1N -/ Ver) = <7 "l ’.

) ; ° ; ; |r| — €, otherwise

© T ‘ ””””” o 1 7“2/2 Ir| <M

- —€. | € R e S B R T ’ -
4 2 0 2 4 4 2 0 2 4 huber( ) M‘T” — M2/2, ‘T" > M,

r r

m Huber loss penalizes error with linear rate when residual greater than M

V. also has linear tails but it flattens the contributions of small residuals

analogy to SVC: points on the correct side, and far away from it, are ignored in
the optimization

another equivalent form: V(r) = max(0, |r| — €) = (|r| — €)+ or just notation |r|
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Flatness vs Margin

let f(z) = w?x + b be the regression model to estimate y

N
minui:?ize Zl Velyi — f(z)) + %H’w”%
1=

m we aim to estimate y by a linear function where small residual less than € is not
penalized and trade off with the model complexity (measured by ¢2-norm)

m small |w||% corresponds to a flat linear function, but the margin is large

m the region for which |w”'z + b| < € is an e-slab (but sometimes called a tube)
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Primal e-SVR

the optimization (QP) on page 41 is equivalent to

minimize  (1/2)[[w|3 + C N | (ui + 1)

subject to y; — (27w +b) <e+wy, i=1,...,N,
$iTw+b—yi§6+li, 1=1,....,N
u>=0, [ >0

with variables w € R*,b € R,u € RV, ¢ RY

m the primal -SVR is similar to the concept of soft-margin SVC
m slack variables allow the ith residual error to exceed e up to the value of u; and [;

m a given C' > 0 controls the amount of slack variables (its effect is opposite to v on
page 41) — when C' is large, the linear function is more flat
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Derivation of the dual
T

the primal SVR in vector form (X contains x; as rows)

minimize  (1/2)|wl3 + C1T (u +1)

subjectto y— (Xw+b1) —el —u =<0
Xw+bl—-—y—el—-1=X0
u=0, [ >0

let L be the Lagrangian and the Lagrange multipliers are
m o*,a € RY correspond to the slab inequalities
m A, )\ e RY correspond to u = 0 and [ = 0, respectively

1
L(w,b,a”, a, A", \) = §HwH§ +C1T(u+1) + Ty — Xw — b1 — €1 — 4]
+ ol [ Xw+b1 —y—el —1] = \Tu— 21
43 /48
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Dual of SVR

take the infimum of L over (w,b,u,l) and use \*, X\ = 0 we have the conditions:
w=X"a*-a), 1T(a*—a)=0, Cl—a*>=0, Cl—a>0

(from A* =C1 —a* and A = C1 — a)

substitute these back to L and we have the dual function
gla*,a) = —(1/2)(a* — )T XXT(a* — a) — el (a* + o) + yT (a* — @)
the dual problem of SVR

minimize  (1/2)(a* — )T XX T (a* — a) + e1T(a* + a) — yT (a* — )
subject to 17 (a* —a) =0,
0<a"a=<C1
with variables o*, v € RY
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Karush-Kuhn-Tucker conditions
the estimated linear model of SVR is

N N
w:Z(af—ai)mi, f(z) :wa’«"‘f'b:Z(Oé}k — a;){wi, ;) +b
=1 i=1

the complementary slackness conditions are
&y —axtw—b—e—u) = 0, u(C—al)=0
ai(x;w—l—b—yi—e—li) = 0, li(C’—ai):O
important conclusions:
m if u; > 0, then af = C; only data (z;,y;) with o) = C can lie outside the slab
m if |y — (27w + b)| < € then af,a; = 0 % we need only support vectors to
compute w — those with nonzero coefficients
mif 0 <o) <Cthenu; =00Rif0<oa; <C thenl; =0 ; we can compute b

b=yi—zlw—¢ OR b=y —2lw+e
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Nonlinear SVR

obtain by replacing the dot product with a nonlinear kernel function

N

fl@) =) (o] — @)K (i) + b

=1

which is solved from the dual for nonlinear SVR when X X7 is replaced by K(zi,xj)

gj,{xl QZ{ZUN K(I’l,l’l) K(xlva) K(.Z'l,.IN)

xxT — - : : = K(z9,21) K(z2,22) -+ K(z2,2N)
x};‘xl xz&'m : : s :

K(.TN,$1) K(.TN,.’L'Q) K(.CL'N,,’L'N)

choice of kernel functions: polynomial, radial basis kernels
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Softwares for SVR

s MATLAB: fitrsvm
m Python sklearn.svm.SVR using 1libsvm library)
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