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7. Linear Quadratic Gaussian Control

• output feedback

• Kalman filter

• LQG/LQR
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Output feedback

consider a linear system

ẋ = Ax+Bu, y = Cx

a state-feedback controller has a form

u(t) = −Kx(t)

which requires the availability of the process measurement

when the state variables are not accessible, one can use

u(t) = −Kx̂(t)

where x̂(t) is an estimate of x(t) based on the output y
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Full-order observers

x cannot be fully measured and the goal is to estimate x based on y

our approach is to replicate the process dynamic in x̂

˙̂x = Ax̂+Bu

define the state estimation error e = x− x̂, we can see

ė = Ax− Ax̂ = Ae

• if A is stable, then the error goes to zero asymptotically

• if A is unstable, e is unbounded and x̂ grows further apart from x

to avoid this problem, one can consider a correction term as

˙̂x = Ax̂+Bu+ L(y − ŷ), x̂(0) = 0

(feed y back to the estimator)
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L is a given matrix, called observer gain matrix

the error dynamic now is

ė = Ax−Ax̂− L(Cx− Cx̂) = (A− LC)e, e(0) = x(0)

• the observer error goes to zero if L is chosen such that

A− LC is stable

• we can make e goes to zero fast if the eigenvalues of A− LC can be
arbitrarily assigned

• eigenvalues of A− LC are same as those of (AT − CTLT )

• hence, choosing L is the dual of state-feedback design problem for the
pair (AT , CT )

• eigenvalues of A− LC can be freely reassigned if and only if (A,C)
observable
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Observer-based controller

closed-loop equations after a state feedback

u(t) = r(t)−Kx̂(t)

where r(t) is reference input, is

ẋ = Ax−BKx̂+Br

˙̂x = Ax̂+ L(y − ŷ) + Br −BKx̂

or
d

dt

[

x
x̂

]

=

[

A −BK
LC A− LC −BK

] [

x
x̂

]

+

[

B
B

]

r
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Separation principle

change the coordinate

[

I 0
I −I

] [

x
x̂

]

=

[

x
x− x̂

]

=

[

x
e

]

the dynamics in the new coordinate is

d

dt

[

x
e

]

=

[

A−BK BK
0 A− LC

] [

x
e

]

+

[

I
0

]

r

• the dynamic of e does not depend on x

• closed-loop eigenvalues are

{eig(A−BK)} ∪ {eig(A− LC)}

• one can assign eigenvalues of the system and the observer independently
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Observer of noisy system

in general, the system is corrupted by noise

ẋ = Ax+ Bu+ w, y = Cx+ v

where w is process noise and v is measurement noise

rewrite the error dynamic of an observer

ė = Ax+Bu+ w − Ax̂− Bu− L(Cx+ v − Cx̂)

= (A− LC)e+ w − Lv

• due to w, v, the estimation will generally not go to zero

• one would like the error to remain small by a good choice of L

• the optimal choise of L is given by the Kalman gain
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Kalman filter

assume w, v are uncorrelated zero-mean Gaussian white noise, i.e.,

Ew(t)w(τ)∗ = Wδ(t− τ), E v(t)v(τ)∗ = V δ(t− τ)

Ew(t)v(τ)∗ = 0

spectral density matrices of w, v are

W � 0, and V ≻ 0, respectively

The optimal observer gain which minimizes E‖e(t)‖2 is

L = PC∗V −1

where P is the unique positive-semidefinite solution of the ARE

PA∗ +AP − PC∗V −1CP +W = 0

when using the optimal gain, this system is called the Kalman-Bucy filter
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A− LC is stable as long as the two conditions hold

• (A,C) is observable

• (A,W ) is controllable

Recall: LQR control with J =
∫

∞

0
x(t)∗Qx(t) + u∗(t)Ru(t)dt

we need to solve ARE

PA+A∗P − PBR−1B∗P +Q = 0

with conditions

• (A,B) controllable to guarantee Jmin < ∞
• (A,Q) observable to obtain a unique positive definition P

Duality: Kalmain filter is equivalent to designing an LQR controller on the
dual system (A∗, C∗, B∗, D∗) with Q = W , R = V
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Linear Quadratic Gaussian Control

a combination of optimal state estimation and optimal state feedback

u

LQ regulator
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Example

we design an LQG controller to a spring-mass system

ẋ =

[

0 1
−1 0

]

x+

[

0
1

]

u+ w, y =
[

1 0
]

x+ v

where covariances of w are v are I and 0.1 respectively

we use the parameters

Q = 5C∗C, R = 1, W = I, V = 0.1

(A,C) observable and (A,W ) controllable

MATLAB codes

n = 2; A = [0 1;-1 0]; B = [0 1]’; C = [1 0];

Q = 5*C’*C; R = 1;

K = lqr(A,B,Q,R);

W = eye(n); V = 0.1;

L = lqe(A,eye(n),C,W,V);
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closed-loop response to unit step in reference
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(a standard LQG does not have an integral action)
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Robustness properties

LQR-controlled systems if R is diagonal, then

the system will have a gain margin equal to ∞ and a phase margin of 60◦

The input u = −Kx can have a complex perturbation

∆ui = kie
jθi, i = 1, 2, . . . ,m m = number of inputs

without causing instability providing

1. θi = 0 and 0.5 ≤ ki ≤ ∞, i = 1, 2, . . . ,m

2. ki = 1 and |θi| ≤ 60◦, i = 1, 2, . . . ,m

LQG-controlled systems LQG-controlled system with a combined Kalman
filter and LQR control law, there are NO guaranteed stability margins
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Counterexample

we will show that the gain margin of LQG becomes very small as feedback
and observer gains become large

consider an unstable SISO system

[

ẋ1

ẋ2

]

=

[

1 1
0 1

] [

x1

x2

]

+

[

0
1

]

u+

[

1
1

]

w

y =
[

1 0
]

x+ v

with parameters in controller and observer design given by

Q = α

[

1 1
1 1

]

, R = 1, W = β

[

1 1
1 1

]

, V = 1
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ARE for controller design has the positive definite solution

P =

[

p11 p12
p12 p22

]

, p12 = p22 = 2 +
√
4 + α, p11 = (p2

12
− α)/2

the LQR gain is

K = −R−1B∗P = (2 +
√
4 + α)

[

1 1
]

,
[

k k
]

solving the ARE for observer design, the Kalman gain is

L = (2 +
√

2 + β)

[

1
1

]

=

[

l
l

]

the equations of the controlled system and the observer are

ẋ = Ax− B̃Kx̂+ Fw

˙̂x = Ax̂+Bu+ L(Cx+ v − Cx̂)

where
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• B̃ is the actual input matrix for the system (B̃ contains an uncertainty)

• B is the input matrix used in control design

we’re concerned if the LQG has a robust stability (from uncertainty in B̃)

assume B̃ =

[

0
µ

]

where µ 6= 1 (so B̃ 6= B)

the eigenvalues of the dynamic matrix

[

A B̃K
LC (A− LC +BK)

]

satisfies the characteristic equations of the form

s4 + c3s
3 + c2s

2 + c1s+ c0 = 0

and from Routh’s criterion, all ck’s must be positive
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however, we can show that

c1 = l + k − 4 + 2(µ− 1)kl, c0 = 1 + (1− µ)kl

and the value of µ can make these two coefficients to change sign:

• if µ > (1 + 1/kl) then c0 < 0

• if µ < [1− (l + k − 4)/2lk] then c1 < 0

so the gain margin is smaller as kl becomes larger

• increasing l and k relates to increasing Q and W

• robustness is enhanced by low weighting on the state and covariance of
process noise
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