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7. Linear Quadratic Gaussian Control

e output feedback

e Kalman filter

e LQG/LQR
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Output feedback

consider a linear system
*=Ax+ Bu, y=CCx
a state-feedback controller has a form
u(t) = —Kux(t)
which requires the availability of the process measurement

when the state variables are not accessible, one can use
u(t) = —Kx(t)
where z(t) is an estimate of x(t) based on the output y
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Full-order observers

x cannot be fully measured and the goal is to estimate = based on y

our approach is to replicate the process dynamic in z
7 = A% + Bu
define the state estimation error e = x — 2, we can see
e = Axr — Az = Ae

e if A is stable, then the error goes to zero asymptotically

e if A is unstable, e is unbounded and & grows further apart from z

to avoid this problem, one can consider a correction term as

(feed y back to the estimator)
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L is a given matrix, called observer gain matrix

the error dynamic now is
é¢=Axr — Az — L(Cx — Cz) = (A— LC)e, €(0) =xz(0)
e the observer error goes to zero if L is chosen such that

A — LC is stable

e we can make e goes to zero fast if the eigenvalues of A — LC can be
arbitrarily assigned

e eigenvalues of A — LC are same as those of (A1 — CTLT)

e hence, choosing L is the dual of state-feedback design problem for the
pair (AT, CT)

e eigenvalues of A — LC can be freely reassigned if and only if (A, C)
observable
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Observer-based controller

closed-loop equations after a state feedback

where r(t) is reference input, is

# = Ax— BKi+ Br
A&+ L(y — ) + Br — BK#

ili) = |20 a—zcmnx) |3+ 5]

=
|

or
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Separation principle
change the coordinate
I O ||z | = | |
I —I||z| |x—x| |e
the dynamics in the new coordinate is
d|z| |A-BK BK T| I
dt le| 0 A—LC| |e 0"
e the dynamic of e does not depend on x

e closed-loop eigenvalues are

{eig(A — BK)} U{eig(A — LC)}
e one can assign eigenvalues of the system and the observer independently
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Observer of noisy system

in general, the system is corrupted by noise
t=Ax+ Bu+w, y=Cx+v

where w Is process noise and v is measurement noise

rewrite the error dynamic of an observer

¢ = Ar+Bu+4+w—Ax— Bu— L(Cx+v—C2)
= (A-LC)e+w— Lo

e due to w, v, the estimation will generally not go to zero
e one would like the error to remain small by a good choice of L

e the optimal choise of L is given by the Kalman gain
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Kalman filter

assume w, v are uncorrelated zero-mean Gaussian white noise, 1i.e.,

Ewt)w(r)*  =Wdilt—71), Ev@)v(r)" =Vt —71)
Ew(t)v(r)* =0

spectral density matrices of w, v are
W >0, and V >0, respectively
The optimal observer gain which minimizes E||e(t)]|* is
L=pCv
where P is the unique positive-semidefinite solution of the ARE
PA*+ AP — PC*V'CP+W =0
when using the optimal gain, this system is called the Kalman-Bucy filter
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A — LC is stable as long as the two conditions hold

e (A,C) is observable
e (A, W) is controllable

Recall: LQR control with J = [™ 2(¢)*Qz(t) + u*(t) Ru(t)dt

we need to solve ARE
PA+ A*P —PBR 'B*P+Q =0
with conditions

e (A, B) controllable to guarantee Jy,j, < o0

e (A, Q) observable to obtain a unique positive definition P

Duality: Kalmain filter is equivalent to designing an LQR controller on the
dual system (A*,C*, B*, D*) with Q =W, R=V
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Linear Quadratic Gaussian Control

a combination of optimal state estimation and optimal state feedback
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Example

we design an LQG controller to a spring-mass system

: 0 1 0
x:[_l O]aer[l]quw, y:[l O}CC—I—’U

where covariances of w are v are I and 0.1 respectively

we use the parameters
QR=5C"C, R=1, W=I, V=01

(A, C') observable and (A, W) controllable
MATLAB codes

=2; A=1[01;-10]; B=1[01]’; C = [1 0];
= bxC’*xC; R = 1;

1qr(A,B,Q,R);

= eye(n); V= 0.1;

= 1qe(A,eye(n),C,W,V);

=0 -B
I
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closed-loop response to unit step in reference
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(a standard LQG does not have an integral action)
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Robustness properties

LQR-controlled systems if R is diagonal, then
the system will have a gain margin equal to oo and a phase margin of 60°

The input u = —Kx can have a complex perturbation
Au; = k% i=1,2,....m m = number of inputs
without causing instability providing

1. 9220and05§k2§oo, i:1,2,...,m
2. k;=1and |6;| <60°, i=1,2,...,m

LQG-controlled systems LQG-controlled system with a combined Kalman
filter and LQR control law, there are NO guaranteed stability margins
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Counterexample

we will show that the gain margin of LQG becomes very small as feedback
and observer gains become large

consider an unstable SISO system

B O I RS HER G

y = :1 O}er'U

with parameters in controller and observer design given by

o=l 1. mer wes ] ves
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ARE for controller design has the positive definite solution

P = [pn p12] , Pi2=pr=2+Vvidta, p1= (Zﬁz —a)/2
P12 P22

the LQR gain is
K=-R'B*P=02+Vi+a)[l 1] £ [k K

solving the ARE for observer design, the Kalman gain is

1 [
r=eevirn [l =[]
the equations of the controlled system and the observer are

i = Ax — BKZ% + Fuw
Az + Bu+ L(Cx +v — C2)

S
I

where
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e B is the actual input matrix for the system (B contains an uncertainty)

e B3 is the input matrix used in control design

we're concerned if the LQG has a robust stability (from uncertainty in B)

assume B = [2] where 1 # 1 (so B # B)
the eigenvalues of the dynamic matrix

A BK
LC (A-LC + BK)

satisfies the characteristic equations of the form
st + 0353 + 0232 +ci1s+cog=0

and from Routh’s criterion, all ¢;'s must be positive
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however, we can show that
ci=l4+k—4+2(p—1Dkl, co=14+(1— p)kl
and the value of ;1 can make these two coefficients to change sign:

o if £ > (1+1/kl) then ¢y <0
o if u <[1—(l+k—4)/2lk] then ¢; <O

so the gain margin is smaller as k[ becomes larger

e increasing [ and k relates to increasing () and W

e robustness is enhanced by low weighting on the state and covariance of
process noise
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