EE635 - Control System Theory Jitkomut Songsiri

6. Linear Quadratic Regulator Control

e algebraic Riccati Equation (ARE)
e infinite-time LQR (continuous)
e Hamiltonian matrix

e gain margin of LQR
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Algebraic Riccati Equation (ARE)

given R > 0 and Q = 0 and a square matrix A

we solve P from

PA+ A*P —PBR 'B*P+Q =0

e ARE may have more than one solution
e P can be non-symmetric, indefinite, negative definite or positive definite
e we are interested in a non-negative solution

e sometimes ARE is called steady-state Riccati equation (SSRE)
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Positive definite solution

assume P > 0, we can imply P > 0 if any of the following is true:

1. Q>0
2. Q=0 and (A, Q) observable

Proof 1 easy to check that N (P) C N (Q)
then if N(Q) = {0} , so is N'(P)

to show this, we can see that for any z,
(PAz,z) 4+ (A*Pz,2) — (PBR™'B*Px,x,) + (Qz,z) = 0

hence, if Pr =0 then Qx =0
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Proof 2 define A = A — BR'B*P and we can write ARE as
PA+ A*P+ PBR 'B*P+Q =0
by adding and substracting PBR~'B*P

e take an inner product with e

d
£<P AtZ 6./4 > — _||R—1/QB*P€.Atz||2 _< AtZ 6./4 Z>

e integrate from 0 to ¢ on both sides

t
(Petz, eMz) = (Pz, 2) —/ |R™YV2B*Pet 2% + (Qet 2, e 2)dr
0

e hence 0 < (Petz, etz) < (Pz,z) and

if 3240 st. Pz=0 = Pellz=0
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e then we can conclude

Vze N(P) Pz=0 — Az= Az

— My =y

—  Pefty = Pttty =

e this implies e*z € N(P), e.g., N'(P) is invariant under e**

e since NV (P) C N(Q) then

Pe'tz =0 — QeMz=0

which contradicts to that (A, Q) is observable

e this also shows
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Stability of A

define A = A — BR™'B*P and assume P > 0 is a solution to ARE

Fact: A is stable if either one of the following is true

1. Q>0
2. Q@ = 0and (A, Q) observable

ARE can be rewritten as
PA+ A*P+ PBR 'B*P+Q =0

suppose x is an eigenvector of A, i.e., Ax = Az

multiplying = with ARE and taking an inner product with x give

2Re \M(Pz,z) = —|R"Y2B*Pz||*> — (Qx, z)

Linear Quadratic Regulator Control 6-6



Proof 1 if @ > 0 then P > 0 (page 6-3) and hence, Re (\) <0

Proof 2 If Re A =0 or A\ = 1w, then
B*Pr=0 and Qx =0
B*Px = 0 implies Ar = Ax = iwx and hence
Qettr = Qe™tr = ™'Qr =0

which contradicts to that (A, Q) is observable
conclusion: A is stable if we use the positive solution P

rearrange the ARE as a Lyapunov equation for the closed-loop
PA+ AP+ K*"RK+Q =0

where K = —R1B*P
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Converse theorem

assume A is stable then
Muo(A7 Q) — N(P)

in other words, for a stable A, observability of (A, Q) implies P >~ 0

Proof multiply ARE with etz and taking an inner product with etz

d
£<P€At2,€At2> _ HR—l/QB*PeAtz”2 - <Q6Atz,€AtZ>

integrate from 0 to ¢ on both sides

¢ ¢
(Petz, et2) — (Pz, 2) :/ ||R_1/2B*P6ATZH2dT—/ (QeATz, e 2)dr
0 0
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let t — 0o and hence e4t — ()

0 < (Pz,z2) < / (Qe Tz, e 2)dr
0

for all t > 0, if Qetz =0 then Pz =0

this means

Mauo(4, Q) S N(P)

in combination with the result in page 6-5 that
N(P) € Muo(4,Q)

then we finish the proof
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Sylvester operator
given square matrices A and B, a mapping S : R" — R"
S(X)=AX+ XB

is called a Sylvestor operator
Fact: S(X) is singular if A and —B share some common eigenvalues
Proof. suppose A is a common eigenvalue of A and —B

Av =X v, w'B=-\w"
we can construct X = vw™* # 0 and see that

S(X) = Avw™ +vw*B = Aww™ — dvw™ =0
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Uniqueness of stabilizing solution

there is at most one solution P of the ARE that yields
A=A—-BR 'B*P stable
Proof suppose there exist two solutions P; and P, such that
A1 =A—BR'B*P;, and Ay;=A— BR 'B*P, stable
it is easy to verify that
(PL— Py) A1+ A5(PL— P) =0

Recall: the Lyapunov L(P) = A*P + PA is singular if A and —A* share
some common eigenvalues

since both A; and A, are stable, the only solution is P, — P, =0
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Continuous-time infinite horizon LQR problem
Problem: find u : [0, 00) — R™ which minimizes
T(2(0), 1) = /O T 2 Qu(t) + u(t) Ru(t)dt
subject to i(t) = Ax(t) + Bu(t) given z(0) # 0

e () >~ 0 is the state cost matrix

e R > 0 is the input cost matrix
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Boundedness of the cost function

Fact: J.,in < oo implies the existence of a nonnegative solution to ARE

any of the following conditions ensures J,;, < 00

1. A is stable
2. (A, B) is controllable
3. (A, B) is stabilizable

Proof 1
if A is stable, we would pick u(-) = 0 and z(t) = e”*x(0) — 0

therefore

Jmin < J(2(0),u(t) =0) = /OOO x(t)*Qx(t)dt < o
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Proof 2 if (A, B) controllable,

e there exists a u(-) such that wu(-) steers z(0) to the zero state at time T’
e therefore, extend this u(-) such that u(t) =0 fort > T
e then of course, Jyin < J(2(0),u) < oo
e controllability ensures boundedness of J,,;, whether A is stable or not
Proof 3 if (A, B) is stabilizable, we have

eATBENL(0) - 0, t— o0

for some stabilizing feedback matrix F'

therefore
Jmin < J(x(0), Fa(-)) < o

(A could be unstable, but the unstable mode must be controllable)
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LQR solution

assume P is a nonnegative solution to PA+ A*P — PBR™'B*P+Q =0

if @ > 0 orif (A, Q) observable, then

1.
2.

P is a unique positive solution

the infinite-time LQR problem admits the optimal input
Uopt(t) = —R™'B*Paope(t), t>0
where x4 (t) satisfies
Fopi(t) = (A= BRT'B*P)agpu(t),  opi(0) = (0)

and A=A — BR1B*P is stable

. the optimal cost function is

J(2(0), uopt) = x(0)* Px(0)
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Solving ARE via Hamiltonian
define K = —R~'B*P

A —BR'B*||I| _ |A-BR'B*P| | A+BK
—Q _A* Pl | -Q—-—A*P | |-Q—A*P

and so

I 0][A —-BR'B*][I 0] [A+BK —BR'B*
—P I||-Q  -—A* P Il | o0 —(A+ BK)*

where O in the lower left corner comes from ARE

R
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Hamiltonian matrix is defined by

A —BR1B*
H‘[—Q e ]

define A = A+ BK and its eigenvalues are A\q,..., A\,

e cigenvalues of H are A\,..., A\, and —\q,..., =\,

e if T diagonalizes A, i.e., T—1AT = A, then one can show

follow from
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hence, we can compute 2n eigenvectors of H, which have the form

v, = [X] i=1,2,....2n
Yi

collect n eigenvectors associated with n distinct eigenvalues and define

X = [Xl X9 ... Xn], Y = [yl yo ... yn}
then every solution of ARE has the form
P=vx!

(by selection of subsets of 2n eigenvectors of H) provided that X ! exists

Remark: the positive definite P corresponds to stable eigenvalues of H
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example: let
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(A, B) is controllable, so there exists a nonnegative solution to ARE

(A, Q) is observable, so a positive definition solution of ARE is unique

the eigenvalues of H are A\, =2, o = =2, A3 =3, 4, = —3

the corresponding eigenvectors are

1
_\@/2
—1
V6/2
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case 1:

case 2:

case 3:

case 4:

A =2, g = —2

P = [\/%)/2 2/8/6] (non-self-adjoint)

A =2,A3=3
-1 0 .. :
P = [ 0 _1] (self-adjoint, negative)
M =2, =-3
[ 15 2v6/5 e
P = [2\/6/5 _1/5] (self-adjoint, indefinite)
Ao =—2,A3=23

P_[—1/5 21/6/5
~|2v6/5  1/5

] (self-adjoint, indefinite)
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case b: o= -2 )y = -3

P = [(1) ?] (self-adjoint, positive!)

case 6: \3s =3, )\, =-3

0 +6/2 .
P = onself- adjoint
[\/6/3 0 ] (non joint)
e one self-adjoint positive definite solution
e one self-adjoint negative definite solution
e two nonself-adjoint solutions
e two self-adjoint indefinite solutions

the positive definite P is obtained by eigenvectors corresponding to stable
eigenvalues of the Hamiltonian matrix
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Example

design an LQR controller for the system

. 1 1 1
T = [O _1] + [O] u(t)
the system is uncontrollable, but is stabilizable, so Jin < 00

we minimize

we have

(A, Q) is observable, so there exists a unique positive definite solution P
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assume P — [pl p2] " ARE vyields
P2 P3

1+2p1 —pi =0, pr—pip2=0, —p5+2py—2p3=0

which gives
pr=1%+V2, p=1, p3=1/2

so, there are two solutions to ARE

1++/2 1]’ P2:[1—\/§ 1]

Pl:[ 1 1/2 1 1/2

Py is the positive definite solution
if we compute P via the Hamiltonian matrix

there are only 2 combinations of choosing eigenvectors such that X —!
exists
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Gain margin

consider the effect of varying the gain K = —R~!B*P on stability

define
A . =A—cBR 'B*P

when o > 0 and P satisfies ARE

Fact: if Q > 0 or if (A, Q) observable then A, is stable for any o > 1/2

e LQR provides for one-half gain reduction

e LQR provides infinite gain margin !
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Proof. define A = A — BR™!B*P, so we can write
PA,=PA+ (1 —-0)PBR 'B*P
and we have
2Re(P Az, z) = 2Re(P Az, z) 4+ 2(1 — 0)|R"Y/2B* Pzx||?
by using the ARE, the first term on RHS is
2Re(PAzx,z) = —(Qx,z) — |R™Y?B*Px||?
hence,

Re(PA,z,z) = —(Qz,z) + (1 — 20)||R~/?B* Px||?

now let x be an eigenvector of A,, i.e., A,z = Az, then
2Re A (Pz,z) = —(Qz, z) + (1 — 20)||R™Y/2B* Px||?
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e since P> 0and o > 1/2, then ReA <0

e if Re A\ =0, then Qx = 0 and B*Px = 0 which implies

Asx = Ax =Xz, and Qr =0, =— (A,(Q) unobservable

so Re A = 0 never happens if Q > 0 or (A, Q) observable !
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