
EE635 - Control System Theory Jitkomut Songsiri

6. Linear Quadratic Regulator Control

• algebraic Riccati Equation (ARE)

• infinite-time LQR (continuous)

• Hamiltonian matrix

• gain margin of LQR
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Algebraic Riccati Equation (ARE)

given R ≻ 0 and Q � 0 and a square matrix A

we solve P from

PA+A∗P − PBR−1B∗P +Q = 0

• ARE may have more than one solution

• P can be non-symmetric, indefinite, negative definite or positive definite

• we are interested in a non-negative solution

• sometimes ARE is called steady-state Riccati equation (SSRE)
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Positive definite solution

assume P � 0, we can imply P ≻ 0 if any of the following is true:

1. Q ≻ 0

2. Q � 0 and (A,Q) observable

Proof 1 easy to check that N (P ) ⊆ N (Q)

then if N (Q) = {0} , so is N (P )

to show this, we can see that for any x,

〈PAx, x〉+ 〈A∗Px, x〉 − 〈PBR−1B∗Px, x, 〉+ 〈Qx, x〉 = 0

hence, if Px = 0 then Qx = 0

Linear Quadratic Regulator Control 6-3



Proof 2 define A = A−BR−1B∗P and we can write ARE as

PA+A∗P + PBR−1B∗P +Q = 0

by adding and substracting PBR−1B∗P

• take an inner product with eAtz

d

dt
〈PeAtz, eAtz〉 = −‖R−1/2B∗PeAtz‖2 − 〈QeAtz, eAtz〉

• integrate from 0 to t on both sides

〈PeAtz, eAtz〉 = 〈Pz, z〉 −
∫ t

0

‖R−1/2B∗PeAτz‖2 + 〈QeAτz, eAτz〉dτ

• hence 0 ≤ 〈PeAtz, eAtz〉 ≤ 〈Pz, z〉 and

if ∃z 6= 0 s.t. Pz = 0 =⇒ PeAtz = 0
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• then we can conclude

∀z ∈ N (P ) Pz = 0 =⇒ Az = Az

=⇒ eAtz = eAtz

=⇒ PeAtz = PeAtz = 0

• this implies eAtz ∈ N (P ), e.g., N (P ) is invariant under eAt

• since N (P ) ⊆ N (Q) then

PeAtz = 0 =⇒ QeAtz = 0

which contradicts to that (A,Q) is observable

• this also shows
N (P ) ⊆ Muo(A,Q) ⊆ N (Q)
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Stability of A

define A = A−BR−1B∗P and assume P � 0 is a solution to ARE

Fact: A is stable if either one of the following is true

1. Q ≻ 0

2. Q � 0 and (A,Q) observable

ARE can be rewritten as

PA+A∗P + PBR−1B∗P +Q = 0

suppose x is an eigenvector of A, i.e., Ax = λx

multiplying x with ARE and taking an inner product with x give

2Re λ〈Px, x〉 = −‖R−1/2B∗Px‖2 − 〈Qx, x〉
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Proof 1 if Q ≻ 0 then P ≻ 0 (page 6-3) and hence, Re (λ) ≤ 0

Proof 2 If Re λ = 0 or λ = iω, then

B∗Px = 0 and Qx = 0

B∗Px = 0 implies Ax = Ax = iωx and hence

QeAtx = Qeiωtx = eiωtQx = 0

which contradicts to that (A,Q) is observable

conclusion: A is stable if we use the positive solution P

rearrange the ARE as a Lyapunov equation for the closed-loop

PA+A∗P +K∗RK +Q = 0

where K = −R−1B∗P
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Converse theorem

assume A is stable then

Muo(A,Q) = N (P )

in other words, for a stable A, observability of (A,Q) implies P ≻ 0

Proof multiply ARE with eAtz and taking an inner product with eAtz

d

dt
〈PeAtz, eAtz〉 = ‖R−1/2B∗PeAtz‖2 − 〈QeAtz, eAtz〉

integrate from 0 to t on both sides

〈PeAtz, eAtz〉−〈Pz, z〉 =
∫ t

0

‖R−1/2B∗PeAτz‖2dτ−
∫ t

0

〈QeAτz, eAτz〉dτ
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let t → ∞ and hence eAt → 0

0 ≤ 〈Pz, z〉 ≤
∫ ∞

0

〈QeAτz, eAτz〉dτ

for all t ≥ 0, if QeAtz = 0 then Pz = 0

this means
Muo(A,Q) ⊆ N (P )

in combination with the result in page 6-5 that

N (P ) ⊆ Muo(A,Q)

then we finish the proof
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Sylvester operator

given square matrices A and B, a mapping S : Rn → Rn

S(X) = AX +XB

is called a Sylvestor operator

Fact: S(X) is singular if A and −B share some common eigenvalues

Proof. suppose λ is a common eigenvalue of A and −B

Av = λv, w∗B = −λw∗

we can construct X = vw∗ 6= 0 and see that

S(X) = Avw∗ + vw∗B = λvw∗ − λvw∗ = 0
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Uniqueness of stabilizing solution

there is at most one solution P of the ARE that yields

A = A− BR−1B∗P stable

Proof suppose there exist two solutions P1 and P2 such that

A1 = A−BR−1B∗P1 and A2 = A−BR−1B∗P2 stable

it is easy to verify that

(P1 − P2)A1 +A∗
2(P1 − P2) = 0

Recall: the Lyapunov L(P ) = A∗P + PA is singular if A and −A∗ share
some common eigenvalues

since both A1 and A2 are stable, the only solution is P1 − P2 = 0
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Continuous-time infinite horizon LQR problem

Problem: find u : [0,∞) → Rm which minimizes

J(x(0), u) =

∫ ∞

0

x(t)∗Qx(t) + u(t)∗Ru(t)dt

subject to ẋ(t) = Ax(t) +Bu(t) given x(0) 6= 0

• Q � 0 is the state cost matrix

• R ≻ 0 is the input cost matrix
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Boundedness of the cost function

Fact: Jmin < ∞ implies the existence of a nonnegative solution to ARE

any of the following conditions ensures Jmin < ∞

1. A is stable

2. (A,B) is controllable

3. (A,B) is stabilizable

Proof 1

if A is stable, we would pick u(·) = 0 and x(t) = eAtx(0) → 0

therefore

Jmin ≤ J(x(0), u(t) = 0) =

∫ ∞

0

x(t)∗Qx(t)dt < ∞
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Proof 2 if (A,B) controllable,

• there exists a u(·) such that u(·) steers x(0) to the zero state at time T

• therefore, extend this u(·) such that u(t) = 0 for t > T

• then of course, Jmin < J(x(0), u) < ∞

• controllability ensures boundedness of Jmin whether A is stable or not

Proof 3 if (A,B) is stabilizable, we have

e(A+BF )tx(0) → 0, t → ∞

for some stabilizing feedback matrix F

therefore
Jmin < J(x(0), Fx(·)) < ∞

(A could be unstable, but the unstable mode must be controllable)
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LQR solution

assume P is a nonnegative solution to PA+A∗P −PBR−1B∗P +Q = 0

if Q ≻ 0 or if (A,Q) observable, then

1. P is a unique positive solution

2. the infinite-time LQR problem admits the optimal input

uopt(t) = −R−1B∗Pxopt(t), t ≥ 0

where xopt(t) satisfies

ẋopt(t) = (A− BR−1B∗P )xopt(t), xopt(0) = x(0)

and A = A−BR−1B∗P is stable

3. the optimal cost function is

J(x(0), uopt) = x(0)∗Px(0)
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Solving ARE via Hamiltonian

define K = −R−1B∗P

[

A −BR−1B∗

−Q −A∗

] [

I
P

]

=

[

A− BR−1B∗P
−Q−A∗P

]

=

[

A+BK
−Q−A∗P

]

and so

[

I 0
−P I

] [

A −BR−1B∗

−Q −A∗

] [

I 0
P I

]

=

[

A+BK −BR−1B∗

0 −(A+BK)∗

]

where 0 in the lower left corner comes from ARE

also note that
[

I 0
P I

]−1

=

[

I 0
−P I

]
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Hamiltonian matrix is defined by

H =

[

A −BR−1B∗

−Q −A∗

]

define A = A+BK and its eigenvalues are λ1, . . . , λn

• eigenvalues of H are λ1, . . . , λn and −λ1, . . . ,−λn

• if T diagonalizes A, i.e., T−1AT = Λ, then one can show

H

[

T
PT

]

=

[

T
PT

]

Λ

follow from

H

[

I
P

]

=

[

A+BK
−Q−A∗P

]

=

[

I
P

]

A =

[

I
P

]

TΛT−1
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hence, we can compute 2n eigenvectors of H, which have the form

vi =

[

xi

yi

]

, i = 1, 2, . . . , 2n

collect n eigenvectors associated with n distinct eigenvalues and define

X =
[

x1 x2 . . . xn

]

, Y =
[

y1 y2 . . . yn

]

then every solution of ARE has the form

P = Y X−1

(by selection of subsets of 2n eigenvectors of H) provided that X−1 exists

Remark: the positive definite P corresponds to stable eigenvalues of H
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example: let

A =

[

0
√
6

−
√
6 0

]

, Q =

[

5 0
0 0

]

, B =

[√
5
0

]

• (A,B) is controllable, so there exists a nonnegative solution to ARE

• (A,Q) is observable, so a positive definition solution of ARE is unique

• the eigenvalues of H are λ1,= 2, λ2 = −2, λ3 = 3, λ4 = −3

• the corresponding eigenvectors are

v1 =









1

−
√
6/2

−1√
6/2









,v2 =









1√
6/2
1√
6/2









,v3 =









1

−
√
6/3

−1√
6/3









,v4 =









1√
6/3
1√
6/3
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case 1: λ1 = 2, λ2 = −2

P =

[

0 2/
√
6√

6/2 0

]

(non-self-adjoint)

case 2: λ1 = 2, λ3 = 3

P =

[

−1 0
0 −1

]

(self-adjoint, negative)

case 3: λ1 = 2, λ4 = −3

P =

[

1/5 2
√
6/5

2
√
6/5 −1/5

]

(self-adjoint, indefinite)

case 4: λ2 = −2, λ3 = 3

P =

[

−1/5 2
√
6/5

2
√
6/5 1/5

]

(self-adjoint, indefinite)

Linear Quadratic Regulator Control 6-20



case 5: λ2 = −2, λ4 = −3

P =

[

1 0
0 1

]

(self-adjoint, positive!)

case 6: λ3 = 3, λ4 = −3

P =

[

0
√
6/2√

6/3 0

]

(nonself- adjoint)

• one self-adjoint positive definite solution

• one self-adjoint negative definite solution

• two nonself-adjoint solutions

• two self-adjoint indefinite solutions

the positive definite P is obtained by eigenvectors corresponding to stable
eigenvalues of the Hamiltonian matrix

Linear Quadratic Regulator Control 6-21



Example

design an LQR controller for the system

ẋ =

[

1 1
0 −1

]

+

[

1
0

]

u(t)

the system is uncontrollable, but is stabilizable, so Jmin < ∞

we minimize

J =

∫ ∞

0

x2
1(t) + u2(t)dt

we have

Q =

[

1 0
0 0

]

, R = 1

(A,Q) is observable, so there exists a unique positive definite solution P
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assume P =

[

p1 p2
p2 p3

]

, ARE yields

1 + 2p1 − p21 = 0, p1 − p1p2 = 0, −p22 + 2p2 − 2p3 = 0

which gives
p1 = 1±

√
2, p2 = 1, p3 = 1/2

so, there are two solutions to ARE

P1 =

[

1 +
√
2 1

1 1/2

]

, P2 =

[

1−
√
2 1

1 1/2

]

P1 is the positive definite solution

if we compute P via the Hamiltonian matrix

there are only 2 combinations of choosing eigenvectors such that X−1

exists
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Gain margin

consider the effect of varying the gain K = −R−1B∗P on stability

define
Aσ = A− σBR−1B∗P

when σ > 0 and P satisfies ARE

Fact: if Q ≻ 0 or if (A,Q) observable then Aσ is stable for any σ > 1/2

• LQR provides for one-half gain reduction

• LQR provides infinite gain margin !
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Proof. define A = A−BR−1B∗P , so we can write

PAσ = PA+ (1− σ)PBR−1B∗P

and we have

2Re〈PAσx, x〉 = 2Re〈PAx, x〉+ 2(1− σ)‖R−1/2B∗Px‖2

by using the ARE, the first term on RHS is

2Re〈PAx, x〉 = −〈Qx, x〉 − ‖R−1/2B∗Px‖2

hence,

Re〈PAσx, x〉 = −〈Qx, x〉+ (1− 2σ)‖R−1/2B∗Px‖2

now let x be an eigenvector of Aσ, i.e., Aσx = λx, then

2Re λ 〈Px, x〉 = −〈Qx, x〉+ (1− 2σ)‖R−1/2B∗Px‖2
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• since P ≻ 0 and σ > 1/2, then Reλ ≤ 0

• if Re λ = 0, then Qx = 0 and B∗Px = 0 which implies

Aσx = Ax = λx, and Qx = 0, =⇒ (A,Q) unobservable

so Re λ = 0 never happens if Q ≻ 0 or (A,Q) observable !
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