Jitkomut Songsiri

4. Minimal realization

- minimal realization
- Popov-Belevitch-Hautus (PBH) tests

Uncontrollable/Unobservable systems

find a state-space description of

$$H(s) = \frac{1}{s+1}$$

one example is a scalar system that is both controllable and observable:

$$\dot{x} = -x + u, \quad y = x$$

or a second-order system that is controllable but unobservable:

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & -1 \end{bmatrix} x$$

or a second-order system that is observable but uncontrollable:

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Minimal realization

uncontrollable or unobservable systems have common roots between

```
Cadj(sI - A)B and det(sI - A)
```

Results

- some eigenvalues of A do not appear in H(s)
- H(s) has a lower order than the dimension of the state space
- such state-space is called *non-minimal*

Definition: $\{A, B, C\}$ is a *mininal* realization if there can be no other realization $\{\bar{A}, \bar{B}, \bar{C}\}$ with \bar{A} of smaller dimension than A

Theorem a realization $\{A, B, C\}$ is minimal if and only if

$$a(s) \triangleq \det(sI - A)$$
 and $b(s) \triangleq C \operatorname{adj}(sI - A)B$

are relatively coprime

Proof. suppose $\{A, B, C\}$ is minimal but b(s)/a(s) is reducible

then we can find a realization with a lower-dimensional state space of the reduced transfer function, which is a contradiction

to prove the converse, assume that $\{A,B,C\}$ is not minimal even though b(s)/a(s) is irreducible

then any minimal realization of H(s) will have a transfer function with denominator of degree less than the dimension of A

hence, b(s)/a(s) could not have been irreducible

Theorem a realization $\{A, B, C\}$ is minimal if and only if (A, B) is controllable and (A, C) is observable

Proof.

- sufficiency part. since we have shown if (A, B) is uncontrollable or (A, C) is unobservable then there exists {A₁₁, B₁, C₁} that gives the same H(s) but with a lower dimension
- *necessity part.* we will prove by contradiction *i.e.*, suppose (A, B, C) is controllable and observable but $\{A, B, C\}$ is not minimal

suppose $\{A,B,C\}$ and $\{\bar{A},\bar{B},\bar{C}\}$ have the same H(s) where $A\in {\bf R}^{n\times n}$ and $\bar{A}\in {\bf R}^{r\times r}$, r< n

the impulse responses of the two realization must be equivalent, *i.e.*,

$$CA^k B = \bar{C}\bar{A}^k\bar{B}, \quad k = 0, 1, \dots$$

or equivalently,

$$\mathcal{OC} = \bar{\mathcal{O}}_n \bar{\mathcal{C}}_n$$

where $\bar{\mathcal{C}}_n$ is defined by

$$\bar{\mathcal{C}}_n \triangleq \begin{bmatrix} \bar{B} & \bar{A}\bar{B} & \dots & \bar{A}^{n-1}\bar{B} \end{bmatrix}$$

and defined similarly for $\bar{\mathcal{O}}_n$

since $\bar{\mathcal{O}}_n$ and $\bar{\mathcal{C}}_n$ has size $n \times r$ and $r \times n$, respectively, the matrix $\bar{\mathcal{O}}_n \bar{\mathcal{C}}_n$ has rank at most r

however, (A, B, C) is controllable and observable, then $rank(\mathcal{O}) = n$ and $rank(\mathcal{C}) = n$ which implies $rank(\mathcal{OC}) = n$

then $\overline{\mathcal{O}}_n \overline{\mathcal{C}}_n$ must also have rank n, which is a contradiction

PBH eigenvector tests

Controllability: A pair (A, B) is controllable if and only if there is no vector $w \neq 0$ and $\lambda \in \mathbb{C}$ such that

 $w^*A = \lambda w^*$, and $w^*B = 0$

i.e., there is no left eigenvector of A that is orthogonal to the columns of B

Observability: A pair (A, C) is observable if and only if there is no vector $v \neq 0$ and $\lambda \in \mathbb{C}$ such that

$$Av = \lambda v$$
, and $Cv = 0$

i.e., there is no eigenvector of A that is orthogonal to the rows of C

Minimal realization

Proof of controllability test

• sufficiency part. we show that if $\exists w \neq 0$, $w^*A = \lambda w^*$ and $w^*B = 0$ then (A, B) is uncontrollable

$$w^*B = 0 \Rightarrow w^*AB = \lambda w^*B = 0, \quad \dots \quad \Rightarrow w^*A^{n-1}B = 0$$

hence, $w^*\mathcal{C} = 0$ or $\mathcal{N}(\mathcal{C}^*) \neq \{0\}$, *i.e.*, (A, B) is uncontrollable

• *necessity part.* if (A, B) is uncontrollable, we can transform the system into the uncontrollable form

$$T^{-1}AT = \begin{bmatrix} \overline{A}_{11} & \overline{A}_{12} \\ 0 & \overline{A}_{22} \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \overline{B}_1 \\ 0 \end{bmatrix}$$

let w_2 be a left eigenvector of \overline{A}_{22} then we can show that

$$\begin{bmatrix} 0 & w_2^* \end{bmatrix} T^{-1} \cdot A = \lambda \begin{bmatrix} 0 & w_2^* \end{bmatrix} T^{-1}, \text{ and } T^{-1}B = 0$$

(we have found a left eigenvector of A that is orthogonal to B)

PBH rank tests

let $A \in \mathbf{R}^{n \times n}$

Controllability: (A, B) is controllable if and only if

$$\mathbf{rank}\begin{bmatrix} sI - A & B \end{bmatrix} = n \quad \text{for all } s \in \mathbb{C}$$

Observability: (A, C) is observable if and only if

$$\mathbf{rank} \begin{bmatrix} C \\ sI - A \end{bmatrix} = n \quad \text{for all } s \in \mathbb{C}$$

the rank must be n even when s is an *eigenvalue* of A

Minimal realization

Proof of controllability test

if $s \neq \lambda(A)$ then $\operatorname{rank}(sI - A) = n$ and so is $\operatorname{rank}\begin{bmatrix} sI - A & B \end{bmatrix}$

therefore, we can just prove only when $s = \lambda$, an eigenvalue of A

- assume (A, B) controllable but $\mathbf{rank} \begin{bmatrix} sI A & B \end{bmatrix} < n$
- there must exist $w \neq 0$ such that $w^* \begin{bmatrix} \lambda I A & B \end{bmatrix} = 0$
- hence, $w^*(\lambda I A) = 0$ and $w^*B = 0$
- by the PBH eigenvector test, this implies w is a left eigenvector of A that is orthogonal to B
- so (A, B) must be uncontrollable, which is a contraction

PBH eigenvector test implies that if (A, B) is uncontrollable then

$$\exists w \neq 0, \quad w^*A = \lambda w^*, \quad \text{and} \quad w^*B = 0$$

hence, the dynamic of a special linear combination of x(t), given by

$$\frac{dw^*x(t)}{dt} = w^*(Ax(t) + Bu(t)) = \lambda w^*x(t)$$

clearly does not depend on u(t)

similarly, if (A, C) is unobservable, *i.e.*,

$$\exists v \neq 0, \quad Av = \lambda v, \quad \text{and} \quad Cv = 0$$

then given x(0) = v, we have

$$x(t) = e^{\lambda t}v, \quad y = Cx(t) = e^{\lambda t}Cv = 0$$

the mode corresponds to λ is unobservable

Minimal realization

References

Chapter 2 in

T. Kailath, Linear Systems, Prentice-Hall, 1980

Chapter 5 in

D. Banjerdpongchai, *Dynamical Control Systems: Analysis, Design and Applications*, Chulalongkorn University Press, 2008