4. Minimal realization

- minimal realization
- Popov-Belevitch-Hautus (PBH) tests

Uncontrollable/Unobservable systems

find ^a state-space description of

$$
H(s) = \frac{1}{s+1}
$$

one example is ^a scalar system that is both controllable and observable:

$$
\dot{x} = -x + u, \quad y = x
$$

or ^a second-order system that is controllable but unobservable:

$$
\dot{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & -1 \end{bmatrix} x
$$

or ^a second-order system that is observable but uncontrollable:

$$
\dot{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x
$$

Minimal realization

uncontrollable or unobservable systems have common roots between

```
Cadj(sI - A)B and \det(sI - A)
```
Results

- $\bullet\,$ some eigenvalues of A do not appear in $H(s)$
- \bullet $H(s)$ has a lower order than the dimension of the state space
- such state-space is called non-minimal

 $\textbf{Definition:} \ \{\overline{A},\overline{B},\overline{C}\}$ is a *mininal* realization if there can be no other realization $\{\bar{A}, \bar{B}, \bar{C}\}$ with \bar{A} of smaller dimension than A

Theorem a realization $\{A, B, C\}$ is minimal if and only if

$$
a(s) \triangleq \det(sI - A)
$$
 and $b(s) \triangleq C \operatorname{adj}(sI - A)B$

are relatively coprime

Proof. suppose $\{A,B,C\}$ is minimal but $b(s)/a(s)$ is reducible

then we can find ^a realization with ^a lower-dimensional state space of the reduced transfer function, which is ^a contradiction

to prove the converse, assume that $\{A, B, C\}$ is not minimal even though $b(s)/a(s)$ is irreducible

then any minimal realization of $H(s)$ will have a transfer function with denominator of degree less than the dimension of A

hence, $b(s)/a(s)$ could not have been irreducible

Theorem a realization $\{A, B, C\}$ is minimal if and only if (A, B) is example. controllable and (A, C) is observable

Proof.

- \bullet sufficiency part. since we have shown if (A,B) is uncontrollable or (A, C) is unobservable then there exists $\{A_{11}, B_1, C_1\}$ that gives the same $H(s)$ but with a lower dimension
- necessity part. we will prove by contradiction $i.e.,$ suppose (A, B, C) is controllable and observable but $\{A, B, C\}$ is not minimal

suppose $\{A,B,C\}$ and $\{\bar{A},\bar{B},\bar{C}\}$ have the same $H(s)$ where $A\in\mathbf{R}^{n\times n}$ and $\bar{A} \in \mathbf{R}^{r \times r}$, $r < n$

the impulse responses of the two realization must be equivalent, *i.e.*,

$$
CA^kB = \overline{C}\overline{A}^k\overline{B}, \quad k = 0, 1, \dots
$$

or equivalently,

$$
\mathcal{OC}=\bar{\mathcal{O}}_n\bar{\mathcal{C}}_n
$$

where $\bar{\mathcal{C}}_n$ is defined by

$$
\bar{\mathcal{C}}_n \triangleq \begin{bmatrix} \bar{B} & \bar{A}\bar{B} & \dots & \bar{A}^{n-1}\bar{B} \end{bmatrix}
$$

and defined similarly for \mathcal{O}_n

since $\bar{\mathcal{O}}_n$ and $\bar{\mathcal{C}}_n$ has size $n \times r$ and $r \times n$, respectively, the matrix $\bar{\mathcal{O}}_n\bar{\mathcal{C}}_n$ has rank at most r

however, (A, B, C) is controllable and observable, then $\textbf{rank}(\mathcal{O}) = n$ and $\mathbf{rank}(\mathcal{C}) = n$ which implies $\mathbf{rank}(\mathcal{OC}) = n$

then $\bar{\mathcal{O}}_n\bar{\mathcal{C}}_n$ must also have rank n , which is a contradiction

PBH eigenvector tests

 ${\sf Controlability:}$ A pair (A,B) is controllable if and only if there is no vector $w \neq 0$ and $\lambda \in \mathbb{C}$ such that

 $w^*A = \lambda w^*$, and $w^*B = 0$

 $i.e.,$ there is no left eigenvector of A that is orthogonal to the columns of B

 $\bold{Observability:}$ A pair (A,C) is observable if and only if there is no vector $v \neq 0$ and $\lambda \in \mathbb{C}$ such that

$$
Av = \lambda v, \quad \text{and} \quad Cv = 0
$$

 $\it{i.e.},$ there is no eigenvector of A that is orthogonal to the rows of C

Minimal realization

Proof of controllability test

• sufficiency part. we show that if $\exists w \neq 0$, $w^*A = \lambda w^*$ and $w^*B = 0$ then (A,B) is uncontrollable

$$
w^*B = 0 \Rightarrow w^*AB = \lambda w^*B = 0, \quad \cdots \quad \Rightarrow w^*A^{n-1}B = 0
$$

hence, $w^*{\mathcal{C}}=0$ or ${\mathcal{N}}({\mathcal{C}}^*)\neq \{0\}$, $i.e.,\ (A,B)$ is uncontrollable

 $\bullet\,$ necessity part. if (A,B) is uncontrollable, we can transform the system into the uncontrollable form

$$
T^{-1}AT = \begin{bmatrix} \overline{A}_{11} & \overline{A}_{12} \\ 0 & \overline{A}_{22} \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \overline{B}_1 \\ 0 \end{bmatrix}
$$

let w_2 be a left eigenvector of A_{22} then we can show that

$$
\begin{bmatrix} 0 & w_2^* \end{bmatrix} T^{-1} \cdot A = \lambda \begin{bmatrix} 0 & w_2^* \end{bmatrix} T^{-1}, \text{ and } T^{-1}B = 0
$$

(we have found a left eigenvector of A that is orthogonal to $B)$

PBH rank tests

let $A \in \mathbf{R}^{n \times n}$

Controllability: (A, B) is controllable if and only if

$$
\mathbf{rank}\begin{bmatrix} sI - A & B \end{bmatrix} = n \quad \text{for all } s \in \mathbb{C}
$$

Observability: (A, C) is observable if and only if

$$
\mathbf{rank}\begin{bmatrix} C \\ sI - A \end{bmatrix} = n \quad \text{for all } s \in \mathbb{C}
$$

the rank must be n even when s is an *eigenvalue* of A

Minimal realization

Proof of controllability test

if $s \neq \lambda(A)$ then $\mathbf{rank}(sI - A) = n$ and so is $\mathbf{rank} [sI]$ $I - A$ B

therefore, we can just prove only when $s=\lambda$, an eigenvalue of A

- $\bullet\,$ assume (A,B) controllable but $\operatorname{{\bf rank}} \, \big[sI$ $I - A$ B $] < n$
- there must exist $w \neq 0$ such that w^* $[\lambda I]$ $I - A$ B = 0
- hence, $w^*(\lambda I A) = 0$ and $w^*B = 0$
- $\bullet\,$ by the PBH eigenvector test, this implies w is a left eigenvector of A that is orthogonal to B
- $\bullet\,$ so (A,B) must be uncontrollable, which is a contraction

 PBH eigenvector test implies that if (A,B) is uncontrollable then

$$
\exists w \neq 0, \quad w^*A = \lambda w^*, \quad \text{and} \quad w^*B = 0
$$

hence, the dynamic of a special linear combination of $x(t)$, given by

$$
\frac{dw^*x(t)}{dt} = w^*(Ax(t) + Bu(t)) = \lambda w^*x(t)
$$

clearly does not depend on $u(t)$

similarly, if (A,C) is unobservable, $\emph{i.e.},$

$$
\exists v \neq 0
$$
, $Av = \lambda v$, and $Cv = 0$

then given $x(0) = v$, we have

$$
x(t) = e^{\lambda t}v, \quad y = Cx(t) = e^{\lambda t}Cv = 0
$$

the mode corresponds to λ is unobservable

Minimal realization

References

Chapter ² in

T. Kailath, Linear Systems, Prentice-Hall, ¹⁹⁸⁰

Chapter ⁵ in

D. Banjerdpongchai, Dynamical Control Systems: Analysis, Design andApplications, Chulalongkorn University Press, 2008