EE635 - Control System Theory Jitkomut Songsiri

5. Observer-based Controller Design

e state feedback

e pole-placement design
e regulation and tracking
e state observer

e feedback observer design

e LQR and LQG
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State feedback

consider an LTI system

continuous-time
*=Ax + Bu, y=Cx+ Du
discrete-time

r(t+1) = Ax(t) + Bu(t), y(t) = Cx(t)+ Dult)

Problem: design u such that the system behaves as desired, for example:

e stabilize the system (if A is unstable)
e make the output track a reference faster

e make the output small while use less energy of u
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e r: reference signal
e wu: control/actuating signal

e y: plant output/controlled signal

____________________________

types of control

e open-loop control: u depends only on r and is independent of y

e closed-loop control: u depends on both r and y

state feedback wu is a function of state variables, i.e., u = f(x,t) for
some function f
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Linear state feedback

we study a constant linear state feedback:
u(t) =r(t) — Kx(t)

r is a reference input and K is called a feedback gain

then the closed-loop system is & = (A — BK)x + Br

————————————————————————————————————————

____________________________________

=
A

eigenvalues of (A — BK') determine the behavior of the closed-loop system
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Controllability under a state feedback

Fact: (A — BK, B) is controllable if and only if (A, B) is controllability

Proof: suppose (A, B) is not controllable, i.e., Jw # 0 such that
wA= ", wB=0 <= w'(A—BK)=M", w"B=0
hence, (A — BK, B) is also not controllable

e the controllability property is invariant under any state feedback

e cigenvalues of (A — BK) can be arbitrarily assigned provided that
complex conjugate eigenvalues are assigned in pairs

e what about the observability property ?
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Coordinate transformation

consider a linear transformation 2z = T 12 where
t=(A— BK)x+ Br

the dynamics in the new coordinate is

where
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Pole-placement design

Fact: \(A — BK) cannot be freely reassigned if (A, B) is not controllable

if (A, B) is not controllable then we can put it in uncontrollable form

= A1 Ape 5 | B1
=% anl B0

consider a feedback gain K and partition it as

K = [Kl K2i|
then the closed-loop dynamic matrix is

Ay — B1Ky Ais— B1Ky

A— BK = 0 A

A(As2) cannot be moved, so uncontrollable modes remain uncontrollable
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Pole placement for single-input systems

Fact: \(A — BK) can be freely reassigned if (A, B) is controllable

e change coordinate to the controller canonical form

—a1 —Q2 -+ —Qp—1 —an 1
) 1 0 0 0 ) 0
A=1 0 1 0 0|, B=]0
0 0 1 0 0
e assume K = [kl ko --- kn} SO

det(s] — A+ BK) =s"+ (a1 + k1)s" "+ -+ (an + k»)

e choose the closed-loop poles arbitrarily by a suitable choice of K

e transform K back to the new original coordinate
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comments:

e drastic change in a desired characteristic polynomial requires a large K

o zeros of C(sI — A)~ !B are the same as that of C(sI — A+ BK) 'B

suppose (A, B,C') is in the controller form

b1t +bas" T+ -+ + by,
s +ais" .o da,_15s+a,
bis" L4 bos™ 2 4.+ by,
s+ sl 4o, 15+,

C(sI —A)™'B =

C(sI —A+BK) 'B =

e the zeros of the transfer function from r to y are not affected by K

e state feedback can result in unobservable modes due to cancellation in

CAdj(s] — A+ BK)B
det(sI — A+ BK)
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Regulator problem

consider the state feedback configuration with r =0

r + LU L y
@ » B @ — . - C ——»
A I § .
i A ] I
l Plant
K |-

Problem: find a state gain K so that y decays to zero at a desired rate

e apply u = —Kux, so the closed loop dynamic matrix is A — BK

e design K such that A\(A — BK) is stable and lies in a desired region
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Asymptotic tracking problem

design an overall system so that y — r ast — oo

>

Left: a constant reference Right: a non-constant reference

e if () = 0 then the tracking problem reduces to a regulator problem

e tracking a nonconstant reference is called a servomechanism problem
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for a tracking problem, we use
u=—K,r(t) — Kz(t)

K, is a feedforward gain and K is a feedback gain

® I~
Y
Q

——» K, —>@—— B »@ >

i —

Plant

thus we have
t=(A— BK)x+ BK,r
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the transfer function from r to y is

Y(s)
R(s)

= C(sI — A+ BK) 'BK,

assume (A, B) is controllable and CA™'B # 0

e choose K such that (A — BK) is stable

e choose K, to make the DC gain from r to y:
—~C(A - BK) 'BK,
equal 1

then the closed-loop system can asymptotically track any step reference
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Robust tracking and disturbance rejection

a constant disturbance w with unknown maginitude in the model
t=Ax + Bu+ Bw, y=Cx
Objective: under a presence of

e disturbance w

e plant parameter variations (system uncertainties)

design u such that y asymptotically tracks any step reference
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Idea: add an integrator to the system
Integrator: z =r —y
the state-space equation of the augmented system is

M IR R A

- o of

Fact: if (A, B) is controllable and C(sI — A)~!'B has no zero at the
origin (CA~1B # 0) then

(L S e
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Control input: v = —-Kx — fz

w
ro 7 < v_u+ﬂ L
@ = f B @ — . = (C
_A s R ¥ s
LA<—
K |-

-85 B[+ [ [ ot o

hence, under the conditions (A, B) controllable and CA™1B # 0

the eigenvalues of the CL system can be freely assigned by [K f}
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G.(s)=C(sI — A+ BK)"'B
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closed-loop system (under state feedback only)

transfer function: G.(s) = C(sI — A+ BK) 'B = Ne(s)

Dc(s)
note that
I 0| |sI —A+ BK Bf
—C(sI—A+BK)™*' 1 C s
_|sI - A+ BK Bf
N 0 s—C(sI — A+ BK) 'Bf
hence,
det [SI B AC+ BE fif] _ det(sT— A+ BK)-(s—C(sI— A+ BK) ' B)

closed-loop augmented system (with integrator)

characteristic equation: X.(s) = sD.(s) — fN.(s)
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step disturbance rejection

by setting r = 0, the transfer function from w to y is

Y (s) _ sN.(s)
W(s)  Xe(s)

hence, if W(s) =1/s then Y (s) = ];28

if X.(s) contains only stable poles (augmented CL system is stable)

the response of y due to w decays to zero regardless of magnitude of w
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robust tracking

by setting w = 0, the transfer function from r to y is

V() —fNs) _ —fNu(s)

R(s)  sD.(s) — fN.(s)  Xu(s)

if X.(s) has stable poles, the transfer function from 7 to y has DC gain=1

the response y tracks the reference even for the presence of parameter
variations
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Optimal state feedback

Idea:

e a drastic change in pole locations leads to a large feedback gain K
e a desired close-loop behavior is satisfied but use a large amount of input

e a trade-off between closed-loop performance and input energy should be
considered in the control objective
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Linear-quadratic optimal control

consider a controllable system

t = Ax + Bu, x(0) =z

LQR problem: find « that minimizes

/O " 20 Qu(t) + u(t) Rult) dt

(Q =~ 0 determine the cost of state performance
R > 0 determine the cost of input energy
u must stabilize the system, i.e., we must have z(t) — 0 as t — oo

when R = 0, input u consists of impulsive inputs that instantly drive
state to zero, so that optimal cost is zero

if the system is stable and () = 0 then optimal u is zero
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Solution to LQR

introduce the Algebraic Riccati equation (ARE)
A*P+ PA—PBR 'B*P+Q =0
e ARE is quadratic in P

e we are interested in a positive definite solution P

the solution of LQR problem is the optimal input u of the form:

u=—Kzx
where the optimal feedback gain is
K =R'B*P
the optimal cost function is xjPxg
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Discrete-time LQR problem

consider a controllable discrete-time system
r(t+ 1) = Ax(t) + Bu(t), xz(0) = xg

LQR problem: find « that minimizes

> x(k)*Qu(k) + u(k)* Ru(k)

k=0

where () = 0 and R > 0
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Solution to discrete-time LQR
introduce the Discrete Algebraic Riccati equation (DARE)
A*PA— P~ A*PB(R+ B*PB) 'B*PA+Q =0
e DARE is nonlinear in P

e we are interested in a positive solution P

the solution of LQR problem is the optimal input u of the form:

u=—Kzx
where the optimal feedback gain is
K =R'B*P
the optimal cost function is xjPxg
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State observer

ldea:

e a state feedback requires the availability of all state variables

e if state variables cannot be acquired, we must design a state estimator

consider a state equation
t=Ar+ Bu, y=Cx
simple scheme: imitate the original system
7 = A% + Bu
o if (A, (') is observable, then z(0) can be estimated

e initialize & by using x(0) then x(t) = 2(¢t) for all t > T (for some T)
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open-loop observer

u ; X Y
—  » B »@ - » O —>
A |-
: L2
—i—» B »@ > é E >
E A |- E

drawbacks:

e the initial state must be estimated each time we use the observer

e if A is unstable then the error between = and = grows with time

open-loop observer is not satisfactory in general
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closed-loop state observer

U + x
Bl e ! c -
+L s
A |=
| +
: L |« ?4
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o
++ +
0 |~

>
Yy ®

add a correction term and design a proper gain L
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observer gain: how to choose L ?

define the error between the actual state and the estimated state

then the dynamic of e is

é=&—12=Ax+ Bu—(A— LC)i — Bu— L(Cx)
= (A-LC)xr— (A—-LCYz = (A—-LC)e

o if (A— LC) is stable then e — 0, or & approach x eventually

e even if there is an initial large error e(0), e(?) still goes zero as t — oo if
(A — LC) is stable

e no need to compute the initial estimate z(0) perfectly
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Observer design

Fact: eigenvalues of A — LC can be freely assigned iff (A, C') is observable

e change coordinate to the observer canonical form

-a; 1 0 --- 0 0
— a9 0 1 0 O
A= = E |, C=1 0 0 ... 0
—ap—1 0 O 1 0
| —a, 0 O 0 0
® assume E = [11 lg T ln}T, SO

det(sI — A+ LC)=s"4 (a1 +11)s" '+ + (an + 1))

e choose the closed-loop poles arbitrarily by a suitable choice of L

e transform L back to the new original coordinate
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Remarks:

observer design procedure can be obtained from the duality theorem:
(A, C) is observable if and only if (A*, C*) is controllable

eigenvalues of (A* — C*K) can be freely assigned by K if (A*, C*)
controllable

eigenvalues of (A* — C*K) are the same as that of (A — K*C)
we can pick L = K*

designing an observer gain is equivalent to designing a state feedback
gain for the dual system
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Feedback from estimated states

when x is not available, we apply a state feedback from &
u=r— Kz

this is called an observer-based controller

we have to answer the following questions

e is the closed-loop system stable ?
e using u = — K1 gives the same set of eigenvalues as using u = —Kzx ?

e what is the effect of the observer on the transfer function from r to y ?
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the state equation of the closed loop system

i = Ar — BK% + Br
T =A%+ Bu+ Lly—Ci)=(A—LC)2+ B(r — K&)+ LCx
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Separation property

the state equation in a vector form is

#| T |Lc A-rLc-BK||z| " |B|" YT 2
change of coordinate: definee =z — 2
x| |1 0| |« A 1 |x
MR I
hence, in the new coordinate the state equation is
T A— BK BK x B x
R e W R ([ R
e closed-loop eigenvalues are {eig(A — BK)} U {eig(A — LC)}

e designs of state feedback and observer can be done independently
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Transfer function of the system with observer

the state equation

el — | o0 A—LC| |e| T |0l YT e
is of the uncontrollable form
hence, the transfer function equals that of the reduced equation
t=(A—BK)x+ Br, y=Cx
or the transfer function from r to y is
G(s)=C(sI — A+ BK) 'B

same as the transfer function of the orginal state feedback system without
using an observer
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what are good choices of K and L ? no simple answer

some ideas:

e LQG control: K and L are chosen to optimize a quadratic objectives
and we need to solve two decoupled Riccati equations

e H., control: K and L are chosen to optimize an L-induced norm of the
closed-loop system. need to solve two coupled Riccati equations

e [ control: K and L are chosen to optimize a peak-amplitude of
regulated output. need to solve optimization problem (LP)

e multi-objectives, e.g., mixed LQG/H
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Summary
e cigenvalues of (A — BK) can be freely reassigned iff (A, B) is
controllable

e optimal LQR control input is a constant state feedback computed via
ARE

e feedback observer design is equivalent to state feedback design on the
dual system

e observer-based controller combines observer and state-feedback designs
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