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5. Observer-based Controller Design

• state feedback

• pole-placement design

• regulation and tracking

• state observer

• feedback observer design

• LQR and LQG
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State feedback

consider an LTI system

continuous-time

ẋ = Ax+ Bu, y = Cx+Du

discrete-time

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

Problem: design u such that the system behaves as desired, for example:

• stabilize the system (if A is unstable)

• make the output track a reference faster

• make the output small while use less energy of u
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• r: reference signal

• u: control/actuating signal

• y: plant output/controlled signal

Plant
r yu

types of control

• open-loop control: u depends only on r and is independent of y

• closed-loop control: u depends on both r and y

state feedback u is a function of state variables, i.e., u = f(x, t) for
some function f
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Linear state feedback

we study a constant linear state feedback:

u(t) = r(t)−Kx(t)

r is a reference input and K is called a feedback gain

then the closed-loop system is ẋ = (A− BK)x+Br
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eigenvalues of (A−BK) determine the behavior of the closed-loop system
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Controllability under a state feedback

Fact: (A−BK,B) is controllable if and only if (A,B) is controllability

Proof: suppose (A,B) is not controllable, i.e., ∃w 6= 0 such that

w∗A = λw∗, w∗B = 0 ⇐⇒ w∗(A−BK) = λw∗, w∗B = 0

hence, (A−BK,B) is also not controllable

• the controllability property is invariant under any state feedback

• eigenvalues of (A− BK) can be arbitrarily assigned provided that
complex conjugate eigenvalues are assigned in pairs

• what about the observability property ?
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Coordinate transformation

consider a linear transformation z = T−1x where

ẋ = (A− BK)x+Br

the dynamics in the new coordinate is

ż = (Ā− B̄K̄)z + B̄r

where
Ā = T−1AT, B̄ = T−1B, K̄ = KT
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Pole-placement design

Fact: λ(A−BK) cannot be freely reassigned if (A,B) is not controllable

if (A,B) is not controllable then we can put it in uncontrollable form

Ā =

[

A11 A12

0 A22

]

, B̄ =

[

B1

0

]

consider a feedback gain K and partition it as

K̄ =
[

K1 K2

]

then the closed-loop dynamic matrix is

Ā− B̄K̄ =

[

A11 −B1K1 A12 −B1K2

0 A22

]

λ(A22) cannot be moved, so uncontrollable modes remain uncontrollable
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Pole placement for single-input systems

Fact: λ(A−BK) can be freely reassigned if (A,B) is controllable

• change coordinate to the controller canonical form

Ā =













−a1 −a2 · · · −an−1 −an
1 0 · · · 0 0
0 1 0 0
... . . . ...
0 0 1 0













, B̄ =













1
0
0
...
0













• assume K̄ =
[

k1 k2 · · · kn
]

, so

det(sI − Ā+ B̄K̄) = sn + (a1 + k1)s
n−1 + · · ·+ (an + kn)

• choose the closed-loop poles arbitrarily by a suitable choice of K̄

• transform K̄ back to the new original coordinate
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comments:

• drastic change in a desired characteristic polynomial requires a large K

• zeros of C(sI −A)−1B are the same as that of C(sI −A+BK)−1B

suppose (A,B,C) is in the controller form

C(sI −A)−1B =
b1s

n−1 + b2s
n−2 + · · ·+ bn

sn + a1sn−1 + · · ·+ an−1s+ an

C(sI −A+ BK)−1B =
b1s

n−1 + b2s
n−2 + · · ·+ bn

sn + α1sn−1 + · · ·+ αn−1s+ αn

• the zeros of the transfer function from r to y are not affected by K

• state feedback can result in unobservable modes due to cancellation in

CAdj(sI −A+BK)B

det(sI −A+BK)
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Regulator problem

consider the state feedback configuration with r = 0
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Problem: find a state gain K so that y decays to zero at a desired rate

• apply u = −Kx, so the closed loop dynamic matrix is A− BK

• design K such that λ(A−BK) is stable and lies in a desired region
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Asymptotic tracking problem

design an overall system so that y → r as t → ∞

t

r

y

t

Left: a constant reference Right: a non-constant reference

• if r(t) = 0 then the tracking problem reduces to a regulator problem

• tracking a nonconstant reference is called a servomechanism problem
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for a tracking problem, we use

u = −Krr(t)−Kx(t)

Kr is a feedforward gain and K is a feedback gain
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thus we have
ẋ = (A− BK)x+BKrr
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the transfer function from r to y is

Y (s)

R(s)
= C(sI − A+BK)−1BKr

assume (A,B) is controllable and CA−1B 6= 0

• choose K such that (A−BK) is stable

• choose Kr to make the DC gain from r to y:

−C(A− BK)−1BKr

equal 1

then the closed-loop system can asymptotically track any step reference
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Robust tracking and disturbance rejection

a constant disturbance w with unknown maginitude in the model

ẋ = Ax+Bu+Bw, y = Cx

Objective: under a presence of

• disturbance w

• plant parameter variations (system uncertainties)

design u such that y asymptotically tracks any step reference
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Idea: add an integrator to the system

Integrator: ż = r − y

the state-space equation of the augmented system is

[

ẋ
ż

]

=

[

A 0
−C 0

] [

x
z

]

+

[

0
1

]

r +

[

B
0

]

u+

[

B
0

]

w

y =
[

C 0
]

[

x
z

]

Fact: if (A,B) is controllable and C(sI −A)−1B has no zero at the
origin (CA−1B 6= 0) then

([

A 0
−C 0

]

,

[

B
0

])

is controllable
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Control input: u = −Kx− fz
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[

ẋ
ż

]

=

[

A−BK −Bf
−C 0

] [

x
z

]

+

[

0
1

]

r +

[

B
0

]

w, y =
[

C 0
]

[

x
z

]

hence, under the conditions (A,B) controllable and CA−1B 6= 0

the eigenvalues of the CL system can be freely assigned by
[

K f
]
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ũ = −v −Kx+ w
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Gc(s) = C(sI −A+ BK)−1B
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closed-loop system (under state feedback only)

transfer function: Gc(s) = C(sI −A+BK)−1B = Nc(s)
Dc(s)

note that

[

I 0
−C(sI −A+BK)−1 1

] [

sI −A+BK Bf
C s

]

=

[

sI −A+BK Bf
0 s− C(sI −A+BK)−1Bf

]

hence,

det

[

sI −A+ BK Bf
C s

]

= det(sI−A+BK)·(s−C(sI−A+BK)−1Bf)

closed-loop augmented system (with integrator)

characteristic equation: Xc(s) = sDc(s)− fNc(s)
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step disturbance rejection

_
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by setting r = 0, the transfer function from w to y is

Y (s)

W (s)
=

sNc(s)

Xc(s)

hence, if W (s) = 1/s then Y (s) = Nc(s)
Xc(s)

if Xc(s) contains only stable poles (augmented CL system is stable)

the response of y due to w decays to zero regardless of magnitude of w
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robust tracking

_
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_
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Gc(s)

by setting w = 0, the transfer function from r to y is

Y (s)

R(s)
=

−fNc(s)

sDc(s)− fNc(s)
=

−fNc(s)

Xc(s)

if Xc(s) has stable poles, the transfer function from r to y has DC gain=1

the response y tracks the reference even for the presence of parameter
variations
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Optimal state feedback

Idea:

• a drastic change in pole locations leads to a large feedback gain K

• a desired close-loop behavior is satisfied but use a large amount of input

• a trade-off between closed-loop performance and input energy should be
considered in the control objective
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Linear-quadratic optimal control

consider a controllable system

ẋ = Ax+Bu, x(0) = x0

LQR problem: find u that minimizes

∫

∞

0

x(t)∗Qx(t) + u(t)∗Ru(t) dt

• Q � 0 determine the cost of state performance

• R ≻ 0 determine the cost of input energy

• u must stabilize the system, i.e., we must have x(t) → 0 as t → ∞

• when R = 0, input u consists of impulsive inputs that instantly drive
state to zero, so that optimal cost is zero

• if the system is stable and Q = 0 then optimal u is zero
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Solution to LQR

introduce the Algebraic Riccati equation (ARE)

A∗P + PA− PBR−1B∗P +Q = 0

• ARE is quadratic in P

• we are interested in a positive definite solution P

the solution of LQR problem is the optimal input u of the form:

u = −Kx

where the optimal feedback gain is

K = R−1B∗P

the optimal cost function is x∗

0Px0
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Discrete-time LQR problem

consider a controllable discrete-time system

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0

LQR problem: find u that minimizes

∞
∑

k=0

x(k)∗Qx(k) + u(k)∗Ru(k)

where Q � 0 and R ≻ 0
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Solution to discrete-time LQR

introduce the Discrete Algebraic Riccati equation (DARE)

A∗PA− P − A∗PB(R+ B∗PB)−1B∗PA+Q = 0

• DARE is nonlinear in P

• we are interested in a positive solution P

the solution of LQR problem is the optimal input u of the form:

u = −Kx

where the optimal feedback gain is

K = R−1B∗P

the optimal cost function is x∗

0Px0
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State observer

Idea:

• a state feedback requires the availability of all state variables

• if state variables cannot be acquired, we must design a state estimator

consider a state equation

ẋ = Ax+Bu, y = Cx

simple scheme: imitate the original system

˙̂x = Ax̂+Bu

• if (A,C) is observable, then x(0) can be estimated

• initialize x̂ by using x(0) then x(t) = x̂(t) for all t ≥ T (for some T )
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open-loop observer

u
B

x
C

y

A

I
s

A

B
I
s

x̂

drawbacks:

• the initial state must be estimated each time we use the observer

• if A is unstable then the error between x and x̂ grows with time

open-loop observer is not satisfactory in general
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closed-loop state observer
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we modify the state observer as

˙̂x = Ax̂+Bu+ L(y − Cx̂)

add a correction term and design a proper gain L
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observer gain: how to choose L ?

define the error between the actual state and the estimated state

e = x− x̂

then the dynamic of e is

ė = ẋ− ˙̂x = Ax+Bu− (A− LC)x̂−Bu− L(Cx)

= (A− LC)x− (A− LC)x̂ = (A− LC)e

• if (A− LC) is stable then e → 0, or x̂ approach x eventually

• even if there is an initial large error e(0), e(t) still goes zero as t → ∞ if
(A− LC) is stable

• no need to compute the initial estimate x̂(0) perfectly

Observer-based Controller Design 5-29



Observer design

Fact: eigenvalues of A−LC can be freely assigned iff (A,C) is observable

• change coordinate to the observer canonical form

Ā =













−a1 1 0 · · · 0 0
−a2 0 1 0 0
... ... . . . ...

−an−1 0 0 1 0
−an 0 0 · · · 0 0













, C̄ =
[

1 0 0 . . . 0
]

• assume L̄ =
[

l1 l2 · · · ln
]T

, so

det(sI − Ā+ L̄C̄) = sn + (a1 + l1)s
n−1 + · · ·+ (an + ln)

• choose the closed-loop poles arbitrarily by a suitable choice of L̄

• transform L̄ back to the new original coordinate
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Remarks:

• observer design procedure can be obtained from the duality theorem:

(A,C) is observable if and only if (A∗, C∗) is controllable

• eigenvalues of (A∗ − C∗K) can be freely assigned by K if (A∗, C∗)
controllable

• eigenvalues of (A∗ − C∗K) are the same as that of (A−K∗C)

• we can pick L = K∗

• designing an observer gain is equivalent to designing a state feedback
gain for the dual system
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Feedback from estimated states

when x is not available, we apply a state feedback from x̂

u = r −Kx̂

this is called an observer-based controller

we have to answer the following questions

• is the closed-loop system stable ?

• using u = −Kx̂ gives the same set of eigenvalues as using u = −Kx ?

• what is the effect of the observer on the transfer function from r to y ?

Observer-based Controller Design 5-32



the state equation of the closed loop system

ẋ = Ax−BKx̂+Br

˙̂x = Ax̂+Bu+ L(y − Cx̂) = (A− LC)x̂+B(r −Kx̂) + LCx

+
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Separation property

the state equation in a vector form is

[

ẋ
˙̂x

]

=

[

A −BK
LC A− LC −BK

] [

x
x̂

]

+

[

B
B

]

r, y =
[

C 0
]

[

x
x̂

]

change of coordinate: define e = x− x̂

[

x
e

]

=

[

I 0
I −I

] [

x
x̂

]

, T−1

[

x
x̂

]

hence, in the new coordinate the state equation is

[

ẋ
ė

]

=

[

A−BK BK
0 A− LC

] [

x
e

]

+

[

B
0

]

r, y =
[

C 0
]

[

x
e

]

• closed-loop eigenvalues are {eig(A−BK)} ∪ {eig(A− LC)}

• designs of state feedback and observer can be done independently
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Transfer function of the system with observer

the state equation

[

ẋ
ė

]

=

[

A−BK BK
0 A− LC

] [

x
e

]

+

[

B
0

]

r, y =
[

C 0
]

[

x
e

]

is of the uncontrollable form

hence, the transfer function equals that of the reduced equation

ẋ = (A−BK)x+ Br, y = Cx

or the transfer function from r to y is

G(s) = C(sI −A+BK)−1B

same as the transfer function of the orginal state feedback system without

using an observer
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what are good choices of K and L ? no simple answer

some ideas:

• LQG control: K and L are chosen to optimize a quadratic objectives
and we need to solve two decoupled Riccati equations

• H∞ control: K and L are chosen to optimize an L-induced norm of the
closed-loop system. need to solve two coupled Riccati equations

• L1 control: K and L are chosen to optimize a peak-amplitude of
regulated output. need to solve optimization problem (LP)

• multi-objectives, e.g., mixed LQG/H∞

Observer-based Controller Design 5-36



Summary

• eigenvalues of (A− BK) can be freely reassigned iff (A,B) is
controllable

• optimal LQR control input is a constant state feedback computed via
ARE

• feedback observer design is equivalent to state feedback design on the
dual system

• observer-based controller combines observer and state-feedback designs
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