# 5. Observer-based Controller Design

- state feedback
- pole-placement design
- regulation and tracking
- state observer
- feedback observer design
- LQR and LQG

## State feedback

consider an LTI system

continuous-time

$$\dot{x} = Ax + Bu, \quad y = Cx + Du$$

discrete-time

$$x(t+1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

**Problem:** design *u* such that the system behaves as desired, for example:

- stabilize the system (if A is unstable)
- make the output track a reference faster
- make the output small while use less energy of  $\boldsymbol{u}$

- *r*: reference signal
- *u*: control/actuating signal
- y: plant output/controlled signal



#### types of control

- open-loop control: u depends only on r and is independent of y
- $\bullet$  closed-loop control: u depends on both r and y

state feedback u is a function of state variables,  $\textit{i.e.,}\ u = f(x,t)$  for some function f

### Linear state feedback

we study a **constant linear** state feedback:

$$u(t) = r(t) - Kx(t)$$

 $\boldsymbol{r}$  is a reference input and  $\boldsymbol{K}$  is called a feedback gain

then the closed-loop system is  $\dot{x} = (A - BK)x + Br$ 



eigenvalues of (A - BK) determine the behavior of the closed-loop system

### **Controllability under a state feedback**

**Fact:** (A - BK, B) is controllable if and only if (A, B) is controllability

**Proof:** suppose (A, B) is not controllable, *i.e.*,  $\exists w \neq 0$  such that

$$w^*A = \lambda w^*, \ w^*B = 0 \quad \Longleftrightarrow \quad w^*(A - BK) = \lambda w^*, \ w^*B = 0$$

hence, (A - BK, B) is also not controllable

- the controllability property is *invariant* under any state feedback
- eigenvalues of (A BK) can be arbitrarily assigned provided that complex conjugate eigenvalues are assigned in pairs
- what about the observability property ?

### **Coordinate transformation**

consider a linear transformation  $z = T^{-1}x$  where

$$\dot{x} = (A - BK)x + Br$$

the dynamics in the new coordinate is

$$\dot{z} = (\bar{A} - \bar{B}\bar{K})z + \bar{B}r$$

where

$$\bar{A} = T^{-1}AT, \quad \bar{B} = T^{-1}B, \quad \bar{K} = KT$$

### **Pole-placement design**

**Fact:**  $\lambda(A - BK)$  cannot be freely reassigned if (A, B) is **not** controllable if (A, B) is not controllable then we can put it in uncontrollable form

$$\bar{A} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \quad \bar{B} = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$$

consider a feedback gain  $\overline{K}$  and partition it as

$$\bar{K} = \begin{bmatrix} K_1 & K_2 \end{bmatrix}$$

then the closed-loop dynamic matrix is

$$\bar{A} - \bar{B}\bar{K} = \begin{bmatrix} A_{11} - B_1K_1 & A_{12} - B_1K_2 \\ 0 & A_{22} \end{bmatrix}$$

 $\lambda(A_{22})$  cannot be moved, so uncontrollable modes remain uncontrollable

### **Pole placement for single-input systems**

**Fact:**  $\lambda(A - BK)$  can be freely reassigned if (A, B) is controllable

• change coordinate to the controller canonical form

$$\bar{A} = \begin{bmatrix} -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & & 1 & 0 \end{bmatrix}, \quad \bar{B} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• assume  $\bar{K} = \begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix}$ , so

 $\det(sI - \bar{A} + \bar{B}\bar{K}) = s^n + (a_1 + k_1)s^{n-1} + \dots + (a_n + k_n)$ 

- choose the closed-loop poles arbitrarily by a suitable choice of  $\bar{K}$
- transform  $\bar{K}$  back to the new original coordinate

#### comments:

- drastic change in a desired characteristic polynomial requires a large K
- zeros of C(sI − A)<sup>-1</sup>B are the same as that of C(sI − A + BK)<sup>-1</sup>B suppose (A, B, C) is in the controller form

$$C(sI - A)^{-1}B = \frac{b_1 s^{n-1} + b_2 s^{n-2} + \dots + b_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$
$$C(sI - A + BK)^{-1}B = \frac{b_1 s^{n-1} + b_2 s^{n-2} + \dots + b_n}{s^n + \alpha_1 s^{n-1} + \dots + \alpha_{n-1} s + \alpha_n}$$

- the zeros of the transfer function from r to y are not affected by K
- state feedback can result in unobservable modes due to cancellation in

$$\frac{C\operatorname{\mathsf{Adj}}(sI - A + BK)B}{\det(sI - A + BK)}$$

# **Regulator problem**



consider the state feedback configuration with r = 0

**Problem:** find a state gain K so that y decays to zero at a desired rate

• apply u = -Kx, so the closed loop dynamic matrix is A - BK

• design K such that  $\lambda(A - BK)$  is stable and lies in a desired region

# Asymptotic tracking problem

design an overall system so that  $y \to r$  as  $t \to \infty$ 



*Left:* a constant reference *Right:* a non-constant reference

- if r(t) = 0 then the tracking problem reduces to a regulator problem
- tracking a nonconstant reference is called a **servomechanism** problem

for a tracking problem, we use

$$u = -K_r r(t) - K x(t)$$

 $K_r$  is a **feedforward gain** and K is a **feedback gain** 



thus we have

$$\dot{x} = (A - BK)x + BK_r r$$

the transfer function from r to y is

$$\frac{Y(s)}{R(s)} = C(sI - A + BK)^{-1}BK_r$$

assume (A, B) is controllable and  $CA^{-1}B \neq 0$ 

- choose K such that (A BK) is stable
- choose  $K_r$  to make the DC gain from r to y:

$$-C(A - BK)^{-1}BK_r$$

equal 1

then the closed-loop system can asymptotically track any **step** reference

# Robust tracking and disturbance rejection

a *constant* disturbance w with unknown maginitude in the model

$$\dot{x} = Ax + Bu + Bw, \quad y = Cx$$

**Objective:** under a presence of

- disturbance w
- plant parameter variations (system uncertainties)

design u such that y asymptotically tracks any step reference

Idea: add an integrator to the system

**Integrator:**  $\dot{z} = r - y$ 

the state-space equation of the augmented system is

$$\begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r + \begin{bmatrix} B \\ 0 \end{bmatrix} u + \begin{bmatrix} B \\ 0 \end{bmatrix} w$$

$$y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix}$$

**Fact:** if (A, B) is controllable and  $C(sI - A)^{-1}B$  has no zero at the origin  $(CA^{-1}B \neq 0)$  then

$$\begin{pmatrix} \begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix}, \begin{bmatrix} B \\ 0 \end{bmatrix} \end{pmatrix}$$
 is controllable

#### **Control input:** u = -Kx - fz



hence, under the conditions (A, B) controllable and  $CA^{-1}B \neq 0$ 

the eigenvalues of the CL system can be freely assigned by  $\begin{bmatrix} K & f \end{bmatrix}$ 

![](_page_16_Figure_0.jpeg)

$$G_c(s) = C(sI - A + BK)^{-1}B$$

#### closed-loop system (under state feedback only)

transfer function:  $G_c(s) = C(sI - A + BK)^{-1}B = \frac{N_c(s)}{D_c(s)}$  note that

$$\begin{bmatrix} I & 0 \\ -C(sI - A + BK)^{-1} & 1 \end{bmatrix} \begin{bmatrix} sI - A + BK & Bf \\ C & s \end{bmatrix}$$
$$= \begin{bmatrix} sI - A + BK & Bf \\ 0 & s - C(sI - A + BK)^{-1}Bf \end{bmatrix}$$

hence,

$$\det \begin{bmatrix} sI - A + BK & Bf \\ C & s \end{bmatrix} = \det(sI - A + BK) \cdot (s - C(sI - A + BK)^{-1}Bf)$$

#### closed-loop augmented system (with integrator)

characteristic equation:  $\mathcal{X}_c(s) = sD_c(s) - fN_c(s)$ 

step disturbance rejection

![](_page_18_Figure_1.jpeg)

by setting r = 0, the transfer function from w to y is

$$\frac{Y(s)}{W(s)} = \frac{sN_c(s)}{\mathcal{X}_c(s)}$$

hence, if W(s) = 1/s then  $Y(s) = \frac{N_c(s)}{\mathcal{X}_c(s)}$ 

if  $\mathcal{X}_c(s)$  contains only stable poles (augmented CL system is stable)

the response of y due to w decays to zero regardless of magnitude of w

#### robust tracking

![](_page_19_Figure_1.jpeg)

by setting w = 0, the transfer function from r to y is

$$\frac{Y(s)}{R(s)} = \frac{-fN_c(s)}{sD_c(s) - fN_c(s)} = \frac{-fN_c(s)}{\mathcal{X}_c(s)}$$

if  $\mathcal{X}_c(s)$  has stable poles, the transfer function from r to y has DC gain=1

the response y tracks the reference even for the presence of parameter variations

# **Optimal state feedback**

#### Idea:

- $\bullet\,$  a drastic change in pole locations leads to a large feedback gain K
- a desired close-loop behavior is satisfied but use a large amount of input
- a trade-off between closed-loop performance and input energy should be considered in the control objective

### Linear-quadratic optimal control

consider a *controllable* system

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$

LQR problem: find *u* that minimizes

$$\int_0^\infty x(t)^* Q x(t) + u(t)^* R u(t) dt$$

- $Q \succeq 0$  determine the cost of state performance
- $R \succ 0$  determine the cost of input energy
- u must stabilize the system, *i.e.*, we must have  $x(t) \rightarrow 0$  as  $t \rightarrow \infty$
- when R = 0, input u consists of impulsive inputs that *instantly* drive state to zero, so that optimal cost is zero
- if the system is stable and Q = 0 then optimal u is zero

# Solution to LQR

introduce the Algebraic Riccati equation (ARE)

$$A^*P + PA - PBR^{-1}B^*P + Q = 0$$

- ARE is quadratic in  ${\cal P}$
- we are interested in a *positive definite* solution P

the solution of LQR problem is the optimal input u of the form:

$$u = -Kx$$

where the optimal feedback gain is

$$K = R^{-1}B^*P$$

the optimal cost function is  $x_0^* P x_0$ 

# **Discrete-time LQR problem**

consider a *controllable* discrete-time system

$$x(t+1) = Ax(t) + Bu(t), \quad x(0) = x_0$$

**LQR problem:** find u that minimizes

$$\sum_{k=0}^{\infty} x(k)^* Q x(k) + u(k)^* R u(k)$$

where  $Q \succeq 0$  and  $R \succ 0$ 

# Solution to discrete-time LQR

introduce the Discrete Algebraic Riccati equation (DARE)

 $A^*PA - P - A^*PB(R + B^*PB)^{-1}B^*PA + Q = 0$ 

- DARE is nonlinear in P
- we are interested in a positive solution P

the solution of LQR problem is the optimal input u of the form:

$$u = -Kx$$

where the optimal feedback gain is

$$K = R^{-1}B^*P$$

the optimal cost function is  $x_0^* P x_0$ 

# State observer

#### Idea:

- a state feedback requires the availability of *all* state variables
- if state variables cannot be acquired, we must design a *state estimator*

consider a state equation

$$\dot{x} = Ax + Bu, \quad y = Cx$$

simple scheme: imitate the original system

$$\dot{\hat{x}} = A\hat{x} + Bu$$

- if (A, C) is observable, then x(0) can be estimated
- initialize  $\hat{x}$  by using x(0) then  $x(t) = \hat{x}(t)$  for all  $t \ge T$  (for some T)

#### open-loop observer

![](_page_26_Figure_1.jpeg)

#### drawbacks:

- the initial state must be estimated each time we use the observer
- if A is unstable then the error between x and  $\hat{x}$  grows with time

open-loop observer is not satisfactory in general

#### closed-loop state observer

![](_page_27_Figure_1.jpeg)

we modify the state observer as

$$\hat{x} = A\hat{x} + Bu + L(y - C\hat{x})$$

add a correction term and design a proper gain  ${\cal L}$ 

**observer gain:** how to choose *L* ?

define the error between the actual state and the estimated state

$$e = x - \hat{x}$$

then the dynamic of e is

$$\dot{e} = \dot{x} - \hat{x} = Ax + Bu - (A - LC)\hat{x} - Bu - L(Cx)$$
$$= (A - LC)x - (A - LC)\hat{x} = (A - LC)e$$

- if (A LC) is stable then  $e \to 0$ , or  $\hat{x}$  approach x eventually
- even if there is an initial large error  $e(0), \ e(t)$  still goes zero as  $t \to \infty$  if (A-LC) is stable
- no need to compute the initial estimate  $\hat{x}(0)$  perfectly

### **Observer design**

**Fact:** eigenvalues of A - LC can be freely assigned iff (A, C) is observable

• change coordinate to the **observer canonical form** 

$$\bar{A} = \begin{bmatrix} -a_1 & 1 & 0 & \cdots & 0 & 0 \\ -a_2 & 0 & 1 & & 0 & 0 \\ \vdots & \vdots & \ddots & & \vdots \\ -a_{n-1} & 0 & 0 & & 1 & 0 \\ -a_n & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}, \quad \bar{C} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \end{bmatrix}$$

• assume  $\overline{L} = \begin{bmatrix} l_1 & l_2 & \cdots & l_n \end{bmatrix}^T$ , so

 $\det(sI - \bar{A} + \bar{L}\bar{C}) = s^n + (a_1 + l_1)s^{n-1} + \dots + (a_n + l_n)$ 

- choose the closed-loop poles arbitrarily by a suitable choice of  $\bar{L}$
- transform  $\overline{L}$  back to the new original coordinate

### **Remarks:**

• observer design procedure can be obtained from the duality theorem:

(A, C) is observable if and only if  $(A^*, C^*)$  is controllable

- eigenvalues of  $(A^{\ast}-C^{\ast}K)$  can be freely assigned by K if  $(A^{\ast},C^{\ast})$  controllable
- eigenvalues of  $(A^* C^*K)$  are the same as that of  $(A K^*C)$
- we can pick  $L = K^*$
- designing an observer gain is equivalent to designing a state feedback gain for the dual system

### Feedback from estimated states

when x is not available, we apply a state feedback from  $\hat{x}$ 

$$u = r - K\hat{x}$$

this is called an **observer-based controller** 

we have to answer the following questions

- is the closed-loop system stable ?
- using  $u = -K\hat{x}$  gives the same set of eigenvalues as using u = -Kx?
- what is the effect of the observer on the transfer function from r to y ?

the state equation of the closed loop system

$$\dot{x} = Ax - BK\hat{x} + Br$$
$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x}) = (A - LC)\hat{x} + B(r - K\hat{x}) + LCx$$

![](_page_32_Figure_2.jpeg)

### Separation property

the state equation in a vector form is

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & -BK \\ LC & A - LC - BK \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + \begin{bmatrix} B \\ B \end{bmatrix} r, \quad y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$$

change of coordinate: define  $e = x - \hat{x}$ 

$$\begin{bmatrix} x \\ e \end{bmatrix} = \begin{bmatrix} I & 0 \\ I & -I \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} \triangleq T^{-1} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$$

hence, in the new coordinate the state equation is

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} r, \quad y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix}$$

- closed-loop eigenvalues are  $\{ eig(A BK) \} \cup \{ eig(A LC) \}$
- designs of state feedback and observer can be done *independently*

### Transfer function of the system with observer

the state equation

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} r, \quad y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix}$$

### is of the $\ensuremath{\mathsf{uncontrollable}}$ form

hence, the transfer function equals that of the reduced equation

$$\dot{x} = (A - BK)x + Br, \quad y = Cx$$

or the transfer function from r to y is

$$G(s) = C(sI - A + BK)^{-1}B$$

same as the transfer function of the orginal state feedback system *without* using an observer

what are good choices of K and  $L\ ?$  no simple answer

some ideas:

- LQG control: K and L are chosen to optimize a quadratic objectives and we need to solve two decoupled Riccati equations
- $\mathcal{H}_{\infty}$  control: K and L are chosen to optimize an  $\mathcal{L}$ -induced norm of the closed-loop system. need to solve two coupled Riccati equations
- $\mathcal{L}_1$  control: K and L are chosen to optimize a peak-amplitude of regulated output. need to solve optimization problem (LP)
- $\bullet\,$  multi-objectives,  $\mathit{e.g.},$  mixed LQG/ $\mathcal{H}_\infty$

# Summary

- eigenvalues of (A-BK) can be freely reassigned iff (A,B) is controllable
- optimal LQR control input is a constant state feedback computed via ARE
- feedback observer design is equivalent to state feedback design on the dual system
- observer-based controller combines observer and state-feedback designs

# References

Lecture note on

*Observer-based Controller Design*, D. Banjerdpongchai, EE635, Chulalongkorn University

Chapter 8 in

C. Chen, Linear System Theory and Design, Oxford University Press, 2009