2. Linear algebra

- *•* matrices and vectors
- *•* linear equations
- *•* range and nullspace of matrices
- *•* function of vectors, gradient and Hessian

Vector notation

n-vector *x*:

$$
x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
$$

• also written as
$$
x=(x_1,x_2,\ldots,x_n)
$$

- \bullet set of n -vectors is denoted \mathbf{R}^n (Euclidean space)
- *• xⁱ* : *i*th **element** or **component** or **entry** of *x*
- *• x* is also called a column vector

•
$$
y = [y_1 \quad y_2 \quad \cdots \quad y_n]
$$
 is called a row vector

unless stated otherwise, a vector typically means a column vector

Special vectors

zero vectors: $x = (0, 0, \ldots, 0)$

all-ones vectors: $x = (1, 1, \dots, 1)$ (we will denote it by 1)

standard unit vectors: *e^k* has only 1 at the *k*th entry and zero otherwise

$$
e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

(standard unit vectors in **R** 3)

unit vectors: any vector *u* whose norm (magnitude) is 1, *i.e.*,

$$
||u|| \triangleq \sqrt{u_1^2 + u_2^2 + \dots + u_n^2} = 1
$$

 ϵ example: $u = (1/\sqrt{2}, 2/\sqrt{6}, -1/\sqrt{2})$

Inner products

definition: the inner product of two *n*-vectors *x, y* is

 $x_1y_1 + x_2y_2 + \cdots + x_ny_n$

also known as the **dot product** of vectors *x, y*

notation: *x T y*

properties ✎

- $(\alpha x)^T y = \alpha (x^T y)$ for scalar α
- $(x + y)^T z = x^T z + y^T z$
- $x^T y = y^T x$

Euclidean norm

$$
||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}
$$

properties

- *•* also written *∥x∥*² to distinguish from other norms
- $||\alpha x|| = |\alpha| ||x||$ for scalar α
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- $||x|| \ge 0$ and $||x|| = 0$ only if $x = 0$

interpretation

- *• ∥x∥* measures the *magnitude* or length of *x*
- *• ∥x − y∥* measures the *distance* between *x* and *y*

Matrix notation

an $m \times n$ matrix A is defined as

$$
A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \text{ or } A = [a_{ij}]_{m \times n}
$$

- *• aij* are the **elements**, or **coefficients**, or **entries** of *A*
- \bullet set of $m \times n$ -matrices is denoted $\mathbf{R}^{m \times n}$
- *• A* has *m* rows and *n* columns (*m, n* are the **dimensions**)
- the (i, j) entry of A is also commonly denoted by A_{ij}
- *A* is called a **square** matrix if $m = n$

Special matrices

zero matrix: $A = 0$

$$
A = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix}
$$

...

 $0 \quad 0 \quad \cdots \quad 1$

 \cdots 0

 $\overline{}$

 \mathcal{L} \mathcal{L} $\overline{}$

$$
a_{ij} = 0
$$
, for $i = 1, ..., m, j = 1, ..., n$

identity matrix: $A = I$ $A =$ $\sqrt{2}$ \mathcal{L} \mathcal{L} \mathcal{L} 1 0 *· · ·* 0 0 1 *· · ·* 0 ...

a square matrix with $a_{ii} = 1, a_{ij} = 0$ for $i \neq j$

diagonal matrix: a square matrix with $a_{ij} = 0$ for $i \neq j$

$$
A = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_n \end{bmatrix}
$$

triangular matrix:

a square matrix with zero entries in a triangular part

upper triangular lower triangular $A =$ $\sqrt{ }$ $\overline{}$ \mathcal{L} $\overline{}$ a_{11} a_{12} \cdots a_{1n} 0 a_{22} \cdots a_{2n} $0 \qquad 0 \qquad \cdots \qquad a_{nn}$ $\overline{}$ \mathcal{L} \mathcal{L} \mathbb{R} $A =$ $\sqrt{ }$ $\overline{}$ \mathcal{L} $\overline{}$ a_{11} 0 \cdots 0 a_{21} a_{22} \cdots 0 a_{n1} a_{n2} \cdots a_{nn} $\overline{}$ \mathbf{I} \mathbf{I} \mathbf{I} $a_{ij} = 0$ for $i \geq j$ $a_{ij} = 0$ for $i \leq j$

Block matrix notation

example: 2 *×* 2-block matrix *A*

$$
A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}
$$

for example, if *B, C, D, E* are defined as

$$
B = \begin{bmatrix} 2 & 1 \\ 3 & 8 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 & 7 \\ 1 & 9 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} -4 & 1 & -1 \end{bmatrix}
$$

then *A* is the matrix

$$
A = \begin{bmatrix} 2 & 1 & 0 & 1 & 7 \\ 3 & 8 & 1 & 9 & 1 \\ 0 & 1 & -4 & 1 & -1 \end{bmatrix}
$$

note: dimensions of the blocks must be compatible

Column and Row partitions

write an $m \times n$ -matrix A in terms of its columns or its rows

$$
A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} b_1^T \\ b_2^T \\ \vdots \\ b_m^T \end{bmatrix}
$$

•
$$
a_j
$$
 for $j = 1, 2, ..., n$ are the columns of A

•
$$
b_i^T
$$
 for $i = 1, 2, ..., m$ are the rows of A

example:
$$
A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 9 & 0 \end{bmatrix}
$$

 $a_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 2 \\ 9 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad b_1^T = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}, \quad b_2^T = \begin{bmatrix} 4 & 9 & 0 \end{bmatrix}$

Matrix-vector product

product of $m \times n$ -matrix A with *n*-vector x

$$
Ax = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}
$$

• dimensions must be compatible: $\#$ columns in $A = \#$ elements in x

if A is partitioned as $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$, then

$$
Ax = a_1x_1 + a_2x_2 + \cdots + a_nx_n
$$

- *• Ax* is a linear combination of the column vectors of *A*
- *•* the coefficients are the entries of *x*

Product with standard unit vectors

post-multiply with a column vector

$$
Ae_k = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{mk} \end{bmatrix} = \text{the } k \text{th column of } A
$$

pre-multiply with a row vector

$$
e_k^T A = \begin{bmatrix} 0 & 0 & \cdots & 1 & \cdots & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}
$$

=
$$
\begin{bmatrix} a_{k1} & a_{k2} & \cdots & a_{kn} \end{bmatrix} =
$$
 the *k*th row of A

Trace

Definition: trace of a square matrix *A* is the sum of the diagonal entries in *A*

$$
\mathbf{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}
$$

example:

$$
A = \begin{bmatrix} 2 & 1 & 4 \\ 0 & -1 & 5 \\ 3 & 4 & 6 \end{bmatrix}
$$

trace of *A* is $2 - 1 + 6 = 7$

properties ✎

- $\mathbf{tr}(A^T) = \mathbf{tr}(A)$
- $tr(\alpha A + B) = \alpha tr(A) + tr(B)$
- $tr(AB) = tr(BA)$

Inverse of matrices

Definition:

a *square* matrix *A* is called **invertible** or **nonsingular** if there exists *B* s.t.

$$
AB=BA=I
$$

- *• B* is called an **inverse** of *A*
- *•* it is also true that *B* is invertible and *A* is an inverse of *B*
- *•* if no such *B* can be found *A* is said to be **singular**

assume *A* is invertible

- *•* an inverse of *A* is unique
- *•* the inverse of *A* is denoted by *A−*¹

assume *A, B* are invertible

Facts ✎

- $(\alpha A)^{-1} = \alpha^{-1} A^{-1}$ for nonzero α
- \bullet *A*^{*T*} is also invertible and $(A^T)^{-1} = (A^{-1})^T$
- \bullet *AB* is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- $(A + B)^{-1} \neq A^{-1} + B^{-1}$

Inverse of 2 *×* 2 **matrices**

the matrix

$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$

is invertible if and only if

$$
ad - bc \neq 0
$$

and its inverse is given by

$$
A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
$$

example:

$$
A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}, \quad A^{-1} = \frac{1}{7} \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}
$$

Invertible matrices

- ✌ **Theorem:** for a square matrix *A*, the following statements are equivalent
- 1. *A* is invertible
- 2. $Ax = 0$ has only the trivial solution $(x = 0)$
- 3. the reduced echelon form of *A* is *I*
- 4. *A* is invertible if and only if $det(A) \neq 0$

Inverse of special matrices

diagonal matrix

$$
A = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_n \end{bmatrix}
$$

a diagonal matrix is invertible iff the diagonal entries are all nonzero

$$
a_{ii} \neq 0, \quad i = 1, 2, \dots, n
$$

the inverse of *A* is given by

$$
A^{-1} = \begin{bmatrix} 1/a_1 & 0 & \cdots & 0 \\ 0 & 1/a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1/a_n \end{bmatrix}
$$

the diagonal entries in *A−*¹ are the inverse of the diagonal entries in *A*

triangular matrix:

upper triangular lower triangular $A =$ $\sqrt{ }$ $\overline{}$ \mathcal{L} $\overline{}$ a_{11} a_{12} \cdots a_{1n} 0 a_{22} \cdots a_{2n} $0 \qquad 0 \qquad \cdots \qquad a_{nn}$ $\overline{}$ \mathcal{L} \mathcal{L} \mathbb{R} $A =$ $\sqrt{ }$ $\overline{}$ \mathcal{L} $\overline{1}$ a_{11} 0 \cdots 0 a_{21} a_{22} \cdots 0 a_{n1} a_{n2} \cdots a_{nn} $\overline{}$ \mathbf{I} \mathbf{I} \mathbf{I} $a_{ij} = 0$ for $i \geq j$ *a_{ij}* = 0 for $i \leq j$

a triangular matrix is invertible iff the diagonal entries are all nonzero

$$
a_{ii} \neq 0, \quad \forall i = 1, 2, \dots, n
$$

- *•* product of lower (upper) triangular matrices is lower (upper) triangular
- the inverse of a lower (upper) triangular matrix is lower (upper) triangular

symmetric matrix: $A = A^T$

✎

- \bullet for any square matrix A , AA^T and A^TA are always symmetric
- *•* if *A* is symmetric and invertible, then *A−*¹ is symmetric
- \bullet if A is invertible, then AA^T and A^TA are also invertible

Symmetric matrix

 $A \in \mathbf{R}^{n \times n}$ is called *symmetric* if $A = A^T$

Facts: if *A* is symmetric

- *•* all eigenvalues of *A* are real
- *•* all eigenvectors of *A* are orthogonal
- *• A* admits a decomposition

 $A = UDU^T$

where $U^TU=UU^T=I$ $(U$ is unitary) and D is diagonal

(of course, the diagonals of *D* are eigenvalues of *A*)

Unitary matrix

a matrix $U \in \mathbf{R}^{n \times n}$ is called $\boldsymbol{\mathsf{unitary}}$ if

$$
U^TU=UU^T=I
$$

example:
$$
\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}
$$

Facts:

- *•* a real unitary matrix is also called **orthogonal**
- \bullet a unitary matrix is always invertible and $U^{-1}=U^{T}$
- *•* columns vectors of *U* are mutually orthogonal
- *•* norm is preserved under a unitary transformation:

$$
y = Ux \quad \Longrightarrow \quad \|y\| = \|x\|
$$

Orthogonal projection matrix

 P is said to be an $\boldsymbol{\textbf{orthogonal projection}}$ if $P=P^T$ and $P^2=P$

• examples:

$$
P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad P = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}
$$

• *P* is bounded, *i.e.*, $||Px|| \le ||x||$

 $y = (y - Py) + Py,$ and $Py \perp (y - Py)$ (by using $P = P^T$ and $P^2 = P$)

 $\mathsf{hence},\ \|y\|^2=\|y-Py\|^2+\|Py\|^2$ and then of $\|Py\|$ must be less than $\|y\|$

• if *P* is an orthogonal projection onto a line spanned by a unit vector *u*,

$$
P = uu^T
$$

(we see that $\text{rank}(P) = 1$ as the dimension of a line is 1)

 \bullet another example: $P = A(A^TA)^{-1}A^T$ for any matrix A

Positive definite matrix

a symmetric matrix A is **positive semidefinite**, written as $A \succeq 0$ if

$$
x^T A x \ge 0, \quad \forall x \in \mathbf{R}^n
$$

and **positive definite**, written as $A \succ 0$ if

$$
x^T A x > 0, \quad \text{for all nonzero } x \in \mathbf{R}^n
$$

Facts: $A \succeq 0$ if and only if

- *•* all eigenvalues of *A* are non-negative
- *•* all principle minors of *A* are non-negative

example:
$$
A = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \succeq 0
$$
 because
\n
$$
x^T A x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$
\n
$$
= x_1^2 + 2x_2^2 - 2x_1x_2
$$
\n
$$
= (x_1 - x_2)^2 + x_2^2 \ge 0
$$

or we can check from

• eigenvalues of *A* are 0*.*38 and 2*.*61 (real and positive)

• the principle minors are 1 and $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ 1 *−*1 *−*1 2 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $= 1$ (all positive)

note: $A \succeq 0$ does not mean all entries of A are positive!

Schur complement

a consider a symmetric matrix *X* partitioned as

$$
X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}
$$

Schur complement of *A* in *X* is defined as

$$
S_1 = C - B^T A^{-1} B, \quad \text{if} \ \det A \neq 0
$$

Schur complement of *C* in *X* is defined as

$$
S_2 = A - BC^{-1}B^T, \quad \text{if } \det C \neq 0
$$

we can show that

$$
\det X = \det A \det S_1 = \det C \det S_2
$$

Schur complement of positive definite matrix

Facts:

- $X \succ 0$ if and only if $A \succ 0$ and $S_1 \succ 0$
- if $A \succ 0$ then $X \succeq 0$ if and only if $S_1 \succeq 0$

analogous results for S_2

- $X \succ 0$ if and only if $C \succ 0$ and $S_2 \succ 0$
- if $C \succ 0$ then $X \succeq 0$ if and only if $S_2 \succeq 0$

Linear equations

a general linear system of *m* equations with *n* variables is described by

$$
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2
$$

\n
$$
\vdots = \vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
$$

where a_{ij}, b_j are constants and x_1, x_2, \ldots, x_n are unknowns

- equations are linear in x_1, x_2, \ldots, x_n
- *•* existence and uniqueness of a solution depend on *aij* and *b^j*

Linear equation in matrix form

the linear system of *m* equations in *n* variables

$$
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2
$$

\n
$$
\vdots = \vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
$$

in matrix form: $Ax = b$ where

$$
A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}
$$

Three types of linear equations

• square if
$$
m = n
$$
 $(A \text{ is square})$

$$
(A \t{ is square})
$$

$$
\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \ b_2 \end{bmatrix}
$$

• **underdetermined** if $m < n$

$$
(A \mathbin{\mathsf{is}} \mathsf{fat})
$$

$$
\begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \ b_2 \end{bmatrix}
$$

• **overdetermined** if $m > n$

$$
(A \t{is skinny})
$$

$$
\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix}
$$

Existence and uniqueness of solutions

existence:

- *•* no solution
- *•* a solution exists

uniqueness:

- **–** the solution is unique
- **–** there are infinitely many solutions

every system of linear equations has zero, one, or infinitely many solutions

there are no other possibilities

Nullspace

the **nullspace** of an $m \times n$ matrix is defined as

$$
\mathcal{N}(A) = \{ x \in \mathbf{R}^n \mid Ax = 0 \}
$$

- the set of all vectors that are mapped to zero by $f(x) = Ax$
- *•* the set of all vectors that are orthogonal to the rows of *A*
- if $Ax = b$ then $A(x + z) = b$ for all $z \in \mathcal{N}(A)$
- *•* also known as **kernel** of *A*
- $\mathcal{N}(A)$ is a subspace of \mathbb{R}^n $n \in \mathbb{R}$

Zero nullspace matrix

- *A* has a zero nullspace if $\mathcal{N}(A) = \{0\}$
- if A has a zero nullspace and $Ax = b$ is solvable, the solution is unique
- *•* columns of *A* are independent
- ✌ **equivalent conditions:** *A ∈* **R** *n×n*
- *• A* has a zero nullspace
- *• A* is invertible or nonsingular
- *•* columns of *A* are a basis for **R** *n*

Range space

the **range** of an $m \times n$ matrix A is defined as

$$
\mathcal{R}(A) = \{ y \in \mathbf{R}^m \mid y = Ax \text{ for some } x \in \mathbf{R}^n \}
$$

- *•* the set of all *m*-vectors that can be expressed as *Ax*
- \bullet the set of all linear combinations of the columns of $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$

$$
\mathcal{R}(A) = \{ y \mid y = x_1 a_1 + x_2 a_2 + \dots + x_n a_n, \quad x \in \mathbb{R}^n \}
$$

- the set of all vectors b for which $Ax = b$ is solvable
- *•* also known as the **column space** of *A*
- $\mathcal{R}(A)$ is a subspace of \mathbb{R}^m m

Full range matrices

- A has a full range if $\mathcal{R}(A) = \mathbf{R}^m$
- ✌ **equivalent conditions:**
- *• A* has a full range
- *•* columns of *A* span **R** *m*
- $Ax = b$ is solvable for *every b*
- $\mathcal{N}(A^T) = \{0\}$

Rank and Nullity

 $\mathsf{rank} \hspace{0.2em}$ of a matrix $A \in \mathbf{R}^{m \times n}$ is defined as

 $\textbf{rank}(A) = \dim \mathcal{R}(A)$

 $\mathbf{nullity}$ of a matrix $A \in \mathbf{R}^{m \times n}$ is

 $\textbf{nullity}(A) = \dim \mathcal{N}(A)$

Facts ✌

• **rank**(*A*) is maximum number of independent columns (or rows) of *A*

 $\mathbf{rank}(A) \leq \min(m, n)$

• $\mathbf{rank}(A) = \mathbf{rank}(A^T)$

Full rank matrices

 $\mathsf{for} \ A \in \mathbf{R}^{m \times n}$ we always have $\mathbf{rank}(A) \leq \min(m,n)$

we say *A* is **full rank** if $\text{rank}(A) = \min(m, n)$

- *•* for **square** matrices, full rank means nonsingular (invertible)
- *•* for **skinny** matrices (*m ≥ n*), full rank means columns are independent
- *•* for **fat** matrices (*m ≤ n*), full rank means rows are independent

Theorems

• Rank-Nullity Theorem: for any *A ∈* **R** *m×n* ,

$$
rank(A) + \dim \mathcal{N}(A) = n
$$

- the system $Ax = b$ has a solution if and only if $b \in \mathcal{R}(A)$
- the system $Ax = b$ has a unique solution if and only if

$$
b \in \mathcal{R}(A), \quad \text{and} \quad \mathcal{N}(A) = \{0\}
$$

Derivative and Gradient

 $\mathsf{Suppose}\;f:\mathbf{R}^{n}\rightarrow\mathbf{R}^{m}\;$ and $x\in\mathbf{int}\,\mathbf{dom}\;f$

the $\operatorname{\mathbf{derivative}}\left(\text{or}\hspace{0.1cm}\operatorname{\mathbf{Jacobian}}\right)$ of f at x is the matrix $Df(x)\in \mathbf{R}^{m\times n}$:

$$
Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n
$$

- when f is scalar-valued (*i.e.*, $f : \mathbf{R}^n \to \mathbf{R}$), the derivative $Df(x)$ is a row vector
- *•* its transpose is called the **gradient** of the function:

$$
\nabla f(x) = Df(x)^T
$$
, $\nabla f(x)_i = \frac{\partial f(x)}{\partial x_i}$, $i = 1, ..., n$

which is a column vector in \mathbf{R}^n

Second Derivative

suppose f is a scalar-valued function $(i.e., f : \mathbf{R}^n \rightarrow \mathbf{R})$

the second derivative or **Hessian matrix** of f at x , denoted $\nabla^2 f(x)$ is

$$
\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i = 1, \dots, n, \quad j = 1, \dots, n
$$

 $\boldsymbol{\mathsf{example}}\colon \textsf{the quadratic function } f:\boldsymbol{\mathsf{R}}^n\to \boldsymbol{\mathsf{R}}$

$$
f(x) = (1/2)x^T P x + q^T x + r,
$$

where $P \in \mathbf{S}^n, q \in \mathbf{R}^n$, and $r \in \mathbf{R}$

• $\nabla f(x) = Px + q$

$$
\bullet\;\nabla^2 f(x)=P
$$

Chain rule

assumptions:

- \bullet $f: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable at $x \in \mathbf{int} \, \mathbf{dom} \, f$
- \bullet $g: \mathbf{R}^m \to \mathbf{R}^p$ is differentiable at $f(x) \in \mathbf{int}\ \mathbf{dom}\ g$
- define the composition $h: \mathbf{R}^n \to \mathbf{R}^p$ by

$$
h(z)=g(f(z))\,
$$

then *h* is differentiable at *x*, with derivative

$$
Dh(x) = Dg(f(x))Df(x)
$$

 $\mathsf{special\ case: } f: \mathbf{R}^n \to \mathbf{R}, \ g: \mathbf{R} \to \mathbf{R}, \ \mathsf{and} \ h(x) = g(f(x))$

$$
\nabla h(x)=g'(f(x))\nabla f(x)
$$

example: $h(x) = f(Ax + b)$

$$
Dh(x) = Df(Ax + b)A \quad \Rightarrow \quad \nabla h(x) = A^T \nabla f(Ax + b)
$$

example: $h(x) = (1/2)(Ax - b)^T P(Ax - b)$

$$
\nabla h(x) = A^T P(Ax - b)
$$

Function of matrices

we typically encounter some scalar-valued functions of matrix $X \in \mathbf{R}^{m \times n}$

- $f(X) = \text{tr}(A^T X)$ (linear in X)
- $f(X) = \text{tr}(X^T A X)$ (quadratic in X)

definition: the derivative of *f* (scalar-valued function) with respect to *X* is

$$
\frac{\partial f}{\partial X} = \begin{bmatrix} \frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \frac{\partial f}{\partial x_{21}} & \frac{\partial f}{\partial x_{22}} & \cdots & \frac{\partial f}{\partial x_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_{m1}} & \frac{\partial f}{\partial x_{m2}} & \cdots & \frac{\partial f}{\partial x_{mn}} \end{bmatrix}
$$

note that the differential of *f* can be generalized to

$$
f(X+dX)-f(X)=\langle \frac{\partial f}{\partial X}, dX\rangle + \text{higher order term}
$$

Derivative of a trace function

$$
\begin{aligned}\n\text{let } f(X) &= \text{tr}(A^T X) \\
f(X) &= \sum_i (A^T X)_{ii} = \sum_i \sum_k (A^T)_{ki} X_{ki} \\
&= \sum_i \sum_k A_{ki} X_{ki}\n\end{aligned}
$$

then we can read that $\frac{\partial f}{\partial X} = A$ (by the definition of derivative)

we can also note that

$$
f(X + dX) - f(X) = \mathbf{tr}(A^T(X + dX)) - \mathbf{tr}(A^T X) = \mathbf{tr}(A^T dX) = \langle dX, A \rangle
$$

then we can read that $\frac{\partial f}{\partial X} = A$

$$
\bullet \ f(X) = \mathbf{tr}(X^T A X)
$$

$$
f(X + dX) - f(X) = \mathbf{tr}((X + dX)^T A(X + dX)) - \mathbf{tr}(X^T A X)
$$

\n
$$
\approx \mathbf{tr}(X^T A dX) + \mathbf{tr}(dX^T A X)
$$

\n
$$
= \langle dX, A^T X \rangle + \langle AX, dX \rangle
$$

 $\frac{\partial f}{\partial X} = A^T X + AX$

 \bullet $f(X) = \|Y - XH\|_F^2$ where Y and H are given

$$
f(X + dX) = \mathbf{tr}((Y - XH - dXH)^T(Y - XH - dXH))
$$

\n
$$
f(X + dX) - f(X) \approx -\mathbf{tr}(H^T dX^T(Y - XH)) - \mathbf{tr}((Y - XH)^T dXH)
$$

\n
$$
= -\mathbf{tr}((Y - XH)H^T dX^T) - \mathbf{tr}(H(Y - XH)^T dX)
$$

\n
$$
= -2\langle (Y - XH)H^T dX \rangle
$$

then we identifiy that $\frac{\partial f}{\partial X} = -2(Y-XH)H^T$

Derivative of a log det **function**

let
$$
f : \mathbf{S}^n \to \mathbf{R}
$$
 be defined by $f(X) = \log \det(X)$
\n
$$
\log \det(X + dX) = \log \det(X^{1/2}(I + X^{-1/2}dXX^{-1/2})X^{1/2})
$$
\n
$$
= \log \det X + \log \det(I + X^{-1/2}dXX^{-1/2})
$$
\n
$$
= \log \det X + \sum_{i=1}^n \log(1 + \lambda_i)
$$

where λ_i is an eigenvalue of $X^{-1/2}dXX^{-1/2}$

$$
f(X + dX) - f(X) \approx \sum_{i=1}^{n} \lambda_i \quad (\log(1+x) \approx x, \quad x \to 0)
$$

$$
= \text{tr}(X^{-1/2}dXX^{-1/2})
$$

$$
= \text{tr}(X^{-1}dX)
$$

 $\frac{\partial f}{\partial X} = X^{-1}$

References

Chapter 1 in

H. Anton, *Elementary Linear Algebra*, 10th edition, Wiley, 2010

R.A. Horn and C.R. Johnson, *Matrix analysis*, Cambridge press, 2012

K.B. Petersen, M.S. Pedersen, et.al., *The Matrix Cookbook*, Technical University of Denmark, 2008