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2. Linear algebra

• matrices and vectors

• linear equations

• range and nullspace of matrices

• function of vectors, gradient and Hessian
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Vector notation

n-vector x:

x =


x1

x2...
xn


• also written as x = (x1, x2, . . . , xn)

• set of n-vectors is denoted Rn (Euclidean space)

• xi: ith element or component or entry of x

• x is also called a column vector

• y =
[
y1 y2 · · · yn

]
is called a row vector

unless stated otherwise, a vector typically means a column vector
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Special vectors

zero vectors: x = (0, 0, . . . , 0)

all-ones vectors: x = (1, 1, · · · , 1) (we will denote it by 1)

standard unit vectors: ek has only 1 at the kth entry and zero otherwise

e1 =

10
0

 , e2 =

01
0

 , e3 =

00
1


(standard unit vectors in R3)

unit vectors: any vector u whose norm (magnitude) is 1, i.e.,

∥u∥ ≜
√
u2
1 + u2

2 + · · · + u2
n = 1

example: u = (1/
√
2, 2/

√
6,−1/

√
2)
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Inner products

definition: the inner product of two n-vectors x, y is

x1y1 + x2y2 + · · · + xnyn

also known as the dot product of vectors x, y

notation: xTy

properties .

• (αx)Ty = α(xTy) for scalar α

• (x + y)Tz = xTz + yTz

• xTy = yTx
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Euclidean norm

∥x∥ =
√
x2
1 + x2

2 + · · · + x2
n =

√
xTx

properties

• also written ∥x∥2 to distinguish from other norms

• ∥αx∥ = |α|∥x∥ for scalar α

• ∥x + y∥ ≤ ∥x∥ + ∥y∥ (triangle inequality)

• ∥x∥ ≥ 0 and ∥x∥ = 0 only if x = 0

interpretation

• ∥x∥ measures the magnitude or length of x

• ∥x− y∥ measures the distance between x and y
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Matrix notation

an m× n matrix A is defined as

A =


a11 a12 . . . a1n
a21 a22 . . . a2n... ... . . . ...
am1 am2 . . . amn

 , or A = [aij]m×n

• aij are the elements, or coefficients, or entries of A

• set of m× n-matrices is denoted Rm×n

• A has m rows and n columns (m,n are the dimensions)

• the (i, j) entry of A is also commonly denoted by Aij

• A is called a square matrix if m = n
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Special matrices

zero matrix: A = 0

A =


0 0 · · · 0
0 0 · · · 0
... ... . . . 0
0 0 · · · 0



aij = 0, for i = 1, . . . ,m, j = 1, . . . , n

identity matrix: A = I

A =


1 0 · · · 0
0 1 · · · 0
... ... . . . 0
0 0 · · · 1


a square matrix with aii = 1, aij = 0 for i ̸= j
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diagonal matrix: a square matrix with aij = 0 for i ̸= j

A =


a1 0 · · · 0
0 a2 · · · 0
... ... . . . ...
0 · · · 0 an


triangular matrix:

a square matrix with zero entries in a triangular part

upper triangular lower triangular

A =


a11 a12 · · · a1n
0 a22 · · · a2n... ... . . .
0 0 · · · ann

 A =


a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann


aij = 0 for i ≥ j aij = 0 for i ≤ j
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Block matrix notation

example: 2× 2-block matrix A

A =

[
B C
D E

]
for example, if B,C,D,E are defined as

B =

[
2 1
3 8

]
, C =

[
0 1 7
1 9 1

]
, D =

[
0 1

]
, E =

[
−4 1 −1

]
then A is the matrix

A =

2 1 0 1 7
3 8 1 9 1
0 1 −4 1 −1


note: dimensions of the blocks must be compatible
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Column and Row partitions

write an m× n-matrix A in terms of its columns or its rows

A =
[
a1 a2 · · · an

]
=


bT1
bT2...
bTm


• aj for j = 1, 2, . . . , n are the columns of A
• bTi for i = 1, 2, . . . ,m are the rows of A

example: A =

[
1 2 1
4 9 0

]

a1 =

[
1
4

]
, a2 =

[
2
9

]
, a3 =

[
1
0

]
, bT1 =

[
1 2 1

]
, bT2 =

[
4 9 0

]
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Matrix-vector product

product of m× n-matrix A with n-vector x

Ax =


a11x1 + a12x2 + . . . + a1nxn

a21x1 + a22x2 + . . . + a2nxn...
am1x1 + am2x2 + . . . + amnxn


• dimensions must be compatible: # columns in A = # elements in x

if A is partitioned as A =
[
a1 a2 · · · an

]
, then

Ax = a1x1 + a2x2 + · · · + anxn

• Ax is a linear combination of the column vectors of A

• the coefficients are the entries of x
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Product with standard unit vectors

post-multiply with a column vector

Aek =


a11 a12 . . . a1n
a21 a22 . . . a2n... ... . . . ...
am1 am2 . . . amn



0
0
...
1
...
0

 =


a1k
a2k...
amk

 = the kth column of A

pre-multiply with a row vector

eTkA =
[
0 0 · · · 1 · · · 0

] 
a11 a12 . . . a1n
a21 a22 . . . a2n... ... . . . ...
am1 am2 . . . amn


=

[
ak1 ak2 · · · akn

]
= the kth row of A

Linear algebra 2-12



Trace

Definition: trace of a square matrix A is the sum of the diagonal entries in A

tr(A) = a11 + a22 + · · · + ann

example:

A =

2 1 4
0 −1 5
3 4 6


trace of A is 2− 1 + 6 = 7

properties .

• tr(AT ) = tr(A)

• tr(αA +B) = α tr(A) + tr(B)

• tr(AB) = tr(BA)
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Inverse of matrices

Definition:

a square matrix A is called invertible or nonsingular if there exists B s.t.

AB = BA = I

• B is called an inverse of A

• it is also true that B is invertible and A is an inverse of B

• if no such B can be found A is said to be singular

assume A is invertible

• an inverse of A is unique

• the inverse of A is denoted by A−1
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assume A,B are invertible

Facts .

• (αA)−1 = α−1A−1 for nonzero α

• AT is also invertible and (AT )−1 = (A−1)T

• AB is invertible and (AB)−1 = B−1A−1

• (A +B)−1 ̸= A−1 +B−1
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Inverse of 2× 2 matrices

the matrix
A =

[
a b
c d

]
is invertible if and only if

ad− bc ̸= 0

and its inverse is given by

A−1 =
1

ad− bc

[
d −b
−c a

]

example:
A =

[
2 1
−1 3

]
, A−1 =

1

7

[
3 −1
1 2

]
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Invertible matrices

, Theorem: for a square matrix A, the following statements are equivalent

1. A is invertible

2. Ax = 0 has only the trivial solution (x = 0)

3. the reduced echelon form of A is I

4. A is invertible if and only if det(A) ̸= 0
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Inverse of special matrices

diagonal matrix

A =


a1 0 · · · 0
0 a2 · · · 0
... ... . . . ...
0 · · · 0 an


a diagonal matrix is invertible iff the diagonal entries are all nonzero

aii ̸= 0, i = 1, 2, . . . , n

the inverse of A is given by

A−1 =


1/a1 0 · · · 0
0 1/a2 · · · 0
... ... . . . ...
0 · · · 0 1/an


the diagonal entries in A−1 are the inverse of the diagonal entries in A
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triangular matrix:

upper triangular lower triangular

A =


a11 a12 · · · a1n
0 a22 · · · a2n... ... . . .
0 0 · · · ann

 A =


a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann


aij = 0 for i ≥ j aij = 0 for i ≤ j

a triangular matrix is invertible iff the diagonal entries are all nonzero

aii ̸= 0, ∀i = 1, 2, . . . , n

• product of lower (upper) triangular matrices is lower (upper) triangular

• the inverse of a lower (upper) triangular matrix is lower (upper) triangular
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symmetric matrix: A = AT

.

• for any square matrix A, AAT and ATA are always symmetric

• if A is symmetric and invertible, then A−1 is symmetric

• if A is invertible, then AAT and ATA are also invertible
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Symmetric matrix

A ∈ Rn×n is called symmetric if A = AT

Facts: if A is symmetric

• all eigenvalues of A are real

• all eigenvectors of A are orthogonal

• A admits a decomposition
A = UDUT

where UTU = UUT = I (U is unitary) and D is diagonal

(of course, the diagonals of D are eigenvalues of A)
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Unitary matrix

a matrix U ∈ Rn×n is called unitary if

UTU = UUT = I

example: 1√
2

[
1 −1
1 1

]
,
[
cos θ − sin θ
sin θ cos θ

]
Facts:

• a real unitary matrix is also called orthogonal

• a unitary matrix is always invertible and U−1 = UT

• columns vectors of U are mutually orthogonal

• norm is preserved under a unitary transformation:

y = Ux =⇒ ∥y∥ = ∥x∥
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Orthogonal projection matrix
P is said to be an orthogonal projection if P = PT and P 2 = P

• examples:
P =

[
1 0
0 0

]
, P =

[
1/2 1/2
1/2 1/2

]
• P is bounded, i.e., ∥Px∥ ≤ ∥x∥

y = (y − Py) + Py, and Py ⊥ (y − Py) (by using P = PT and P 2 = P )

hence, ∥y∥2 = ∥y − Py∥2 + ∥Py∥2 and then of ∥Py∥ must be less than ∥y∥

• if P is an orthogonal projection onto a line spanned by a unit vector u,

P = uuT

(we see that rank(P ) = 1 as the dimension of a line is 1)
• another example: P = A(ATA)−1AT for any matrix A
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Positive definite matrix

a symmetric matrix A is positive semidefinite, written as A ⪰ 0 if

xTAx ≥ 0, ∀x ∈ Rn

and positive definite, written as A ≻ 0 if

xTAx > 0, for all nonzero x ∈ Rn

Facts: A ⪰ 0 if and only if

• all eigenvalues of A are non-negative

• all principle minors of A are non-negative
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example: A =

[
1 −1
−1 2

]
⪰ 0 because

xTAx =
[
x1 x2

] [ 1 −1
−1 2

] [
x1

x2

]
= x2

1 + 2x2
2 − 2x1x2

= (x1 − x2)
2 + x2

2 ≥ 0

or we can check from

• eigenvalues of A are 0.38 and 2.61 (real and positive)

• the principle minors are 1 and
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ = 1 (all positive)

note: A ⪰ 0 does not mean all entries of A are positive!
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Schur complement

a consider a symmetric matrix X partitioned as

X =

[
A B
BT C

]
Schur complement of A in X is defined as

S1 = C −BTA−1B, if detA ̸= 0

Schur complement of C in X is defined as

S2 = A−BC−1BT , if detC ̸= 0

we can show that
detX = detA detS1 = detC detS2
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Schur complement of positive definite matrix

Facts:

• X ≻ 0 if and only if A ≻ 0 and S1 ≻ 0

• if A ≻ 0 then X ⪰ 0 if and only if S1 ⪰ 0

analogous results for S2

• X ≻ 0 if and only if C ≻ 0 and S2 ≻ 0

• if C ≻ 0 then X ⪰ 0 if and only if S2 ⪰ 0
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Linear equations

a general linear system of m equations with n variables is described by

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
... = ...

am1x1 + am2x2 + · · · + amnxn = bm

where aij, bj are constants and x1, x2, . . . , xn are unknowns

• equations are linear in x1, x2, . . . , xn

• existence and uniqueness of a solution depend on aij and bj
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Linear equation in matrix form

the linear system of m equations in n variables

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
... = ...

am1x1 + am2x2 + · · · + amnxn = bm

in matrix form: Ax = b where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n... ... . . . ...
am1 am2 . . . amn

 , x =


x1

x2...
xn

 , b =


b1
b2...
bm
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Three types of linear equations

• square if m = n (A is square)[
a11 a12
a21 a22

] [
x1

x2

]
=

[
b1
b2

]

• underdetermined if m < n (A is fat)

[
a11 a12 a13
a21 a22 a23

]x1

x2

x3

 =

[
b1
b2

]

• overdetermined if m > n (A is skinny)a11 a12
a21 a22
a31 a32

[
x1

x2

]
=

b1b2
b3
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Existence and uniqueness of solutions

existence:

• no solution

• a solution exists
uniqueness:

– the solution is unique
– there are infinitely many solutions

every system of linear equations has zero, one, or infinitely many solutions

there are no other possibilities
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Nullspace

the nullspace of an m× n matrix is defined as

N (A) = {x ∈ Rn | Ax = 0}

• the set of all vectors that are mapped to zero by f (x) = Ax

• the set of all vectors that are orthogonal to the rows of A

• if Ax = b then A(x + z) = b for all z ∈ N (A)

• also known as kernel of A

• N (A) is a subspace of Rn .
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Zero nullspace matrix

• A has a zero nullspace if N (A) = {0}

• if A has a zero nullspace and Ax = b is solvable, the solution is unique

• columns of A are independent

, equivalent conditions: A ∈ Rn×n

• A has a zero nullspace

• A is invertible or nonsingular

• columns of A are a basis for Rn
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Range space

the range of an m× n matrix A is defined as

R(A) = {y ∈ Rm | y = Ax for some x ∈ Rn }

• the set of all m-vectors that can be expressed as Ax

• the set of all linear combinations of the columns of A =
[
a1 · · · an

]
R(A) = {y | y = x1a1 + x2a2 + · · · + xnan, x ∈ Rn}

• the set of all vectors b for which Ax = b is solvable

• also known as the column space of A

• R(A) is a subspace of Rm .
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Full range matrices

A has a full range if R(A) = Rm

, equivalent conditions:

• A has a full range

• columns of A span Rm

• Ax = b is solvable for every b

• N (AT ) = {0}
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Rank and Nullity

rank of a matrix A ∈ Rm×n is defined as

rank(A) = dimR(A)

nullity of a matrix A ∈ Rm×n is

nullity(A) = dimN (A)

Facts ,

• rank(A) is maximum number of independent columns (or rows) of A

rank(A) ≤ min(m,n)

• rank(A) = rank(AT )
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Full rank matrices

for A ∈ Rm×n we always have rank(A) ≤ min(m,n)

we say A is full rank if rank(A) = min(m,n)

• for square matrices, full rank means nonsingular (invertible)

• for skinny matrices (m ≥ n), full rank means columns are independent

• for fat matrices (m ≤ n), full rank means rows are independent
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Theorems

• Rank-Nullity Theorem: for any A ∈ Rm×n,

rank(A) + dimN (A) = n

• the system Ax = b has a solution if and only if b ∈ R(A)

• the system Ax = b has a unique solution if and only if

b ∈ R(A), and N (A) = {0}
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Derivative and Gradient

Suppose f : Rn → Rm and x ∈ int dom f

the derivative (or Jacobian) of f at x is the matrix Df (x) ∈ Rm×n:

Df (x)ij =
∂fi(x)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n

• when f is scalar-valued (i.e., f : Rn → R), the derivative Df (x) is a row vector

• its transpose is called the gradient of the function:

∇f (x) = Df (x)T , ∇f (x)i =
∂f (x)

∂xi
, i = 1, . . . , n

which is a column vector in Rn
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Second Derivative

suppose f is a scalar-valued function (i.e., f : Rn → R)

the second derivative or Hessian matrix of f at x, denoted ∇2f (x) is

∇2f (x)ij =
∂2f (x)

∂xi∂xj
, i = 1, . . . , n, j = 1, . . . , n

example: the quadratic function f : Rn → R

f (x) = (1/2)xTPx + qTx + r,

where P ∈ Sn, q ∈ Rn, and r ∈ R

• ∇f (x) = Px + q

• ∇2f (x) = P
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Chain rule

assumptions:

• f : Rn → Rm is differentiable at x ∈ int dom f

• g : Rm → Rp is differentiable at f (x) ∈ int dom g

• define the composition h : Rn → Rp by

h(z) = g(f (z))

then h is differentiable at x, with derivative

Dh(x) = Dg(f (x))Df (x)

special case: f : Rn → R, g : R → R, and h(x) = g(f (x))

∇h(x) = g′(f (x))∇f (x)

Linear algebra 2-41



example: h(x) = f (Ax + b)

Dh(x) = Df (Ax + b)A ⇒ ∇h(x) = AT∇f (Ax + b)

example: h(x) = (1/2)(Ax− b)TP (Ax− b)

∇h(x) = ATP (Ax− b)
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Function of matrices

we typically encounter some scalar-valued functions of matrix X ∈ Rm×n

• f (X) = tr(ATX) (linear in X)
• f (X) = tr(XTAX) (quadratic in X)

definition: the derivative of f (scalar-valued function) with respect to X is

∂f

∂X
=


∂f
∂x11

∂f
∂x12

· · · ∂f
∂x1n

∂f
∂x21

∂f
∂x22

· · · ∂f
∂x2n... . . . ...

∂f
∂xm1

∂f
∂xm2

· · · ∂f
∂xmn


note that the differential of f can be generalized to

f (X + dX)− f (X) = ⟨ ∂f
∂X

, dX⟩ + higher order term
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Derivative of a trace function

let f (X) = tr(ATX)

f (X) =
∑
i

(ATX)ii =
∑
i

∑
k

(AT )kiXki

=
∑
i

∑
k

AkiXki

then we can read that ∂f
∂X = A (by the definition of derivative)

we can also note that

f (X + dX)− f (X) = tr(AT (X + dX))− tr(ATX) = tr(ATdX) = ⟨dX,A⟩

then we can read that ∂f
∂X = A
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• f (X) = tr(XTAX)

f (X + dX)− f (X) = tr((X + dX)TA(X + dX))− tr(XTAX)

≈ tr(XTAdX) + tr(dXTAX)

= ⟨dX,ATX⟩ + ⟨AX, dX⟩

then we can read that ∂f
∂X = ATX +AX

• f (X) = ∥Y −XH∥2F where Y and H are given

f (X + dX) = tr((Y −XH − dXH)T (Y −XH − dXH))

f (X + dX)− f (X) ≈ − tr(HTdXT (Y −XH))− tr((Y −XH)TdXH)

= − tr((Y −XH)HTdXT )− tr(H(Y −XH)TdX)

= −2⟨(Y −XH)HT , dX⟩

then we identifiy that ∂f
∂X = −2(Y −XH)HT

Linear algebra 2-45



Derivative of a log det function
let f : Sn → R be defined by f (X) = log det(X)

log det(X + dX) = log det(X1/2(I +X−1/2dXX−1/2)X1/2)

= log detX + log det(I +X−1/2dXX−1/2)

= log detX +

n∑
i=1

log(1 + λi)

where λi is an eigenvalue of X−1/2dXX−1/2

f (X + dX)− f (X) ≈
n∑
i=1

λi (log(1 + x) ≈ x, x → 0)

= tr(X−1/2dXX−1/2)

= tr(X−1dX)

we identify that ∂f
∂X = X−1
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