
2104664 Statistics for Financial Engineering Jitkomut Songsiri

5. Estimators

• statistics as estimators

• convergence

• properties of estimators

• sample mean and sample variance
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Descriptive statistics

if x1, x2, . . . , xN are drawn independently from the same population

{xi}i=1,...,N is a random sample and said to be independent, identically
distribuited (iid)

typical summary statistics used to describe the sample data

statistic description what to describe
mean (1/N )

∑N
i=1 xi central tendency

median middle ranked observation central tendency
standard deviation

√∑N
i=1(xi−x̄)2

N−1 dispersion
skewness (1/N)

∑N
i=1(xi−x̄)3

SD3 asymmetry of pdf
kurtosis (1/N)

∑N
i=1(xi−x̄)4

SD4 amount of heavy tails
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definition: a statistic is any function computed from the data in a sample

• a statistic is a function of random values, so it is also an RV

• the probability distribution of a statistic is called a sampling distribution

example: a histogram of 1000 realizations of the sample mean of χ2
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the sample mean is calculated on 4 observations
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Estimation of parameters

Definition: an estimator is a rule for using data to estimate the model parameter

example: to estimate a population mean, one can use sample mean or sample
minimum

• typically, one can compare an estimator with others from their properties

• such properties can be divided into

– finite sample properties
– asymptotic properties: when sample size is large
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Estimators

• statistics as estimators

• convergence

• properties of estimators

• sample mean and sample variance
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Convergence of deterministic sequences

Definition: a sequence of deterministic numbers {an : n = 1, 2, . . .} converges to
a if

∀ϵ > 0,∃N such that if n > N then |an − a| < ϵ

and we write
an → a, as n → ∞

or
lim

n→∞
an = a

Definition: a sequence an is bounded if there is some M < ∞ such that

|an| ≤ M, for all n

otherwise, we say that an is unbounded
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Convergence in Probability

Definition: a sequence of random variables {Xn : n = 1, 2, . . .} converges in
probability to a random variable X if for all ϵ > 0

lim
n→∞

P (|Xn −X| > ϵ) = 0

and we write
Xn

p→ X

and say that X is the probability limit (plim) of Xn : plimXn = X

Definition: Xn is bounded in probability if for every ϵ > 0, there exists Mϵ < ∞
and an integer Nϵ such that

P (|Xn| ≥ Mϵ) < ϵ, ∀n ≥ Nϵ
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example: Xn is a Bernoulli where P (Xn = 0) = 1− 1/n and P (Xn = 1) = 1/n

x ∈ R20×5, contains 20 samples of Xn where n = (1, 2, 3, 10, 100)

x =
1 1 1 0 0
1 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 0 0 0 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 0
1 1 1 0 0
1 1 0 1 0
1 0 0 0 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 0
1 0 1 0 0
1 0 1 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
1 0 0 0 0
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x =
1 0 0 0 0
1 0 1 0 0
1 1 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 1 0 0
1 0 0 0 0
1 1 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 1 0 0
1 1 1 0 0
1 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 0 0 0 0
1 0 0 1 0
1 1 0 0 0
1 0 0 0 0
1 1 0 0 0

Xn converges in probability to 0
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Rules for probability limits

if Xn and Yn are RVs with plimXn = x and plimYn = y then

• plim(Xn + Yn) = x + y (sum rule)

• plimXnYn = xy (product rule)

• plimXn/Yn = x/y if y ̸= 0 (ratio rule)

(all the rules can be generalized to random matrices)
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Convergence with Probability One

Definition: a random sequence Xn converges with probability one to a random
variable X if

P
(

lim
n→∞

Xn = X
)
= 1

and denoted by Xn
as→ X

• aka almost sure or strong consistency for X

• almost sure implies convergence in probability (weak consistency for X)
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Laws of Large Numbers

theorems for convergence in probability for the sequence of sample average

X̄N =
1

N

N∑
i=1

Xi

where Xi is a random variable

weak law of large numbers:

X̄N
p→ E[X̄N ]

if the Xi have common mean µ then this reduces to plim X̄N = µ

strong law of large numbers: the convergence is instead almost surely

X̄N
as→ E[X̄N ]
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scattergram of 1000 realizations of the sample mean
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• Xn is the sample mean and computed from n samples of 2-dimensional Gaussian
with zero mean

• as n increases, the probability of that Xn’s are concentrated at zero is high
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Convergence in Distribution

Definition: a random sequence of Xn converges in distribution to the
continuous random variable X , denoted by Xn

d→ X if

lim
n→∞

Fn(x) = F (x), ∀x ∈ R

where Fn is CDF of Xn and F is CDF of X

• example: tn−1
d→ N (0, 1) (t distribution converges to normal)

• it does not imply that Xn converges at all, e.g.,

P (Xn = 1) = 1/2 + 1/(n + 1), P (Xn = 2) = 1/2− 1/(n + 1)

• convergence in probability implies convergence in distribution

Xn
p→ X =⇒ Xn

d→ X
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Continuous Mapping Theorem

let g be a continuous function on set S such that P (X ∈ S) = 1

• if Xn
p→ X then g(Xn)

p→ g(X)

• if Xn
d→ X then g(Xn)

d→ g(X)

• the probability limit can pass through a function if the function is continuous

• useful for determining the asymptotic distribution of test statistics
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Slutsky’s Theorem

if Xn
d→ X and Yn

p→ α then

• Xn + Yn
d→ X + α

• XnYn
d→ αX

• Xn/Yn
d→ X/α provided that P (Y = 0) = 0

• to find a distribution of the above operations of (Xn, Yn) we don’t need to find a
joint distribution of (Xn, Yn)

• also known as rules for limiting distributions
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Product Limit Normal Rule

if XN
d→ N (µ,A) and HN

p→ H where H ≻ 0 then

HNXN
d→ N (Hµ,HAHT )

example of usage: if we have shown that

√
N (θ̂ − θ)

d→ N (0, B)

then for any BN ≻ 0 that is a consistent estimate for B, we have

B
−1/2
N ·

√
N (θ̂ − θ)

d→ N (0, I)
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Properties of Estimators

• asymptotic distribution

• unbiased

• consistency (asymptotic properties)

• efficiency (asymptotic properties)
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Asymptotic Distribution of Estimators

suppose that √
N (θ̂N − θ)

d→ N (0, P )

then we say that

• in large samples θ̂N is
√
N -asymptotically normally distributed with

θ̂N
a∼ N (θ,N−1P )

• the asymptotic covariance of θ̂N is N−1P , denoted by Avar[θ̂N ]

• Âvar[θ̂N ] = N−1P̂ denotes the estimate asymptotic variance matrix of θ̂N
where P̂ is a consistent estimate of P

(’in large samples’ means N is large enough for N (0, P ) to be a good approximation
but not so large that the covariance N−1P goes to zero)
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Unbiased Estimators

an estimator θ̂ of θ is said to be unbiased if

E[θ̂] = E[θ]

example: Xi’s are i.i.d with mean µ and variance σ2

• the expectation of X̄ is carried out by

E[X̄ ] = E[(1/N )

N∑
i=1

Xi] = (1/N )

N∑
i=1

E[Xi] = (1/N )

N∑
i=1

µ = µ

• one can show that the sample variance satisfies E[s2] = σ2

hence, the sample mean and the sample variance are unbiased estimators of µ and σ2

respectively
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Consistent Estimators

if a sequence of estimators θ̂N of θ, where N is the sample size, satisfies

θ̂N
p→ θ for all possible values of θ

then we say θ̂N is a consistent estimator of θ

• a consistent estimator converges in probability to the true value

• e.g. the sample mean X̄N = (1/N )
∑N

i Xi is a consistent estimator of µ

P
(
|X̄N − µ)| ≥ ϵ

)
= P

[√
N |X̄N − µ|

σ
≥

√
Nϵ/σ

]
=

(
1− Φ

(√
Nϵ

σ

))
→ 0

as N → ∞ (we have assume Xi’s are i.i.d. Gaussian N (µ, σ2)
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example: 100 realizations of the sample minimum of exponential RV
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• for each sample size (N), the sample minimum is calculated on N values

• an exponential RV has the minimum at zero

• as N grows, the probability of the sample minimum goes to 0 is approaching 1
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Unbiasedness vs Consistency

• unbiasedness needs not imply consistency, e.g., consider i.i.d. sample
X1, X2, . . . , Xn of X

θ̂ ≜ X1, E[θ̂] = E[X1] = E[X ] (unbiased)

but X1 never converges to any value (not consistent)

• if the sequence does not converge to a value, then it is not consistent, regardless of
whether the estimators in the sequence are biased or not

• consistency needs not imply unbiasedness, e.g., θ̂1 ≜ θ̂N + 1
N

θ̂1 is still consistent but not unbiased
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Efficient Estimators

a consistent asympotitcally normal estimator θ̂N of θ is said to be asympotically
efficient if it has an asymptotic covariance matrix equal to an efficiency lower
bound

informally, we will have a theorem stating that for any unbiased estimators, it satisfies

Avar[θ̂N ] ⪰ C

where C is an important lower bound, derived from the problem
statement/assumptions

therefore, if an estimator of interest happens to satisfy

Avar[θ̂N ] = C

then this estimator is efficient (since this is the best we can acheive)
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Asymptotic distribution

• definition

• asymptotic efficiency

• the delta method

• asymptotic distribution of nonlinear function
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Asymptotic distribution

definition: a distribution that is used to approximate the true finite samples
distribution of a random variable

√
N (θ̂N − θ)

d→ N (0, P )

we say that in large samples θ̂N is
√
N -asymptotically normally distributed with

θ̂N
a∼ N (θ,N−1P )

note that

• the asymptotic distribution is an approximation of the exact distribution

• example: X1, . . . , XN are i.i.d. samples of exponential with parameter λ

• the exact distribution of X̄N is (1/2λN ) · X 2(2N )

• the asymptotic distribution is N (1/λ, 1/Nλ2)
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Asymptotic normality and efficiency

suppose that √
N (θ̂N − θ)

d→ N (0, P )

then we say

• θ̂N is asymptotically normal

• θ̂N is asymptotically efficient if the covariance matrix of any other consistent,
asymptotically normally distributed estimate exceeds P /N by a non-negative
definite matrix
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The delta method

assumptions:

•
√
N (xn − µ)

d→ N (0, σ2)

• g(x) and g′(x) are continuous

• g′(µ) ̸= 0 and does not involve N

then the delta theorem states that
√
N (g(xn)− g(µ))

d→ N (0, σ2(g′(µ)2))

proof. use the linear Taylor approximation to write
√
N (g(xn)− g(µ)) = g′(ζ) ·

√
N (xn − µ), xn ≤ ζ ≤ µ

and then use the continuous mapping theorem and the product limit normal rule
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Asymptotic distribution of nonlinear function

suppose that

• θ̂N ∈ Rn is an estimator (vector) such that θ̂N a∼ N (θ, P /N )

• f (θ) : Rn → Rm is a continuous function with Jacobian J(θ) = ∂f (θ)/∂θ

• f (θ) is not a function of N

then f (θ̂N) is also asymptotically normally distributed with

f (θ̂N)
a∼ N (f (θ), (1/N )J(θ)PJ(θ)T )

where Avar(f (θ̂N)) = (1/N )J(θ)PJ(θ)T is the asymptotic covariance of f (θ̂N)

the covariance is quadratically scaled by the Jacobian of f
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Proof.

• by mean-value theorem, ∃θ̃ = αθ + (1− α)θ̂N with 0 ≤ α ≤ 1 we can write
√
N [f (θ̂N)− f (θ)] = J(θ̃)

√
N (θ̂N − θ)

• if θ̂N
p→ θ then θ̃

p→ θ because θ̃ lies between θ̂N and θ and therefore

P (∥θ̂N − θ∥ ≤ ϵ) ≤ P (∥θ̃ − θ∥ ≤ ϵ) ≤ 1

• by continuity assumption on J then J(θ̃)
p→ J(θ)

• apply the product limit normal rule
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Estimators

• statistics as estimators

• convergence

• properties of estimators

• sample mean and sample variance
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Sampling statistics

• useful inequalities

• central limit theorem

• sample mean and sample variance
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Markov and Chebyshev Inequalities

Markov inequality

let X be a nonnegative RV with mean E[X ]

P (X ≥ a) ≤ E[X ]

a
, a > 0

Chebyshev inequality

let X be an RV with mean µ and variance σ2

P (|X − µ| ≥ a) ≤ σ2

a2
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Sample mean

let X be an RV with E[X ] = µ (unknown)

X1, X2, . . . , XN denote N independent, repeated measurements of X

Xj’s are independent, identically distributed (i.i.d.) RVs

the sample mean of the sequences is used to estimate E[X ]:

X̄ =
1

N

N∑
j=1

Xj

two statistical quantities for characterizing the sample mean’s properties:

• E[X̄ ]: we say X̄ is unbiased if E[X̄ ] = µ

• var(X̄): we examine this value when N is large
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the sample mean is an unbiased estimator for µ:

E[X̄ ] = E

 1

N

N∑
j=1

Xj

 =
1

N

N∑
j=1

E[Xj] = µ

suppose var(X) = σ2 (true variance)

since Xj’s are i.i.d, the variance of X̄ is

var(X̄) =
1

N 2

N∑
j=1

var(Xj) =
Nσ2

N 2
=

σ2

N

hence, the variance of the sample mean approaches zero as the number of samples
increases
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Weak Law of Large Numbers

let X1, X2, . . . , XN be a sequence of i.i.d. RVs with finite mean E[X ] = µ and
variance σ2

for any ϵ > 0,
lim

N→∞
P [ |X̄ − µ| < ϵ ] = 1

• for large enough N , the sample mean will be close to the true mean with high
probability

• Proof. apply Chebyshev inequality:

P [|X̄ − µ| ≥ ϵ] ≤ σ2

Nϵ2
=⇒ P [|X̄ − µ| < ϵ] ≥ 1− σ2

Nϵ2
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scattergram of 1000 realizations of the sample mean
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• X̄ ’s are computed from 2-dimensional Gaussian with zero mean

• as N increases, the probability of X̄ ’s are concentrated at zero is high
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Strong Law of Large Numbers

let X1, X2, . . . , XN be a sequence of iid RVs with finite mean E[X ] = µ and finite
variance, then

P [ lim
N→∞

X̄ = µ] = 1

• X̄k is the sequence of sample mean computed using X1 through Xk

• with probability 1, every sequence of sample mean calculations will eventually
approach and stay close to E[X ] = µ

• the strong law implies the weak law

Estimators 5-38



Central Limit Theorem (CLT)

let X1, X2, . . . , XN be a sequence of i.i.d. RVs with

finite mean E[X ] = µ and finite variance σ2

let SN be the sum of the first N RVs in the sequences:

SN = X1 +X2 + · · · +XN

and define
ZN =

SN −Nµ

σ
√
N

then
lim

N→∞
P (ZN ≤ z) =

1√
2π

∫ z

−∞
e−x2/2dx

as N becomes large, the CDF of normalized Sn approaches Gaussian distribution
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Proof of Central Limit Theorem

first note that

ZN =
SN −Nµ

σ
√
N

=
1

σ
√
N

N∑
k=1

(Xk − µ)

the characteristic function of ZN is given by

ΦZN
(ω) = E[eiωZN ] = E

[
exp iω

σ
√
N

N∑
k=1

(Xk − µ)

]

= E
[

N∏
k=1

eiω(Xk−µ)/σ
√
N

]

=
(

E[eiω(X−µ)/σ
√
N ]
)N

(using the fact that Xk’s are iid)
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expanding the exponential expression gives

E[eiω(X−µ)/σ
√
N ] = E

[
1 +

iω
σ
√
N
(X − µ) +

(iω)2
2!Nσ2

(X − µ)2 + . . .

]
≈ 1− ω2

2N

(the higher order term can be neglected as N becomes large)

then we obtain

ΦZN
(ω) →

(
1− ω2

2N

)N

→ e−ω2/2, as N → ∞
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Multivariate CLT

Lindeberg-Levy Theorem: let X1, X2, . . . , XN be an i.i.d. sequence of random
vectors with E[Xi] = µ and cov(Xi) = Σ such that the second moment of each
component in Xi is finite

define X̄N = (1/N )
∑N

i=1Xi

CLT says that

1√
N

N∑
i=1

(Xi − E[Xi]) =
√
N (X̄N − µ)

d→ N (0,Σ)

more conditions involved if Xi’s are NOT i.i.d.
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Multivariate CLT

Lindeberg-Feller Theorem: let X1, X2, . . . , XN be samples of random vectors
with E[Xi] = µi and cov(Xi) = Ci such that all mixed third moments are finite

moreover, assume that for every i

lim
N→∞

(
N∑
i=1

Ci

)−1

Ci = 0, and C = lim
N→∞

1

N

N∑
i=1

Ci

exists and is positive definite

define X̄N = (1/N )
∑

i=1Xi and µ̄N = (1/N )
∑

i=1 µi

then CLT says that

1√
N

N∑
i=1

(Xi − µi) =
√
N (X̄N − µ̄)

d→ N (0, C)
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Distribution of X̄

let X1, . . . , XN be a sample from a population with mean µ and variance σ2

let X̄ = (1/N )
∑N

i=1Xi be the sample mean

• if Xi is normal, then X̄ is also normal with mean µ and variance σ2/N

• from the central limit theorem, the sample mean is approximately normal when
N is large where

X̄ − µ

σ/
√
N

has approximately a standard normal distribution
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Sample Variance

let X1, . . . , XN be a sample from a population with mean µ and variance σ2

the statistic s2, defined by

s2 =

∑N
i=1(Xi − X̄)2

N − 1
is called the sample variance

• s =
√
s2 is called the sample standard deviation

• using (N − 1)s2 =
∑N

i=1X
2
i −NX̄2, we have

E[s2] = σ2 (equal to population variance)
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Joint distribution of sample mean and variance

let X1, . . . , XN be a sample from a normal popolution, we obtain the identity

N∑
i=1

(
Xi − µ

σ

)2

=

∑N
i=1(Xi − X̄)2

σ2
+

[√
N (X̄ − µ)

σ

]2

• LHS is a chi-square of N degrees of freedom

• the second term on RHS is a chi-square with 1 degree of freedom

• the sum of two independent chi-squares with N and M DFs is a chi-square with
N +M

• it would seem that the first term on RHS is a chi-square with N − 1 degree of
freedoms
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Theorem: if X1, . . . , XN is a sample from a normal population with mean µ and
variance σ2

• X̄ is normal with mean µ and variance σ2/N

• (N − 1)s2/σ2 is chi-square with N − 1 degrees of freedom

• X̄ and s2 are independent

Corollary: let s be the sample standard deviation
√
N (X̄ − µ)

s
∼ tN−1

followed from
√
N (X̄ − µ)

s
=

√
N (X̄ − µ)/σ√

s2/σ2
≜ standard normal

chi-square with N − 1 DF
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