5. Estimators

- *•* statistics as estimators
- *•* convergence
- *•* properties of estimators
- *•* sample mean and sample variance

Descriptive statistics

if x_1, x_2, \ldots, x_N are drawn independently from the same population

 ${x_i}_{i=1,...,N}$ is a **random sample** and said to be independent, identically distribuited (iid)

typical summary **statistics** used to describe the sample data

definition: a **statistic** is any function computed from the data in a sample

- a statistic is a function of random values, so it is also an RV
- *•* the probability distribution of a statistic is called a **sampling distribution**

 $\boldsymbol{\mathsf{example}}\colon$ a histogram of 1000 realizations of the sample mean of χ_1^2 1

the sample mean is calculated on 4 observations

Estimation of parameters

Definition: an **estimator** is a rule for using data to estimate the model parameter

example: to estimate a population mean, one can use *sample mean* or *sample minimum*

- *•* typically, one can compare an estimator with others from their properties
- *•* such properties can be divided into
	- **–** finite sample properties
	- **–** asymptotic properties: when sample size is large

Estimators

- *•* statistics as estimators
- *•* **convergence**
- *•* properties of estimators
- *•* sample mean and sample variance

Convergence of deterministic sequences

Definition: a sequence of *deterministic* numbers $\{a_n : n = 1, 2, ...\}$ converges to *a* if

$$
\forall \epsilon > 0, \exists N \text{ such that if } n > N \text{ then } |a_n - a| < \epsilon
$$

and we write

$$
a_n\to a,\quad\text{as}\;\;n\to\infty
$$

or

lim *n→∞* $a_n = a$

Definition: a sequence a_n is **bounded** if there is some $M < \infty$ such that

 $|a_n| \leq M$, for all *n*

otherwise, we say that *aⁿ* is **unbounded**

Convergence in Probability

Definition: a sequence of *random variables* $\{X_n : n = 1, 2, ...\}$ converges in **probability** to a random variable X if for all $\epsilon > 0$

$$
\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0
$$

and we write

$$
X_n\stackrel{p}{\to} X
$$

and say that X is the **probability limit (plim)** of X_n : $\text{plim } X_n = X$

Definition: X_n is **bounded in probability** if for every $\epsilon > 0$, there exists $M_{\epsilon} < \infty$ and an integer N_{ϵ} such that

$$
P(|X_n| \ge M_{\epsilon}) < \epsilon, \quad \forall n \ge N_{\epsilon}
$$

example: X_n is a Bernoulli where $P(X_n = 0) = 1 - 1/n$ and $P(X_n = 1) = 1/n$

 $x \in \mathbf{R}^{20 \times 5}$, contains 20 samples of X_n where $n=(1,2,3,10,100)$

 $x =$

 $x =$

 X_n converges in probability to 0

Rules for probability limits

if X_n and Y_n are RVs with $\textbf{plim } X_n = x$ and $\textbf{plim } Y_n = y$ then

- $\text{plim}(X_n + Y_n) = x + y$ (sum rule)
- $\text{plim } X_n Y_n = xy$ (product rule)
- $\textbf{plim } X_n/Y_n = x/y \text{ if } y \neq 0$ (ratio rule)

(all the rules can be generalized to random matrices)

Convergence with Probability One

Definition: a random sequence *Xⁿ* converges **with probability one** to a random variable *X* if

$$
P\left(\lim_{n\to\infty}X_n=X\right)=1
$$

and denoted by $X_n \stackrel{as}{\to} X$

- *•* aka **almost sure** or **strong consistency** for *X*
- *•* almost sure implies convergence in probability (weak consistency for *X*)

Laws of Large Numbers

theorems for convergence in probability for the sequence of **sample average**

$$
\bar{X}_N = \frac{1}{N} \sum_{i=1}^N X_i
$$

where X_i is a random variable

weak law of large numbers:

$$
\bar{X}_N \overset{p}{\to} \mathbf{E}[\bar{X}_N]
$$

if the X_i have common mean μ then this reduces to $\textbf{plim}\,\bar{X}_N=\mu$

strong law of large numbers: the convergence is instead almost surely

$$
\bar{X}_N\stackrel{as}{\to}\mathbf{E}[\bar{X}_N]
$$

scattergram of 1000 **realizations of the sample mean**

- *• Xⁿ* is the sample mean and computed from *n* samples of 2-dimensional Gaussian with zero mean
- *•* as *n* increases, the probability of that *Xn*'s are concentrated at zero is high

Convergence in Distribution

Definition: a random sequence of *Xⁿ* **converges in distribution** to the continuous random variable X , denoted by $X_n\stackrel{d}{\to} X$ if

$$
\lim_{n \to \infty} F_n(x) = F(x), \quad \forall x \in \mathbf{R}
$$

where F_n is CDF of X_n and F is CDF of X

- *•* example: *tⁿ−*¹ *^d→ N* (0*,* 1) (*t* distribution converges to normal)
- *•* it does not imply that *Xⁿ* converges at all, e.g.,

$$
P(X_n = 1) = 1/2 + 1/(n + 1), \quad P(X_n = 2) = 1/2 - 1/(n + 1)
$$

• convergence in probability implies convergence in distribution

$$
X_n \xrightarrow{p} X \quad \Longrightarrow \quad X_n \xrightarrow{d} X
$$

Continuous Mapping Theorem

let *g* be a continuous function on set *S* such that $P(X \in S) = 1$

- if $X_n \stackrel{p}{\to} X$ then $g(X_n) \stackrel{p}{\to} g(X)$
- \bullet if $X_n \stackrel{d}{\to} X$ then $g(X_n) \stackrel{d}{\to} g(X)$
- the probability limit can pass through a function if the function is continuous
- *•* useful for determining the asymptotic distribution of test statistics

Slutsky's Theorem

- if $X_n\stackrel{d}{\to} X$ and $Y_n\stackrel{p}{\to}\alpha$ then
- $X_n + Y_n \stackrel{d}{\to} X + \alpha$
- $X_n Y_n \stackrel{d}{\to} \alpha X$
- \bullet $X_n/Y_n \stackrel{d}{\to} X/\alpha$ provided that $P(Y=0)=0$
- *•* to find a distribution of the above operations of (*Xn, Yn*) we don't need to find a joint distribution of (X_n, Y_n)
- *•* also known as rules for limiting distributions

Product Limit Normal Rule

$$
\text{if } X_N \stackrel{d}{\to} \mathcal{N}(\mu, A) \text{ and } H_N \stackrel{p}{\to} H \text{ where } H \succ 0 \text{ then}
$$

$$
H_N X_N \stackrel{d}{\to} \mathcal{N}(H\mu, HAH^T)
$$

example of usage: if we have shown that

$$
\sqrt{N}(\hat{\theta} - \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, B)
$$

then for any $B_N \succ 0$ that is a consistent estimate for *B*, we have

$$
B_N^{-1/2}\cdot \sqrt{N}(\hat{\theta}-\theta) \stackrel{d}{\to} \mathcal{N}(0,I)
$$

Properties of Estimators

- *•* asymptotic distribution
- *•* unbiased
- *•* consistency (asymptotic properties)
- *•* efficiency (asymptotic properties)

Asymptotic Distribution of Estimators

suppose that

$$
\sqrt{N}(\hat{\theta}_N - \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, P)
$$

then we say that

 \bullet in *large samples* $\hat{\theta}_N$ is \sqrt{N} -asymptotically normally distributed with

 $\hat{\theta}_N \stackrel{a}{\sim} \mathcal{N}(\theta, N^{-1}P)$

- \bullet the asymptotic covariance of $\hat{\theta}_N$ is $N^{-1}P$, denoted by $\mathbf{A}\mathbf{var}[\hat{\theta}_N]$
- \bullet $\widehat{\mathbf{A}\textbf{var}}[\hat{\theta}_N] = N^{-1}\hat{P}$ denotes the $\mathbf{e}\textbf{stimate}$ asymptotic variance matrix of $\hat{\theta}_N$ where \hat{P} is a consistent estimate of P

('in large samples' means N is large enough for $\mathcal{N}(0,P)$ to be a good approximation but not so large that the covariance $N^{-1}P$ goes to zero)

Unbiased Estimators

an estimator $\hat{\theta}$ of θ is said to be **unbiased** if

$$
\mathbf{E}[\hat{\theta}]=\mathbf{E}[\theta]
$$

example: X_i 's are i.i.d with mean μ and variance σ^2

• the expectation of \bar{X} is carried out by

$$
\mathbf{E}[\bar{X}] = \mathbf{E}[(1/N)\sum_{i=1}^{N} X_i] = (1/N)\sum_{i=1}^{N} \mathbf{E}[X_i] = (1/N)\sum_{i=1}^{N} \mu = \mu
$$

 \bullet one can show that the sample variance satisfies $\mathbf{E}[s^2] = \sigma^2$

hence, the sample mean and the sample variance are unbiased estimators of μ and σ^2 respectively

Consistent Estimators

if a sequence of estimators $\hat{\theta}_N$ of θ , where N is the sample size, satisfies

 $\hat{\theta}_N \overset{p}{\rightarrow} \theta$ for all possible values of θ

then we say $\hat{\theta}_N$ is a **consistent estimator** of θ

- a consistent estimator converges in probability to the true value
- $\bullet\,$ e.g. the sample mean $\bar{X}_N = (1/N)\sum_i^N X_i$ is a consistent estimator of μ

$$
P(|\bar{X}_N - \mu)| \ge \epsilon) = P\left[\frac{\sqrt{N}|\bar{X}_N - \mu|}{\sigma} \ge \sqrt{N}\epsilon/\sigma\right] = \left(1 - \Phi\left(\frac{\sqrt{N}\epsilon}{\sigma}\right)\right) \to 0
$$

as $N\to\infty$ (we have assume X_i 's are i.i.d. Gaussian $\mathcal{N}(\mu,\sigma^2)$

example: 100 realizations of the sample minimum of exponential RV

- *•* for each sample size (*N*), the sample minimum is calculated on *N* values
- *•* an exponential RV has the minimum at zero
- as *N* grows, the probability of the sample minimum goes to 0 is approaching 1

Unbiasedness vs Consistency

• unbiasedness needs not imply consistency, *e.g.*, consider i.i.d. sample X_1, X_2, \ldots, X_n of X

$$
\hat{\theta} \triangleq X_1, \qquad \mathbf{E}[\hat{\theta}] = \mathbf{E}[X_1] = \mathbf{E}[X] \quad \text{(unbiased)}
$$

but X_1 never converges to any value (not consistent)

- if the sequence does not converge to a value, then it is not consistent, regardless of whether the estimators in the sequence are biased or not
- \bullet consistency needs not imply unbiasedness, *e.g.*, $\hat{\theta}_1 \triangleq \hat{\theta}_N + \frac{1}{N}$ *N* $\hat{\theta}_1$ is still consistent but not unbiased

Efficient Estimators

a consistent asympotitcally normal estimator $\hat{\theta}_N$ of θ is said to be **asympotically efficient** if it has an asymptotic covariance matrix equal to an **efficiency** lower bound

informally, we will have a theorem stating that for any unbiased estimators, it satisfies

 $\mathbf{Avar}[\hat{\theta}_N] \succeq C$

where *C* is an important lower bound, derived from the problem statement/assumptions

therefore, if an estimator of interest happens to satisfy

$$
\mathbf{Avar}[\hat{\theta}_N]=C
$$

then this estimator is **efficient** (since this is the best we can acheive)

Asymptotic distribution

- *•* definition
- asymptotic efficiency
- *•* the delta method
- *•* asymptotic distribution of nonlinear function

Asymptotic distribution

definition: a distribution that is used to approximate the true finite samples distribution of a random variable

$$
\sqrt{N}(\hat{\theta}_N - \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, P)
$$

we say that in *large samples* $\hat{\theta}_N$ is \sqrt{N} -**asymptotically normally distributed** with

 $\hat{\theta}_N \stackrel{a}{\sim} \mathcal{N}(\theta, N^{-1}P)$

note that

- *•* the asymptotic distribution is an approximation of the exact distribution
- *•* example: *X*1*, . . . , X^N* are i.i.d. samples of exponential with parameter *λ*
- \bullet the exact distribution of \bar{X}_N is $(1/2\lambda N)\cdot\mathcal{X}^2(2N)$
- \bullet the asymptotic distribution is $\mathcal{N}(1/\lambda,1/N\lambda^2)$

Asymptotic normality and efficiency

suppose that

$$
\sqrt{N}(\hat{\theta}_N - \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, P)
$$

then we say

- \bullet $\hat{\theta}_N$ is asymptotically normal
- $\hat{\theta}_N$ is asymptotically efficient if the covariance matrix of any other consistent, asymptotically normally distributed estimate exceeds *P*/*N* by a non-negative definite matrix

The delta method

assumptions:

- *• √* $\overline{N}(x_n - \mu) \stackrel{d}{\rightarrow} \mathcal{N}(0, \sigma^2)$
- \bullet $g(x)$ and $g'(x)$ are continuous
- \bullet $g'(\mu) \neq 0$ and does not involve N

then the delta theorem states that

$$
\sqrt{N}(g(x_n)-g(\mu)) \stackrel{d}{\to} \mathcal{N}(0,\sigma^2(g'(\mu)^2))
$$

proof. use the linear Taylor approximation to write

$$
\sqrt{N}(g(x_n)-g(\mu))=g'(\zeta)\cdot \sqrt{N}(x_n-\mu),\quad x_n\leq \zeta\leq \mu
$$

and then use the continuous mapping theorem and the product limit normal rule

Asymptotic distribution of nonlinear function

suppose that

- \bullet $\hat{\theta}_N \in \mathbf{R}^n$ is an estimator (vector) such that $\hat{\theta}_N \stackrel{a}{\sim} \mathcal{N}(\theta, P/N)$
- \bullet $f(\theta): \mathbf{R}^n \to \mathbf{R}^m$ is a *continuous* function with Jacobian $J(\theta) = \partial f(\theta) / \partial \theta$
- $f(\theta)$ is not a function of N

then $f(\hat{\theta}_N)$ is also asymptotically normally distributed with

$$
f(\hat{\theta}_N) \stackrel{a}{\sim} \mathcal{N}(f(\theta), (1/N)J(\theta)PJ(\theta)^T)
$$

 \bm{v} here $\bm{\mathrm{Avar}}(f(\hat{\theta}_N)) = (1/N)J(\theta) P J(\theta)^T$ is the asymptotic covariance of $f(\hat{\theta}_N)$

the covariance is quadratically scaled by the Jacobian of *f*

Proof.

 $\bullet\,$ by mean-value theorem, $\exists \tilde{\theta} = \alpha \theta + (1-\alpha) \hat{\theta}_N$ with $0 \leq \alpha \leq 1$ we can write

$$
\sqrt{N}[f(\hat\theta_N) - f(\theta)] = J(\tilde\theta)\sqrt{N}(\hat\theta_N - \theta)
$$

 \bullet if $\hat{\theta}_N \stackrel{p}{\to} \theta$ then $\tilde{\theta} \stackrel{p}{\to} \theta$ because $\tilde{\theta}$ lies between $\hat{\theta}_N$ and θ and therefore

$$
P(\|\hat{\theta}_N - \theta\| \leq \epsilon) \leq P(\|\tilde{\theta} - \theta\| \leq \epsilon) \leq 1
$$

- \bullet by continuity assumption on J then $J(\tilde{\theta}) \overset{p}{\to} J(\theta)$
- *•* apply the product limit normal rule

Estimators

- *•* statistics as estimators
- *•* convergence
- *•* properties of estimators
- *•* **sample mean and sample variance**

Sampling statistics

- *•* useful inequalities
- *•* central limit theorem
- *•* sample mean and sample variance

Markov and Chebyshev Inequalities

Markov inequality

let *X* be a *nonnegative* RV with mean **E**[*X*]

$$
P(X \ge a) \le \frac{\mathbf{E}[X]}{a}, \quad a > 0
$$

Chebyshev inequality

let X be an RV with mean μ and variance σ^2

$$
P\left(\left\vert X-\mu\right\vert \geq a\right) \leq\frac{\sigma^{2}}{a^{2}}
$$

Sample mean

let X be an RV with $\mathbf{E}[X] = \mu$ (unknown)

*X*1*, X*2*, . . . , X^N* denote *N* independent, repeated measurements of *X*

Xj's are *independent, identically distributed* (i.i.d.) RVs

the **sample mean** of the sequences is used to estimate **E**[*X*]:

$$
\bar{X} = \frac{1}{N} \sum_{j=1}^N X_j
$$

two statistical quantities for characterizing the sample mean's properties:

- $\mathbf{E}[\bar{X}]$: we say \bar{X} is unbiased if $\mathbf{E}[\bar{X}] = \mu$
- $var(\bar{X})$: we examine this value when N is large

the sample mean is an **unbiased estimator** for μ :

$$
\mathbf{E}[\bar{X}] = \mathbf{E}\left[\frac{1}{N}\sum_{j=1}^{N}X_j\right] = \frac{1}{N}\sum_{j=1}^{N}\mathbf{E}[X_j] = \mu
$$

 $\textsf{suppose }\textbf{var}(X)=\sigma^2 \text{ (true variance)}$

since X_j 's are i.i.d, the variance of \bar{X} is

$$
\mathbf{var}(\bar{X}) = \frac{1}{N^2} \sum_{j=1}^{N} \mathbf{var}(X_j) = \frac{N\sigma^2}{N^2} = \frac{\sigma^2}{N}
$$

hence, the variance of the sample mean approaches zero as the number of samples increases

Weak Law of Large Numbers

let X_1, X_2, \ldots, X_N be a sequence of i.i.d. RVs with finite mean $\mathbf{E}[X] = \mu$ and variance σ^2

for any $\epsilon > 0$, lim *N→∞ P*[$|\bar{X} - \mu| < \epsilon$] = 1

- *•* for large enough *N*, the sample mean will be close to the true mean with high probability
- *• Proof.* apply Chebyshev inequality:

$$
P[|\bar{X} - \mu| \ge \epsilon] \le \frac{\sigma^2}{N\epsilon^2} \quad \Longrightarrow \quad P[|\bar{X} - \mu| < \epsilon] \ge 1 - \frac{\sigma^2}{N\epsilon^2}
$$

scattergram of 1000 **realizations of the sample mean**

- \bar{X} 's are computed from 2-dimensional Gaussian with zero mean
- as N increases, the probability of \bar{X} 's are concentrated at zero is high

Strong Law of Large Numbers

let X_1, X_2, \ldots, X_N be a sequence of iid RVs with finite mean $\mathbf{E}[X] = \mu$ and finite variance, then

$$
P[\lim_{N\to\infty}\bar{X}=\mu]=1
$$

- \bullet \bar{X}_k is the sequence of sample mean computed using X_1 through X_k
- with probability 1, every sequence of sample mean calculations will eventually approach and stay close to $\mathbf{E}[X] = \mu$
- the strong law implies the weak law

Central Limit Theorem (CLT)

let X_1, X_2, \ldots, X_N be a sequence of i.i.d. RVs with

finite mean $\mathbf{E}[X] = \mu$ and finite variance σ^2

let S_N be the sum of the first N RVs in the sequences:

 $S_N = X_1 + X_2 + \cdots + X_N$

and define

$$
Z_N = \frac{S_N - N \mu}{\sigma \sqrt{N}}
$$

then

$$
\lim_{N \to \infty} P(Z_N \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx
$$

as *N* becomes large, the CDF of normalized *Sⁿ* approaches Gaussian distribution

Proof of Central Limit Theorem

first note that

$$
Z_N = \frac{S_N - N\mu}{\sigma\sqrt{N}} = \frac{1}{\sigma\sqrt{N}}\sum_{k=1}^N (X_k - \mu)
$$

the characteristic function of Z_N is given by

$$
\Phi_{Z_N}(\omega) = \mathbf{E}[e^{i\omega Z_N}] = \mathbf{E}\left[\exp\frac{i\omega}{\sigma\sqrt{N}}\sum_{k=1}^N (X_k - \mu)\right]
$$

$$
= \mathbf{E}\left[\prod_{k=1}^N e^{i\omega(X_k - \mu)/\sigma\sqrt{N}}\right]
$$

$$
= \left(\mathbf{E}[e^{i\omega(X - \mu)/\sigma\sqrt{N}}]\right)^N
$$

(using the fact that *Xk*'s are iid)

expanding the exponential expression gives

$$
\mathbf{E}[e^{i\omega(X-\mu)/\sigma\sqrt{N}}] = \mathbf{E}\left[1+\frac{i\omega}{\sigma\sqrt{N}}(X-\mu)+\frac{(i\omega)^2}{2!N\sigma^2}(X-\mu)^2+\dots\right]
$$

$$
\approx 1-\frac{\omega^2}{2N}
$$

(the higher order term can be neglected as *N* becomes large)

then we obtain

$$
\begin{array}{ccc}\n\Phi_{Z_N}(\omega)&\to&\left(1-\frac{\omega^2}{2N}\right)^N\\ \downarrow&&\downarrow e^{-\omega^2/2},\quad\text{as $N\to\infty$}\n\end{array}
$$

Multivariate CLT

Lindeberg-Levy Theorem: let X_1, X_2, \ldots, X_N be an i.i.d. sequence of random ${\bf v}$ ectors with ${\bf E}[X_i] = \mu$ and ${\bf cov}(X_i) = \Sigma$ such that the second moment of each component in X_i is finite

 $\mathbf{define}\;\bar{X}_N=(1/N)\sum_{i=1}^N X_i$

CLT says that

$$
\frac{1}{\sqrt{N}}\sum_{i=1}^{N}(X_i - \mathbf{E}[X_i]) = \sqrt{N}(\bar{X}_N - \mu) \stackrel{d}{\to} \mathcal{N}(0, \Sigma)
$$

more conditions involved if X_i 's are NOT i.i.d.

Multivariate CLT

Lindeberg-Feller Theorem: let *X*1*, X*2*, . . . , X^N* be samples of random vectors with $\mathbf{E}[X_i] = \mu_i$ and $\mathbf{cov}(X_i) = C_i$ such that all mixed third moments are finite

moreover, assume that for every *i*

$$
\lim_{N \to \infty} \left(\sum_{i=1}^{N} C_i \right)^{-1} C_i = 0, \text{ and } C = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} C_i
$$

exists and is positive definite

 \mathbf{d} efine $\bar{X}_N = (1/N) \sum_{i=1} X_i$ and $\bar{\mu}_N = (1/N) \sum_{i=1} \mu_i$

then CLT says that

$$
\frac{1}{\sqrt{N}}\sum_{i=1}^{N}(X_i - \mu_i) = \sqrt{N}(\bar{X}_N - \bar{\mu}) \stackrel{d}{\rightarrow} \mathcal{N}(0, C)
$$

Distribution of \bar{X}

let X_1,\ldots,X_N be a sample from a population with mean μ and variance σ^2

let $\bar{X} = (1/N) \sum_{i=1}^{N} X_i$ be the sample mean

- \bullet if X_i is **normal**, then \bar{X} is also **normal** with mean μ and variance σ^2/N
- *•* from the central limit theorem, the sample mean is **approximately normal** when *N* is large where

$$
\frac{\bar{X}-\mu}{\sigma/\sqrt{N}}
$$

has *approximately* a **standard normal** distribution

Sample Variance

let X_1,\ldots,X_N be a sample from a population with mean μ and variance σ^2

the statistic s^2 , defined by

$$
s^{2} = \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}{N - 1}
$$

is called the **sample variance**

- \bullet $s =$ *√* $s²$ is called the sample standard deviation
- using $(N-1)s^2 = \sum_{i=1}^{N} X_i^2 N\bar{X}^2$, we have

 $\mathbf{E}[s^2] = \sigma^2 \quad \text{(equal to population variance)}$

Joint distribution of sample mean and variance

let X_1, \ldots, X_N be a sample from a **normal** popolution, we obtain the identity

$$
\sum_{i=1}^{N} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{\sigma^2} + \left[\frac{\sqrt{N}(\bar{X} - \mu)}{\sigma} \right]^2
$$

- *•* LHS is a chi-square of *N* degrees of freedom
- the second term on RHS is a chi-square with 1 degree of freedom
- *•* the sum of two independent chi-squares with *N* and *M* DFs is a chi-square with $N+M$
- *•* it would seem that the first term on RHS is a chi-square with *N −* 1 degree of freedoms

Theorem: if X_1, \ldots, X_N is a sample from a **normal** population with mean μ and variance σ^2

- \bullet \bar{X} is normal with mean μ and variance σ^2/N
- *•* (*N −* 1)*s* 2 /*σ* 2 is chi-square with *N −* 1 degrees of freedom
- \bar{X} and s^2 are **independent**

Corollary: let *s* be the sample standard deviation

$$
\frac{\sqrt{N}(\bar{X}-\mu)}{s} \sim t_{N-1}
$$

followed from

$$
\frac{\sqrt{N}(\bar{X}-\mu)}{s}=\frac{\sqrt{N}(\bar{X}-\mu)/\sigma}{\sqrt{s^2/\sigma^2}}\triangleq\frac{\text{standard normal}}{\text{chi-square with }N-1 \text{ DF}}
$$

References

Chapter 3 in

J.M. Wooldridge, *Econometric Analysis of Cross Section and Panel Data*, the MIT press, 2010

Appendix in

W.H. Greene, *Econometric Analysis*, 7th edition, Pearson, 2012

Chapter 6 in

R.A. DeFusco, D.W. McLeavey, J.E.Pinto and D.E. Runkle, *Quantitative Investment Analysis*, 2nd edition, Wiley, 2004

Chapter 6 in

S.M. Ross, *Introduction to Probability and Statistics for Engineers and Scientists*, 4th edition, Academic press, 2009