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5. Estimators

e statistics as estimators
® convergence
e properties of estimators

e sample mean and sample variance
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Descriptive statistics

if £1,29,..., 2N are drawn independently from the same population

{z;}i=1... ~ is a random sample and said to be independent, identically
distribuited (iid)

typical summary statistics used to describe the sample data

statistic description what to describe
mean (1/N) ZZ | T central tendency
median middle ranked observation central tendency
standard deviation \/ZZ ! w’_m dispersion
skewness A/N) SZD;%(% z)’ asymmetry of pdf
kurtosis /) Zs%i(xi_f)4 amount of heavy tails

Estimators 5-2



definition: a statistic is any function computed from the data in a sample

e 2 statistic is a function of random values, so it is also an RV

e the probability distribution of a statistic is called a sampling distribution

example: a histogram of 1000 realizations of the sample mean of x}
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the sample mean is calculated on 4 observations
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Estimation of parameters

Definition: an estimator is a rule for using data to estimate the model parameter

example: to estimate a population mean, one can use sample mean or sample
minimum
e typically, one can compare an estimator with others from their properties

e such properties can be divided into

— finite sample properties
— asymptotic properties: when sample size is large
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Estimators

e statistics as estimators
e convergence
e properties of estimators

e sample mean and sample variance
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Convergence of deterministic sequences

Definition: a sequence of deterministic numbers {a,, : n =1,2,...} converges to
a if
Ve > 0,dN such thatif n > N then |a, —a| <e€

and we write
ap — a, as N — 00

or

lim a,, =a
n— 00

Definition: a sequence a,, is bounded if there is some M < oo such that
la,| < M, forall n

otherwise, we say that a,, is unbounded
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Convergence in Probability

Definition: a sequence of random variables {X,, : n =1,2,...} converges in
probability to a random variable X if for all ¢ > 0

lim P(|X, — X|>e€) =0

n—oo

and we write
X, 5 X
and say that X is the probability limit (plim) of X, : plim X,, = X

Definition: X,, is bounded in probability if for every € > 0, there exists M, < oo
and an integer N, such that

P(|X,| > M,) <e, Vn> N,
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l—1/nand P(X,=1)=1/n

X, is a Bernoulli where P(X,, =0)

example

(1,2,3,10,100)

T € R2OX5, contains 20 samples of X,, where n
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X, converges in probability to 0
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Rules for probability limits

if X,, and Y, are RVs with plim X,, = x and plimY,, = y then

o plim( X, +VY,)=2+y (sum rule)
e plim X,)Y,, = xy (product rule)
e plim X, /Y, =x/yify #0 (ratio rule)

(all the rules can be generalized to random matrices)
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Convergence with Probability One

Definition: a random sequence X,, converges with probability one to a random
variable X if
P(lm X, =X) =1

n—oo

and denoted by X,, =% X

e aka almost sure or strong consistency for X

e almost sure implies convergence in probability (weak consistency for X)
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Laws of Large Numbers

theorems for convergence in probability for the sequence of sample average

_ 1
Xy =+ z; X;
where X is a random variable
weak law of large numbers:
Xy 5 E[Xy]

if the X; have common mean x then this reduces to plim Xy =

strong law of large numbers: the convergence is instead almost surely

Xy B E[Xy]
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scattergram

of 1000 realizations of the sample mean
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e X, is the sample mean and computed from n samples of 2-dimensional Gaussian

with zero mean

e as n increases, the probability of that X,,'s are concentrated at zero is high
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Convergence in Distribution

Definition: a random sequence of X,, converges in distribution to the
continuous random variable X, denoted by X, 4 X if

lim F,(z)=F(x), VreR

n—oo

where F, is CDF of X,, and F'is CDF of X

o example: t,_| N(0,1) (¢ distribution converges to normal)

e it does not imply that X,, converges at all, e.g.,

PX,=1)=1/24+1/(n+1), P(X,=2)=1/2—1/(n+1)

e convergence in probability implies convergence in distribution

X, Hx —= Xx,%Xx
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Continuous Mapping Theorem

let g be a continuous function on set S such that P(X € S) =1

o if X;, & X then g(X,) = g(X)

o if X,, % X then g(X,) 4 g9(X)

e the probability limit can pass through a function if the function is continuous

e useful for determining the asymptotic distribution of test statistics
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Slutsky’s Theorem

if X, % X and Y., 2 o then

¢ X, +Y, %X +a

¢ X, % aXx

e X,,/Y, A X /a provided that P(Y =0) =0

e to find a distribution of the above operations of (X,,,Y,,) we don’t need to find a
joint distribution of (X,,,Y},)

e also known as rules for limiting distributions
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Product Limit Normal Rule

if Xy % N(u, A) and Hy 2 H where H > 0 then
HyXy 5 N(Hp, HAHT)
example of usage: if we have shown that
VN —6) % N0, B)
then for any By > 0 that is a consistent estimate for B, we have

By"? VNG —0) S N(0, 1)
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Properties of Estimators

e asymptotic distribution
e unbiased
e consistency (asymptotic properties)

e efficiency (asymptotic properties)
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Asymptotic Distribution of Estimators

suppose that
VN(@Oy — 0) 5 N(0, P)
then we say that

® in large samples O is v/ N-asymptotically normally distributed with

éN &N(Q’N—lp)

e the asymptotic covariance of 0y is N~'P, denoted by Avar[0y]

e Avar[fy] = N~'P denotes the estimate asymptotic variance matrix of 0
where P is a consistent estimate of P

("in large samples’ means N is large enough for N'(0, P) to be a good approximation
but not so large that the covariance N~ P goes to zero)
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Unbiased Estimators

an estimator 6 of 6 is said to be unbiased if

example: X;'s are i.i.d with mean u and variance o

e the expectation of X is carried out by

N N N

E[X]=E[(1/N))_ Xi]=(1/N)) E[X|]

i=1 =1 1=1

|
—
~—
3
=

]
=

e one can show that the sample variance satisfies E[s*] = o

hence, the sample mean and the sample variance are unbiased estimators of 1 and o
respectively
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Consistent Estimators

if a sequence of estimators éN of 8, where NN is the sample size, satisfies
On =6 for all possible values of 6

then we say O is a consistent estimator of 6

e a consistent estimator converges in probability to the true value

e e.g. the sample mean Xy = (1/N) Ziv X is a consistent estimator of

P(|Xy—p)|>e€)=P \/N‘)iN_'u' >\/Ne/a] = (1—<I><\/N€>> — 0

o

as N — oo (we have assume X;'s are i.i.d. Gaussian N (p, 0?)
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example: 100 realizations of the sample minimum of exponential RV
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e for each sample size (IV), the sample minimum is calculated on N values
e an exponential RV has the minimum at zero

e as N grows, the probability of the sample minimum goes to 0 is approaching 1
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Unbiasedness vs Consistency

e unbiasedness needs not imply consistency, e.g., consider i.i.d. sample
Xl,XQ,.. .,Xn of X

02X, E[0] = E[X;] = E[X] (unbiased)

but X never converges to any value (not consistent)

e if the sequence does not converge to a value, then it is not consistent, regardless of
whether the estimators in the sequence are biased or not

e consistency needs not imply unbiasedness, e.g., 0, 2 0y + %
01 is still consistent but not unbiased
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Efficient Estimators

a consistent asympotitcally normal estimator On of 6 is said to be asympotically
efficient if it has an asymptotic covariance matrix equal to an efficiency lower

bound

informally, we will have a theorem stating that for any unbiased estimators, it satisfies

AN

Avar|fy] = C

where C' is an important lower bound, derived from the problem
statement/assumptions

therefore, if an estimator of interest happens to satisfy

AN

Avarlfdy| =C

then this estimator is efficient (since this is the best we can acheive)
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Asymptotic distribution

e definition
e asymptotic efficiency
e the delta method

e asymptotic distribution of nonlinear function
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Asymptotic distribution

definition: a distribution that is used to approximate the true finite samples
distribution of a random variable

VN(@Oy — 0) % N(0, P)
we say that in large samples O is v/ N-asymptotically normally distributed with
On ~ N(0, N~'P)
note that

e the asymptotic distribution is an approximation of the exact distribution
e example: Xq,..., Xy are i.i.d. samples of exponential with parameter \
e the exact distribution of Xy is (1/2AN) - X?(2N)

e the asymptotic distribution is N (1/X,1/N)?)
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Asymptotic normality and efficiency

suppose that
VN(@Oy — 0) % N(0, P)

then we say

o Oy is asymptotically normal

o Oy is asymptotically efficient if the covariance matrix of any other consistent,
asymptotically normally distributed estimate exceeds P/N by a non-negative
definite matrix
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The delta method

assumptions:

e VN(z, — ) i./\/'((),cﬂ)
e g(x) and ¢'(x) are continuous

e ¢'(1t) # 0 and does not involve N
then the delta theorem states that
VN(g(zn) — () = N(0,0%(g/ (1))
proof. use the linear Taylor approximation to write
VN(g(zn) = g(n) = g'() - VN(wp — ), p << py
and then use the continuous mapping theorem and the product limit normal rule
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Asymptotic distribution of nonlinear function

suppose that

e On € R" is an estimator (vector) such that O ~ N (6, P/N)
e f(0):R" — R is a continuous function with Jacobian J(0) = 0f(6)/00

e f(0) is not a function of N
then f(éN) is also asymptotically normally distributed with
fOn) ~ N(f(0), (1/N)J(0)PI(0)T)

where Avar(f(0y)) = (1/N)J(0)PJ(0)7 is the asymptotic covariance of f(60x)

the covariance is quadratically scaled by the Jacobian of f
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Proof.

e by mean-value theorem, 30 = af + (1— oz)éN with 0 < o < 1 we can write

VN[f(On) — f(0)] = J(O)VN(On — 0)

o if éN 2 0 then 0 2 0 because 0 lies between éN and 6 and therefore

P(l6n =0l <€) < P(|§ - 6] <e) <1

e by continuity assumption on J then J(8) = J(6)

e apply the product limit normal rule
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Estimators

e statistics as estimators
® convergence
e properties of estimators

e sample mean and sample variance
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Sampling statistics

e useful inequalities
e central limit theorem

e sample mean and sample variance
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Markov and Chebyshev Inequalities

Markov inequality

let X be a nonnegative RV with mean E|X]|

EX
P(X >a) < [], a >0
a

Chebyshev inequality

let X be an RV with mean & and variance o

0.2

P(X —plza)<—
a

Estimators
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Sample mean

let X be an RV with E|X] = u (unknown)
X1, Xo,..., XN denote N independent, repeated measurements of X
X's are independent, identically distributed (i.i.d.) RVs

the sample mean of the sequences is used to estimate E|X]:

- 1 &
X:N;Xj

two statistical quantities for characterizing the sample mean’s properties:

e E[X]: we say X is unbiased if E[X] = u

e var(X): we examine this value when NV is large

Estimators
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the sample mean is an unbiased estimator for pu:

suppose var(X) = o (true variance)

since X;'s are i.i.d, the variance of X is

N
B 1 N 2 2
Var(X)zﬁg Var(Xj): 9 :0
j=1

N2 N

hence, the variance of the sample mean approaches zero as the number of samples
Increases
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Weak Law of Large Numbers

let X1, Xo,..., XN be asequence of i.i.d. RVs with finite mean E[X| = 1 and
variance o2

for any € > 0, )
lim P| | X —p|l<e]=1

N —o0

e for large enough IV, the sample mean will be close to the true mean with high
probability

e Proof. apply Chebyshev inequality:

PlX —plzed=s+s = PlX-pl<d21l-—+5
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scattergram of 1000 realizations of the sample mean
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e X's are computed from 2-dimensional Gaussian with zero mean

e as NN increases, the probability of X's are concentrated at zero is high
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Strong Law of Large Numbers

let X1, Xo,..., XN be a sequence of iid RVs with finite mean E[X]| = u and finite
variance, then

Pl lim X =pul=1

N — o0
e X, is the sequence of sample mean computed using X through X},

e with probability 1, every sequence of sample mean calculations will eventually
approach and stay close to E[X]| = u

e the strong law implies the weak law
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Central Limit Theorem (CLT)

let X1, Xo,..., Xn be asequence of i.i.d. RVs with

finite mean E[X] = p and finite variance o>

let Sn be the sum of the first N RVs in the sequences:
Sy =X1+Xo+---+Xxn

and define
Sy —Np

/
N GUN

then

lim P(Zy <z)= —/2(

1 z
— €
N — o0 \/ 27 [m
as IN becomes large, the CDF of normalized \S,, approaches Gaussian distribution
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Proof of Central Limit Theorem

first note that

N
SN—N,u 1
N = = X —
N ov N avN,;< kK

the characteristic function of Z is given by

Oz (w) = E[e“N=E

(using the fact that Xj's are iid)
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expanding the exponential expression gives

E[eiw(X—,u)/a\/N] - E

g\/7< Wt 2INg?

w2

1 — —
2N

Q

(the higher order term can be neglected as N becomes large)

then we obtain

Estimators
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Multivariate CLT

Lindeberg-Levy Theorem: let X, X5, ..., Xy be an i.i.d. sequence of random
vectors with E[X;]| = 1+ and cov(X;) = ¥ such that the second moment of each
component in X is finite

define Xy = (1/N) S50, X,
CLT says that
! i(x E[X)) = VN(Xx — p) 2 N(0,%)
R — A 1)) — N — ,
VNS

more conditions involved if X;'s are NOT i.i.d.
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Multivariate CLT

Lindeberg-Feller Theorem: let X;, X5, ..., X be samples of random vectors
with E|X;] = p; and cov(X;) = C; such that all mixed third moments are finite

moreover, assume that for every ¢

N —1
ﬁflw('zlci) C; =0, and (J—ngnOONZC

exists and is positive definite
define Xy = (1/N)>.._, X; and iy = (1/N) >, i
then CLT says that
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Distribution of X

let X1,..., X~ be asample from a population with mean 1 and variance o

let X = (1/N) Zfll X; be the sample mean

e if X; is normal, then X is also normal with mean y and variance 0?/N

e from the central limit theorem, the sample mean is approximately normal when
N is large where B
X —p
o/vVN

has approximately a standard normal distribution
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Sample Variance

let X1,..., X~ be a sample from a population with mean & and variance o

the statistic s2, defined by

N —_
32 _ Zi:1(Xi _ X>2
N —1

is called the sample variance

e s =1/s?is called the sample standard deviation

e using (N —1)s* = ij\il X? — NX? we have

E[s°] = 0 (equal to population variance)
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Joint distribution of sample mean and variance

let X1,..., Xy be asample from a normal popolution, we obtain the identity

_1_

i (Xz- - u)2 _ XX = Xy’

o o2

\/N(X—mr

o

e LHS is a chi-square of N degrees of freedom
e the second term on RHS is a chi-square with 1 degree of freedom

e the sum of two independent chi-squares with N and M DFs is a chi-square with
N+ M

e it would seem that the first term on RHS is a chi-square with NV — 1 degree of
freedoms
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Theorem: if X4,..., Xy is a sample from a normal population with mean i and
variance o>

e X is normal with mean p and variance 0?/N
e (N —1)s*/0” is chi-square with N — 1 degrees of freedom
e X and s’ are independent

Corollary: let s be the sample standard deviation

VN(X — p)

S

~ IN_1

followed from

VN(X —p) VN(X —p)fo A standard normal
S B \/8%/0? B chi-square with N — 1 DF
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