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Introduction

• method of moments (MM) estimators solves the sample moment conditions that
correspond to the population moment conditions

• general methods of moments (GMM) estimators extends MM approach to
accommodate the case when there are more moment conditions to solve than the
number of parameters

• GMM estimator defines a class of estimators; using different population moment
conditions gives different GMM estimators (just as different densities lead to
different ML estimators)

GMM estimators are based on the analog principle that population moment
conditions lead to sample moment conditions that can be used to estimate
parameters
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suppose y is i.i.d. with mean µ, in population we have

E[y − µ] = 0

replacing the expectation by the average operator yields the corresponding sample
moment

(1/N )

N∑
i=1

(yi − µ) = 0

solving for µ leads to the estimator µ̂mm = (1/N )
∑N

i=1 yi = ȳ

the MM estimate of the population mean is the sample mean
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MM estimate in Γ distribution
a Gamma distribution has the pdf

f (y) =
1

Γ(α)
βαyα−1e−βy, y ≥ 0.

with the known moment generating function

E[Y k] =
Γ(α + k)

βkΓ(α)
=
α(α + 1) · · · (α + k − 1)

βk

and consider the first two moments and their sample estimate m1,m2

m1 ≈ E[Y ] = α/β, m2 ≈ E[Y 2] =
α(α + 1)

β2

from which we can solve that

α̂ =
m2

1

m2 −m2
1

, β̂ =
m1

m2 −m2
1
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MM estimate in uniform distribution

consider X ∼ U(a, b) and the first two moments

m1 ≈ E[X ] = (a + b)/2, m2 ≈ E[X2] = (a2 + ab + b2)/3

use a = 2m1 − b and plug into the other equation to get

(b−m1)
2 = 3(m2 −m2

1) =⇒ b = m1 ±
√
3(m2 −m2

1)

choosing the root that makes b > a

â = m1 −
√
3(m2 −m2

1), b̂ = m1 +
√
3(m2 −m2

1)

note: we can also choose m2 ≈ var[X ] = (b− a)2/12
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Examples of GMM estimators

• linear regression

• nonlinear regression

• maximum likelihood

• instrumental variables regression
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Linear regression as an example of MM

consider the linear regression model: y = xTβ + u where we assume E[u|x] = 0

using the law of iterated expectations

E[xu] = E[E[xu|x]] = E[xE[u|x]] = 0

hence, we obtain E[xu] = E[x(y − xTβ)] = 0

replacing E by the average operator gives the sample moment condition:

(1/N )

N∑
i=1

xi(yi − xTi β) = 0

this yields
β̂mm = (

∑
i

xix
T
i )

−1
∑
i

xiyi

LS estimator is therefore just a special case of MM estimation
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Nonlinear regression as an example of MM

the nonlinear regression model with additive error is

y = g(x, β) + u

the assumption E[u|x] = 0 implies that for any function h(x) we have

E[h(x)(y − g(x, β))] = 0

a particular choice is
h(x) = ∇βg(x, β)

that leads to the sample moment condition:

(1/N )

N∑
i=1

∇g(xi, β)(yi − g(xi, β)) = 0

which is the first-order conditions for the NLS estimators
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Quasi-maximum likelihood as an example of MM

the quasi MLE θ̂mle is defined to be the estimator that maximizes a log-likelihood
function that is misspecified, as the result of specification of the wrong density

• let f (y|θ) denoted the assumed joint density of y1, . . . , yN
• let h(y) denoted the true density

• define the Kullback-Leibler information criterion (KLIC)

KL = E
[
log h(y)

f (y|θ)

]
where expectation is w.r.t. h(y)

• KL takes a minimum of 0 when ∃θ⋆ s.t. h(y) = f (y|θ⋆)

• KL indicate greater ignorance about the true density
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definition: the quasi-MLE minimizes KL, the distance between h(y) and f (y|θ)

but we can write KL as

KL = E[logh(y)]− E[log f (y|θ)]

hence, equivalently, the quasi-MLE estimate maximizes

E[log f (y|θ)]

as E[h(y)] does not depend on θ

conclusion: a local minimum of KL occurs if E[∇ log f (y|x, θ)] = 0

replacing by the sample moment conditions gives an estimator that solves

(1/N )

N∑
i=1

∇ log f (yi|xi, θ) = 0

so a quasi-MLE can be motivated as an MM estimator
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IV regression as an example of MM

assume the existence of instrument z:

• E[u|z] = 0 or that E[y −Xβ|z] = 0

• z are correlated with x

using law of iterated expectation, the population moment conditons are

E[z(y − xTβ)] = 0

the MM estimator solves the sample moment condition

1

N

N∑
i=1

zi(yi − xTi β) = 0
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• if z has the same dimension as x then the MM estimator is

β̂mm =

(∑
i

zix
T
i

)−1∑
i

ziyi

which is the linear IV estimator β̂iv = (ZTX)−1ZTy

• if z has a higher dimension that x, then we choose β to minimize

Q(β) =

[
1

N

N∑
i=1

zi(yi − xTi β)

]T
WN

[
1

N

N∑
i=1

zi(yi − xTi β)

]

where WN is p× p if z ∈ Rp

this choice is the general method of moments estimator
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Generalized Method of Moments

GMM defines a class of estimators where different choice of moment condition and
weighting matrix lead to different GMM estimators, just as different choices of
distribution lead to different ML estimators

• method of moments estimator

• definition of GMM estimator

• distribution of GMM estimator

• optimal GMM
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General form of MM estimators

assume there are m moment conditions for n parameters:

E[h(w, θ⋆)] = 0

• θ ∈ Rn and θ⋆ ∈ Rn is the value of θ in the dgp

• h is an m× 1 vector-valued function

• w includes all observables (y, x or instrument z)

some examples of h(w) = h(y, x, z, θ)

moment function h(·) estimation method
y − µ method of moments for population mean
x(y − xTβ) ordinary least-squares regression
z(y − xTβ) instrumental variables regression
∂log f (y|x, θ)/∂θ maximum likelihood estimation
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Definition of MM estimator

if m = n then method of moments can be applied

replace the population moment by the sample moment

the method of moments estimator θ̂mm is defined to the solution of

1

N

N∑
i=1

h(wi, θ̂) = 0

this is the zero gradient condition of the minimization:

Q(θ) =

[
1

N

N∑
i=1

h(wi, θ)

]T [
1

N

N∑
i=1

h(wi, θ)

]
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example 1: for MM estimate in uniform distribution where θ = (a, b)

h(x, θ) ≜
[

x− (a + b)/2
x2 − (a2 + ab + b2)/3

]
or we can choose

h(x, θ) ≜
[

x− (a + b)/2
(x− µ)2 − (b− a)2/12

]
=

[
x− (a + b)/2

(x− (a + b)/2)2 − (b− a)2/12

]
example 2: for MM estimate in Γ distribution where θ = (α, β)

• E[Y k] = Γ(α + k)/(βkΓ(α))

• regularity condition E[∇θ log f (y; θ)] = 0

E[∇θ log f (y; θ)] =
[
log y − ψ(α) + logβ

y − α/β

]
= 0, ψ(α) =

d logΓ(α)
dα

• if y is gamma then 1/y is inverse gamma distributed with E[1/Y ] = β/(α− 1)
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we can define any pair of 4 components in h to estimate (α, β)

h(x, θ) ≜


x− α/β

x2 − α(α + 1)/β2

logx− ψ(α) + logβ
1/x− β/(α− 1)


two of all possible six choices are

h1(x, θ) =

[
x− α/β

x2 − α(α + 1)/β2

]
, h2(x, θ) =

[
logx− ψ(α) + logβ

x− α/β

]

• the first MM estimate can be readily (and cheaply) obtained

• the second MM estimate corresponds to the MLE estimate
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Definition of GMM estimators

the GMM estimator is based on m conditions with n parameters to be estimated

• if m = n the model is said to be just-identified and MM estimator is used

• if m > n the model is said to be overidentified and MM cannot be applied

originally θ̂ is chosen so that (1/N )
∑

i h(wi, θ̂) is as close to zero as possible

the GMM estimators θ̂gmm is instead defined to be the problem of minimizing

Q(θ) =

[
1

N

N∑
i=1

h(wi, θ)

]T
WN

[
1

N

N∑
i=1

h(wi, θ)

]

where W ≻ 0, possibly stochastic but does not depend on θ
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First-order condition for GMM estimators

differentiating Q w.r.t. θ yields the first-order conditions:

[
1

N

N∑
i=1

∂h(wi, θ̂)

∂θ

]T
W

[
1

N

N∑
i=1

h(wi, θ̂)

]
= 0

• the conditions are generally nonlinear in θ; use numerical method to solve it

• diffferent choices of W lead to different estimators with different variances

• the optimal choice of W is provided
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Distribution of GMM estimator

assumptions:

1. the dgp imposes the moment condition: E[h(w, θ⋆)] = 0

2. h(·) satisfies h(w, β) = h(w, θ) iff β = θ

3. the following m× n matrix exists and is finite with rank n:

A = plim(1/N )

N∑
i=1

∂h(wi, θ
⋆)

∂θ

4. WN
p→W where W is finite positive definite

5. (1/
√
N )
∑N

i=1 h(wi, θ
⋆)

d→ N (0, B) where

B = plim(1/N )

N∑
i=1

N∑
j=1

h(wi, θ
⋆)h(wj, θ

⋆)T
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then the GMM estimator θ̂gmm, defined to be the root of

∇θQ(θ) = 0

is consistent for θ⋆ and
√
N (θ̂gmm − θ⋆)

d→ N (0, (ATWA)−1(ATWBWA)(ATWA)−1)

special case:

• if the data are independent over i then B is simplified to

B = plim 1

N

N∑
i=1

h(wi, θ
⋆)h(wi, θ

⋆)T

• in just-identified case (m = n), the matrices A,W,B are square and invertible,
the result on MM becomes

√
N (θ̂mm − θ⋆)

d→ N (0, A−1BA−T )
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Estimated asymptotic covariance

we use consistent estimates of A,B:

• estimate of A: replace θ⋆ by θ̂

Â =
1

N

N∑
i=1

∂h(wi, θ̂)

∂θ

• estimate of B: consider when data are independent over i

B =
1

N

N∑
i=1

h(wi, θ̂)h(wi, θ̂)
T

GMM estimator is asymptotically normally distributed with mean θ⋆ and estimated
covariance is

Âvar(θ̂gmm) = (1/N )(ÂTWNÂ)
−1ÂTWNB̂WNÂ(Â

TWNÂ)
−1
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Example on MM estimate of Gamma distribution

refer to the choice of h on page 11-17

h(x, θ) =

[
logx− ψ(α) + logβ

x− α/β

]
we can estimate A and B

Â =
1

N

N∑
i=1

∂h(xi, θ̂)

∂θ
=

[
−ψ′(α̂) 1/β̂

−1/β̂ α̂/β̂2

]

B̂ =
1

N

N∑
i=1

h(xi, θ̂)h(xi, θ̂)
T

Âvar(θ̂gmm) = (1/N )Â−1B̂Â−T

by assuming that data are independent over i
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Simulation example

settings: the true parameter is (α, β) = (3, 4)

• compute Âvar(θ̂gmm) computed on one data set with N = 1000

• compute θ̂ from 10, 000 data sets and check histogram/sample covariance

estimate_asymp_cov_theta =

0.0154 0.0206
0.0206 0.0328

sample_cov =
0.0168 0.0224
0.0224 0.0354

• the estimate of covariance (based on one data set) is
similar to the sample covariance

• histograms approach a normal distribution
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