11. Generalized Method of Moments

- *•* introduction
- *•* method of moments estimator
- *•* GMM estimator
- *•* distribution of GMM estimators

Introduction

- *•* method of moments (MM) estimators solves the sample moment conditions that correspond to the population moment conditions
- *•* general methods of moments (GMM) estimators extends MM approach to accommodate the case when there are more moment conditions to solve than the number of parameters
- *•* GMM estimator defines a class of estimators; using different population moment conditions gives different GMM estimators (just as different densities lead to different ML estimators)

GMM estimators are based on the analog principle that **population** moment conditions lead to **sample** moment conditions that can be used to estimate parameters

suppose y is i.i.d. with mean μ , in population we have

$$
\mathbf{E}[y-\mu]=0
$$

replacing the expectation by the average operator yields the corresponding sample moment *N*

$$
(1/N)\sum_{i=1}^{N}(y_i - \mu) = 0
$$

solving for μ leads to the estimator $\hat{\mu}_{\mathrm{mm}} = (1/N)\sum_{i=1}^{N}y_{i} = \bar{y}$

the MM estimate of the population mean is the **sample mean**

MM estimate in Γ **distribution**

a Gamma distribution has the pdf

$$
f(y)=\frac{1}{\Gamma(\alpha)}\beta^{\alpha}y^{\alpha-1}e^{-\beta y},\quad y\geq 0.
$$

with the known moment generating function

$$
\mathbf{E}[Y^k] = \frac{\Gamma(\alpha + k)}{\beta^k \Gamma(\alpha)} = \frac{\alpha(\alpha + 1) \cdots (\alpha + k - 1)}{\beta^k}
$$

and consider the first two moments and their sample estimate m_1, m_2

$$
m_1 \approx \mathbf{E}[Y] = \alpha/\beta, \quad m_2 \approx \mathbf{E}[Y^2] = \frac{\alpha(\alpha+1)}{\beta^2}
$$

from which we can solve that

$$
\hat{\alpha} = \frac{m_1^2}{m_2 - m_1^2}, \quad \hat{\beta} = \frac{m_1}{m_2 - m_1^2}
$$

MM estimate in uniform distribution

consider $X \sim \mathcal{U}(a, b)$ and the first two moments

$$
m_1 \approx \mathbf{E}[X] = (a+b)/2, \quad m_2 \approx \mathbf{E}[X^2] = (a^2 + ab + b^2)/3
$$

use $a = 2m_1 - b$ and plug into the other equation to get

$$
(b-m_1)^2 = 3(m_2 - m_1^2) \quad \Longrightarrow \quad b = m_1 \pm \sqrt{3(m_2 - m_1^2)}
$$

choosing the root that makes $b > a$

$$
\hat{a} = m_1 - \sqrt{3(m_2 - m_1^2)}, \quad \hat{b} = m_1 + \sqrt{3(m_2 - m_1^2)}
$$

note: we can also choose $m_2 \approx \mathbf{var}[X] = (b-a)^2/12$

Examples of GMM estimators

- *•* linear regression
- *•* nonlinear regression
- *•* maximum likelihood
- *•* instrumental variables regression

Linear regression as an example of MM

consider the linear regression model: $y = x^T\beta + u$ where we assume $\mathbf{E}[u|x] = 0$ using the **law of iterated expectations**

$$
\mathbf{E}[xu] = \mathbf{E}[\mathbf{E}[xu|x]] = \mathbf{E}[x\mathbf{E}[u|x]] = 0
$$

hence, we obtain $\mathbf{E}[xu] = \mathbf{E}[x(y - x^T\beta)] = 0$

replacing **E** by the average operator gives the **sample moment** condition:

$$
(1/N)\sum_{i=1}^{N} x_i(y_i - x_i^T \beta) = 0
$$

this yields

$$
\hat{\beta}_{\text{mm}} = (\sum_i x_i x_i^T)^{-1} \sum_i x_i y_i
$$

LS estimator is therefore just a special case of MM estimation

Nonlinear regression as an example of MM

the nonlinear regression model with **additive error** is

$$
y = g(x, \beta) + u
$$

the assumption $\mathbf{E}[u|x] = 0$ implies that for any function $h(x)$ we have

$$
\mathbf{E}[h(x)(y - g(x, \beta))] = 0
$$

a particular choice is

$$
h(x) = \nabla_{\beta} g(x, \beta)
$$

that leads to the sample moment condition:

$$
(1/N)\sum_{i=1}^N\nabla g(x_i,\beta)(y_i-g(x_i,\beta))=0
$$

which is the first-order conditions for the NLS estimators

Quasi-maximum likelihood as an example of MM

the quasi MLE $\hat{\theta}_{\rm mle}$ is defined to be the estimator that maximizes a log-likelihood function that is **misspecified**, as the result of specification of the wrong density

- let $f(y|\theta)$ denoted the **assumed** joint density of y_1, \ldots, y_N
- *•* let *h*(*y*) denoted the **true** density
- *•* define the **Kullback-Leibler information criterion (KLIC)**

$$
KL = \mathbf{E}\left[\log \frac{h(y)}{f(y|\theta)}\right]
$$

where expectation is w.r.t. *h*(*y*)

- \bullet KL takes a minimum of 0 when $\exists \theta^*$ s.t. $h(y) = f(y|\theta^*)$
- *•* KL indicate greater ignorance about the true density

definition: the quasi-MLE minimizes KL, the distance between $h(y)$ and $f(y|\theta)$ but we can write KL as

$$
KL = \mathbf{E}[\log h(y)] - \mathbf{E}[\log f(y|\theta)]
$$

hence, equivalently, the quasi-MLE estimate maximizes

 $\mathbf{E}[\log f(y|\theta)]$

as $\mathbf{E}[h(y)]$ does not depend on θ

conclusion: a local minimum of KL occurs if $\mathbf{E}[\nabla \log f(y|x, \theta)] = 0$

replacing by the sample moment conditions gives an estimator that solves

$$
(1/N)\sum_{i=1}^{N}\nabla \log f(y_i|x_i,\theta) = 0
$$

so a quasi-MLE can be motivated as an MM estimator

IV regression as an example of MM

assume the existence of instrument *z*:

- $\mathbf{E}[u|z] = 0$ or that $\mathbf{E}[y X\beta|z] = 0$
- *• z* are correlated with *x*

using law of iterated expectation, the population moment conditons are

$$
\mathbf{E}[z(y - x^T \beta)] = 0
$$

the MM estimator solves the sample moment condition

$$
\frac{1}{N} \sum_{i=1}^{N} z_i (y_i - x_i^T \beta) = 0
$$

• if *z* has the same dimension as *x* then the MM estimator is

$$
\hat{\beta}_{\text{mm}} = \left(\sum_i z_i x_i^T\right)^{-1} \sum_i z_i y_i
$$

 $\hat{\beta}_{\rm iv} = (Z^T X)^{-1} Z^T y$

• if *z* has a higher dimension that *x*, then we choose *β* to minimize

$$
Q(\beta) = \left[\frac{1}{N} \sum_{i=1}^{N} z_i (y_i - x_i^T \beta) \right]^T W_N \left[\frac{1}{N} \sum_{i=1}^{N} z_i (y_i - x_i^T \beta) \right]
$$

where W_N is $p \times p$ if $z \in \mathbb{R}^p$

this choice is the **general method of moments estimator**

Generalized Method of Moments

GMM defines a class of estimators where different choice of moment condition and weighting matrix lead to different GMM estimators, just as different choices of distribution lead to different ML estimators

- *•* method of moments estimator
- *•* definition of GMM estimator
- *•* distribution of GMM estimator
- *•* optimal GMM

General form of MM estimators

assume there are *m* moment conditions for *n* parameters:

 $\mathbf{E}[h(w, \theta^{\star})] = 0$

- $\theta \in \mathbb{R}^n$ and $\theta^* \in \mathbb{R}^n$ is the value of θ in the dgp
- *• h* is an *m ×* 1 vector-valued function
- *• w* includes all observables (*y, x* or instrument *z*)

some examples of $h(w) = h(y, x, z, \theta)$

Definition of MM estimator

if $m = n$ then method of moments can be applied

replace the population moment by the sample moment

the **method of moments estimator** $\hat{\theta}_{\text{mm}}$ is defined to the solution of

$$
\frac{1}{N} \sum_{i=1}^{N} h(w_i, \hat{\theta}) = 0
$$

this is the zero gradient condition of the minimization:

$$
Q(\theta) = \left[\frac{1}{N}\sum_{i=1}^{N} h(w_i, \theta)\right]^T \left[\frac{1}{N}\sum_{i=1}^{N} h(w_i, \theta)\right]
$$

example 1: for MM estimate in uniform distribution where $\theta = (a, b)$

$$
h(x, \theta) \triangleq \begin{bmatrix} x - (a+b)/2 \\ x^2 - (a^2 + ab + b^2)/3 \end{bmatrix}
$$

or we can choose

$$
h(x, \theta) \triangleq \begin{bmatrix} x - (a+b)/2 \\ (x - \mu)^2 - (b-a)^2/12 \end{bmatrix} = \begin{bmatrix} x - (a+b)/2 \\ (x - (a+b)/2)^2 - (b-a)^2/12 \end{bmatrix}
$$

example 2: for MM estimate in Γ distribution where $\theta = (\alpha, \beta)$

- $\mathbf{E}[Y^k] = \Gamma(\alpha + k) / (\beta^k \Gamma(\alpha))$
- regularity condition $\mathbf{E}[\nabla_{\theta} \log f(y; \theta)] = 0$

$$
\mathbf{E}[\nabla_{\theta} \log f(y; \theta)] = \begin{bmatrix} \log y - \psi(\alpha) + \log \beta \\ y - \alpha/\beta \end{bmatrix} = 0, \quad \psi(\alpha) = \frac{d \log \Gamma(\alpha)}{d \alpha}
$$

• if *y* is gamma then $1/y$ is inverse gamma distributed with $\mathbf{E}[1/Y] = \beta/(\alpha - 1)$

we can define any pair of 4 components in *h* to estimate (*α, β*)

$$
h(x,\theta) \triangleq \begin{bmatrix} x - \alpha/\beta \\ x^2 - \alpha(\alpha+1)/\beta^2 \\ \log x - \psi(\alpha) + \log \beta \\ 1/x - \beta/(\alpha-1) \end{bmatrix}
$$

two of all possible six choices are

$$
h_1(x,\theta) = \begin{bmatrix} x - \alpha/\beta \\ x^2 - \alpha(\alpha+1)/\beta^2 \end{bmatrix}, \quad h_2(x,\theta) = \begin{bmatrix} \log x - \psi(\alpha) + \log \beta \\ x - \alpha/\beta \end{bmatrix}
$$

- *•* the first MM estimate can be readily (and cheaply) obtained
- *•* the second MM estimate corresponds to the MLE estimate

Definition of GMM estimators

the GMM estimator is based on *m* conditions with *n* parameters to be estimated

- if $m = n$ the model is said to be just-identified and MM estimator is used
- *•* if *m > n* the model is said to be **overidentified** and MM cannot be applied

originally $\hat{\theta}$ is chosen so that $(1/N)\sum$ $\hat{h}(w_i, \hat{\theta})$ is as close to zero as possible

the **GMM estimators** $\hat{\theta}_{\text{gmm}}$ is instead defined to be the problem of minimizing

$$
Q(\theta) = \left[\frac{1}{N}\sum_{i=1}^{N}h(w_i, \theta)\right]^T W_N\left[\frac{1}{N}\sum_{i=1}^{N}h(w_i, \theta)\right]
$$

where $W \succ 0$, possibly stochastic but does not depend on θ

First-order condition for GMM estimators

differentiating *Q* w.r.t. *θ* yields the first-order conditions:

$$
\left[\frac{1}{N}\sum_{i=1}^{N}\frac{\partial h(w_i, \hat{\theta})}{\partial \theta}\right]^T W \left[\frac{1}{N}\sum_{i=1}^{N} h(w_i, \hat{\theta})\right] = 0
$$

- *•* the conditions are generally nonlinear in *θ*; use numerical method to solve it
- *•* diffferent choices of *W* lead to different estimators with different variances
- *•* the optimal choice of *W* is provided

Distribution of GMM estimator

assumptions:

- 1. the dgp imposes the moment condition: $\mathbf{E}[h(w,\theta^{\star})] = 0$
- 2. *h*(·) satisfies $h(w, \beta) = h(w, \theta)$ iff $\beta = \theta$
- 3. the following *m × n* matrix exists and is finite with rank *n*:

$$
A = \textbf{plim}(1/N) \sum_{i=1}^{N} \frac{\partial h(w_i, \theta^{\star})}{\partial \theta}
$$

- 4. $W_N \stackrel{p}{\rightarrow} W$ where W is finite positive definite
- $5. \ \ (1/\sqrt{N})\sum_{i=1}^{N}h(w_i,\theta^{\star})\overset{d}{\to}\mathcal{N}(0,B)$ where

$$
B = \textbf{plim}(1/N)\sum_{i=1}^{N}\sum_{j=1}^{N} h(w_i, \theta^{\star})h(w_j, \theta^{\star})^T
$$

then the GMM estimator $\hat{\theta}_{\text{gmm}}$, defined to be the root of

$$
\nabla_{\theta} Q(\theta) = 0
$$

is consistent for θ^* and

$$
\sqrt{N}(\hat{\theta}_{\mathrm{gmm}} - \theta^{\star}) \overset{d}{\to} \mathcal{N}(0, (A^TWA)^{-1}(A^TWBWA)(A^TWA)^{-1})
$$

special case:

• if the data are independent over *i* then *B* is simplified to

$$
B = \textbf{plim} \, \frac{1}{N} \sum_{i=1}^{N} h(w_i, \theta^{\star}) h(w_i, \theta^{\star})^T
$$

• in just-identified case $(m = n)$, the matrices A, W, B are square and invertible, the result on MM becomes

$$
\sqrt{N}(\hat{\theta}_{\text{mm}} - \theta^\star) \overset{d}{\to} \mathcal{N}(0, A^{-1}BA^{-T})
$$

Estimated asymptotic covariance

we use consistent estimates of *A, B*:

 \bullet estimate of A : replace θ^\star by $\hat{\theta}$

$$
\hat{A} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial h(w_i, \hat{\theta})}{\partial \theta}
$$

• estimate of *B*: consider when data are independent over *i*

$$
B = \frac{1}{N} \sum_{i=1}^{N} h(w_i, \hat{\theta}) h(w_i, \hat{\theta})^T
$$

GMM estimator is asymptotically normally distributed with mean θ^\star and estimated covariance is

$$
\widehat{\mathbf{Avar}}(\hat{\theta}_{\mathrm{gmm}}) = (1/N)(\hat{A}^T W_N \hat{A})^{-1} \hat{A}^T W_N \hat{B} W_N \hat{A} (\hat{A}^T W_N \hat{A})^{-1}
$$

Example on MM estimate of Gamma distribution

refer to the choice of *h* on page 11-17

$$
h(x,\theta) = \begin{bmatrix} \log x - \psi(\alpha) + \log \beta \\ x - \alpha/\beta \end{bmatrix}
$$

we can estimate *A* and *B*

$$
\hat{A} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial h(x_i, \hat{\theta})}{\partial \theta} = \begin{bmatrix} -\psi'(\hat{\alpha}) & 1/\hat{\beta} \\ -1/\hat{\beta} & \hat{\alpha}/\hat{\beta}^2 \end{bmatrix}
$$

$$
\hat{B} = \frac{1}{N} \sum_{i=1}^{N} h(x_i, \hat{\theta}) h(x_i, \hat{\theta})^T
$$

$$
\widehat{\mathbf{Avar}}(\hat{\theta}_{\text{gmm}}) = (1/N)\hat{A}^{-1}\hat{B}\hat{A}^{-T}
$$

by assuming that data are independent over *i*

Generalized Method of Moments 11-23

Simulation example

settings: the true parameter is $(\alpha, \beta) = (3, 4)$

- \bullet compute $\widehat{\mathbf{Avar}}(\hat{\theta}_{\mathrm{gmm}})$ computed on one data set with $N=1000$
- compute $\hat{\theta}$ from $10,000$ data sets and check histogram/sample covariance


```
estimate asymp cov theta =0.0154 0.0206
0.0206 0.0328
```

```
sample cov =0.0168 0.0224
0.0224 0.0354
```
- *•* the estimate of covariance (based on one data set) is similar to the sample covariance
- *•* histograms approach a normal distribution

References

Chapter 6 in

A.C. Cameron and P.K. Trivedi, *Microeconometircs: Methods and Applications*, Cambridge, 2005

Chapter 13 in

W.H. Greene, *Econometric Analysis*, Prentice Hall, 2008