2104664 Statistics for Financial Engineering and the statistic state of the sta

8. Instrumental Variables

- *•* model misspecification
- *•* instrument variable estimation
- *•* two-stage least-squares

Model Misspecification

factors that lead to inconsistency of LS estimate

- *•* inconsistency of LS estimate
- *•* endogenity

Inconsistency of LS

the two key conditions for showing consistency of LS are

- 1. the dgp is $y = X\beta + u$ (linear model)
- 2. $\text{plim}(1/N)X^{T}u = 0$

so that
$$
\hat{\beta}_{\text{ls}} = \beta + (N^{-1}X^TX)^{-1}N^{-1}X^Tu \overset{p}{\rightarrow} \beta
$$

LS estimate is inconsistent if

- *•* assuming wrong model for *y*, or
- *•* there is correlation of regressors (*X*) with the errors (*u*)

Endogenity

consider a scalar linear model

$$
y = x_1\beta_1 + x_2\beta_2 + \ldots + x_n\beta_n + u
$$

- *• x^j* is said to be **exogenous** in the model if *x^j* is *uncorrelated* with *u*
- *• x^j* is said to be **endogenous** in the model if *x^j* is *correlated* with *u*

if all *xj*'s are exogneous

$$
\mathbf{E}[ux_j] = 0 \quad \forall j \quad \Leftrightarrow \quad \mathbf{E}[X^T u] = 0
$$

a condition required for the consistency of LS estimate

factors that lead to endogeneity

- *•* omitted variables: due to data unavailability
- \bullet measurement errors: \tilde{X} measured for X , *e.g.*, X is marginal tax rate and \tilde{X} is average tax rate and \tilde{X} and u maybe correlated
- *•* simultaneity: when *X* is determined partly as a function of *y*, *e.g.*, *y* is city murder rate, *X* is size of the police force (usually recursively determined by the murder rate)

Omitted Variables

let the true dgp be

$$
y = X\beta + Z\alpha + v
$$

where X, Z are regressors, β, α are parameters to be estimated, and v is the error suppose *Z* is omitted owing to unavailability then the estimated model is

$$
y = X\beta + (Z\alpha + v)
$$

where the error term is now $u = Z\alpha + v$

$$
\hat{\beta}_{\rm ls} = \beta + (N^{-1}X^TX)^{-1}(N^{-1}X^TZ)\alpha + (N^{-1}X^TX)^{-1}(N^{-1}X^Tv)
$$

X is correlated with *Z*, so the LS estimate is **inconsistent** because

$$
\mathbf{plim}\,\hat{\beta}_{\mathrm{ls}}=\beta+\mathbf{plim}[(N^{-1}X^{T}X)^{-1}(N^{-1}X^{T}Z)]\alpha
$$

Motivation for instrumental variables estimation

consider a scalar linear regression model

$$
y = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n + u
$$

where all *xj*'s are exogenous except *xⁿ* that is endogenous (WLOG)

idea of IV: introduce a variable *z* such that

1. *z* is uncorrelated with *u*, *i.e.*, $\mathbf{E}[uz] = 0$

2. **E**[$x_n z$] $\neq 0$

xⁿ must be a linear projection onto **all** the exogenous variables

$$
x_n = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_{n-1} x_{n-1} + \alpha_n z + r
$$

where *r* is uncorrelated with $x_1, x_2, \ldots, x_{n-1}, z$

- *• z* is partially correlated with *xⁿ* once *x*1*, . . . , xⁿ−*¹ were netted out
- equivalent to saying the coefficient of *z* is nonzero: $\alpha_n \neq 0$

e.g., suppose *xⁿ* is the only explanatory in the model, then the projection is

$$
x_n = \alpha_n z + r
$$
, $\Rightarrow \alpha_n = \mathbf{E}[zx_n]/\mathbf{var}(z) \neq 0$

- *•* we say *z* is an *instrumental variable (IV)* candidate for *xⁿ*
- *• x*1*, x*2*, . . . , xⁿ−*¹ serve as their own instrumental variables
- *•* full list of IV is in fact the list of *exogenous* variables

Correlation diagrams

from the scalar regression model $y = x\beta + u$

- *z* is called an **instrument** or **instrumental variable** if
- *• z* is uncorrelated with the error *u* and
- *• z* is correlated with the regressor *x*

Identification of IV estimation

from the scalar model: $y = x\beta + u$ and the assumptions of IV

 $\mathbf{E}[zu] = 0, \quad \mathbf{E}[zx] \neq 0$

then the parameter can be uniquely obtained by

 $\beta = (\mathbf{E}[zx])^{-1}\mathbf{E}[zy]$

- condition $\mathbf{E}[zu] = 0$ provides the consistency of IV estimate
- condition $\mathbf{E}[zx] \neq 0$ provides that β can be *uniquely* estimated

Instrumental variable estimation

now consider the vector linear regression model: $y = X\beta + u$

Z is called an **instrument** if

- 1. $\mathbf{E}[Z^T u] = 0$ $(Z$ is uncorrelated with the error)
- 2. $\mathbf{E}[Z^TX]$ is full rank $(Z$ is correlated with the regressors)

under the above two conditions, an IV estimate is uniquely given by

$$
\hat{\beta}_{iv} = \left(\mathbf{E}[Z^TX] \right)^{-1} \mathbf{E}[Z^T y]
$$

or in practice, when *Z, X, y* are random samples

$$
\hat{\beta}_{\text{iv}} = \left(Z^T X\right)^{-1} Z^T y
$$

- \bullet rank condition $(\mathbf{E}[Z^TX]$ is full rank): provides the uniqueness of IV estimate
- \bullet endogeneity condition $(\mathbf{E}[Z^T u] = 0)$: provides the consistency of **I**V estimate

this follows from

$$
\hat{\beta}_{iv} = (Z^T X)^{-1} Z^T y = (Z^T X)^{-1} Z^T (X \beta + u) \n= \beta + (Z^T X)^{-1} Z^T u \n= \beta + (N^{-1} Z^T X)^{-1} N^{-1} Z^T u
$$

the IV estimator is consistent if

$$
\plim N^{-1}Z^T u = 0, \quad \text{and} \quad Z^T X \text{ is invertible (full rank)}
$$

Example of choosing an instrument

consider a wage equation

$$
\log(w) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 v + u
$$

where *w* is wage, *x* is experience, and *v* is education

assumption: find an instrument for *v* because *u* may contain omitted abilities

choice I: *z* is mother education; an instrument for *v*

- *• z* might be correlated with other omitted variables in *u* such as child's ability, family characteristics, etc
- *• z* may or may not be partially correlated with *v*

choise II: *z* is last digit of one's SSN

• z is too random; independent of *v* and other factors that affect earnings

choice III: *z* is a binary value having value 1 if a person was born in the first quarter of the birth year

- *• z* is independent of unobserved factors such as ability that affect wage
- *• z* is believed to be partially correlated with *v* (some people are forced to attend school by law)

Two-stage least squares

from the expression of the IV estimate

$$
\hat{\beta}_{\rm iv}=(Z^TX)^{-1}Z^Ty
$$

where $Z \in \mathbf{R}^{N \times l}, X \in \mathbf{R}^{N \times n}, y \in \mathbf{R}^{N \times 1}$

- \bullet for practical purpose, it's obvious that the inverse of Z^TX must exist
- Z is required to have the same $\#$ of columns as X ($\#$ of instruments $=$ $\#$ of regressors)
- *•* intuitively, choose the columns of *Z* that are highly correlated with *X*
- *•* choosing (or discarding) some instruments in *Z* follows the use of **two-stage least-squares (2SLS)**

first-stage regression: choose columns in *Z* that are most correlated with *X*

- *•* equivalent to computing projection *X* onto the column space of *Z*
- solve the LS problem of the model: $X = Z\alpha + e$ rror

$$
\hat{X} = Z\alpha = Z(Z^TZ)^{-1}Z^TX \triangleq PX
$$

• \hat{X} will serve as the instrument we choose

second-stage regression: use *X*ˆ as the instrument and run regression of *y*

$$
\hat{\beta}_{2SLS} = (\hat{X}^T X)^{-1} \hat{X}^T y = (X^T P X)^{-1} X^T P y
$$

- \bullet $P = Z(Z^TZ)^{-1}Z^T$ is a projection matrix (hence idempotent), *i.e.*, $P^2 = P$
- *•* the expression of the IV estimate can also be expressed as

$$
\hat{\beta}_{2SLS} = (X^T P^2 X)^{-1} X^T P y = (\hat{X}^T \hat{X})^{-1} \hat{X}^T y
$$

Asymptotic property of 2SLS

we can show that the 2SLS estimator is asymptotically normal distributed with

$$
\widehat{\mathbf{Avar}}(\hat{\beta}_{2SLS}) = N(X^TPX)^{-1} \left[X^TZ(Z^TZ)^{-1}\hat{S}(Z^TZ)^{-1}Z^TX \right] (X^TPX)^{-1}
$$

where \hat{S} can be computated as follows using **2SLS residuals**:

$$
\hat{u} = y - X\hat{\beta}_{2SLS}
$$

(not to be confused with the 2nd-stage residual: $\hat{u} = y - \hat{X} \hat{\beta}_{\text{2SLS}}$)

• **heteroskedastic errors**

$$
\hat{S}=N^{-1}Z^T\operatorname{\mathbf{diag}}(\hat{u}^2)Z
$$

• **homoskedastic errors**

$$
\hat{S} = \hat{\sigma}^2 Z^T Z / N, \quad \widehat{\mathbf{Avar}}(\hat{\beta}_{2SLS}) = \hat{\sigma}^2 (X^T P X)^{-1}
$$

Numerical example

Consider a dgp

$$
x = z + v, \quad y = 0.5x + u, \quad z \sim \mathcal{N}(0, 1)
$$

where (*u, v*) are joint normal with means 0 and variances 1 and correlation 0*.*8

- *• x* is correlated with *v* and hence with *u*, so OLS of *y* on *x* is inconsistent
- *• z* is uncorrelated with *u* but is correlated with *x*
- \bullet z can be a valid instrument and so can z^3

in this example, 2SLS and IV (using *z*) yields the same estimate

- use $N = 10,000$ and estimate the slope of $y = \beta x$ for 100 runs
- *•* OLS estimate is inconsistent
- $\bullet\,$ both IV estimates are consistent but IV with z^3 is less efficient (larger standard error)

Practical considerations

- *•* issues include determining if IV methods are necessary and determining if the instruments are valid
- *•* if the instruments are weakly correlated with the variables being instrumented
	- **–** IV estimators can be much less efficient than LS estimator
	- **–** IV estimators can have a finite-sample distribution that differs greatly from the asymptotic distribution
- $\bullet\,$ a weak instrument can be defined via some measures: R^2 or F -statistics (omitted here)

References

Chapter 4 in

A.C. Cameron and P.K. Trivedi, *Microeconometircs: Methods and Applications*, Cambridge, 2005