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6. Linear Regression

• linear least-squares/regression

• solving linear least-squares

• BLUE property

• distribution of LS estimators

• weighted least-squares and other variants
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Linear regression

• a linear relationship between variables y and xk using a linear function:

y = β1x1 + β2x2 + · · · + βnxn ≜ xTβ

where y ∈ Rm, x ∈ Rm×n, β ∈ Rn

• y contains the measurement variables and is often called the
regressed/response/explained/dependent variable

• xk’s are the input variables that explain the behavior of y; called the
predictor/explanatory/independent variables

• β is the regression coefficient
• example: product sale amount (unit) is explained by advertising costs (USD)

Sales = β1 · TV + β2 · Radio + β3 · News paper

β1 gives the average sale increase for one unit increase in TV ads (others fixed)

Linear Regression 6-2



• given a data set: {(xi, yi)}mi=1 we can form a matrix form
y1
y2...
ym

 =


x11 x12 · · · x1n

x21 x22 · · · x2n... ... ...
xm1 xm2 · · · xmn



β1

β2...
βn

 ≜ y = Xβ

• the matrix X is sometimes called the design/regressor matrix

• given y and X , one would like to estimate β that gives the linear model output
match best with y

• in practice, in the presence of noise and disturbance, more data should be collected
in order to get a better estimate – leading to overdetermined linear equations

• an exact solution to y = Xβ does not usually exist; however, it can be solved by
linear least-squares formulation
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Problem statement

overdetermined linear equations:

Xβ = y, X is m× n with m > n

for most y cannot solve for β

linear least-squares formulation:

minimize
β

∥y −Xβ∥2 =

 m∑
i=1

(

n∑
j=1

Xijβj − yi)
2

1/2

• r = y −Xβ is called the residual error

• β with smallest residual norm ∥r∥ is called the least-squares solution

• equivalent to minimizing ∥y −Xβ∥2
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Fitting linear least-squares

left: explain the sale amount by advertising on TV
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• left: sum squared distance of data points to the line is minimum (this line fits best)

• right: for two predictors, LS solution is the normal vector of hyperplane that lies
closest to all data points of y
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Example 1: data fitting

given data points {(ti, yi)}mi=1, we aim to approximate y using a function g(t)

y = g(t) := β1g1(t) + β2g2(t) + · · · + βngn(t)

• gk(t) : R → R is a basis function
– polynomial functions: 1, t, t2, . . . , tn
– sinusoidal functions: cos(ωkt), sin(ωkt) for k = 1, 2, . . . , n

• the linear regression model can be formulated as
y1
y2...
ym

 =


g1(t1) g2(t1) · · · gn(t1)
g1(t2) g2(t2) · · · gn(t2)... ...
g1(tm) g2(tm) · · · gn(tm)



β1

β2...
βn

 ≜ y = Xβ

• often have m ≫ n, i.e., explaining y using a few parameters in the model
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fitting a 6th-order polynomial to data points generated from f (t) = 1/(1 + t2)
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• (right) the weighted sum of basis functions (xk) is the fitted polynomial
• the ground-truth function f is nonlinear, but can be decomposed as a sum of

polynomials
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Example 2: scalar first-order model
given data set: {(u(t), y(t)}Nt=1, we aim to estimate a scalar ARX model

y(t) = ay(t− 1) + bu(t− 1) + e(t)

y(t) is linear in model parameters: a, b
y(2)
y(3)

...
y(N )

 =


y(1) u(1)
y(2) u(2)

... ...
y(N − 1) u(N − 1)

[
a
b

]

• the model is first-order, the equation is initialized with y(1), u(1)

• the model can be generalized to

y(t) = a1y(t− 1) + · · · + apy(t− p) + b1u(t− 1) + · · · + bmu(t−m) + e(t)

where θ = (a1, a2, . . . , ap, b1, b2, . . . , bm) is the parameter vector
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data generation:

• a = 0.8, b = 1 are true parameters

• e is white noise with variance 0.1

• PRBS input
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estimated parameters: â = 0.75, b̂ = 1.08
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Closed-form of least-squares estimate

the zero gradient condition of LS objective is

d

dβ
∥y −Xβ∥22 = −XT (y −Xβ) = 0

which is equivalent to the normal equation

XTXβ = XTy

if X is full rank:

• least-squares solution can be found by solving the normal equations

• n equations in n variables with a positive definite coefficient matrix

• the closed-form solution is β = (XTX)−1XTy

• (XTX)−1XT is a left inverse of X
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Properties of full rank matrices

suppose X is an m× n matrix; we always have

rank(X) ≤ min(m,n)

if X is full rank with m ≥ n (tall matrix)

• rank(X) = n and N (X) = {0} (Xz = 0 ⇔ z = 0)
• XTX is positive definite: for any z ̸= 0 then

zTXTXz = ∥Xz∥2 > 0

similarly, if X is full rank with m ≤ n (fat matrix)

• rank(X) = m and N (XT ) = {0}

• XXT is positive definite
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Geometric interpretation of a LS problem

• ∥y −Xβ∥2 is the distance from y to

Xβ = β1x1 + β2x2 + · · · + βnxn

• solution βls gives the linear combination of the columns of X closest to y

• Xβls is the orthogonal projection of y to the range of X
• Py gives the best approximation; for any ŷ ∈ R(X) and ŷ ̸= Py

∥y − Py∥ < ∥y − ŷ∥
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Numerical computation

we can solve a least-squares problem via

• Cholesky factorization: factor XTX ≻ 0 into LLT where L is lower triangular

• QR factorization

most programming languages provide built-in commands

returned output MATLAB Python
β̂ X\y scipy.linalg.lstsq
estimated model fitlm sklearn.linear model.LinearRegression

the closed-form β̂ = (XTX)−1XTy is for analysis purpose

we do not actually compute β̂ from this expression
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Analysis of LS estimate

• linear regression model in estimation

• analysis of LS estimate

– LS model with deterministic/fixed regressor
– LS model with stochastic regressor

• identification

• consistency

• asymptotic ditribution

Linear Regression 6-14



General regression model

the general regression model with additive errors is given by

y = E[y|X ] + u

• the data are (y,X) where y is observation and X is a matrix of explanatory
variables

• E[y|X ] is considered as a conditional function that gives the average value of y
given X

• u is a vector of unknown random errors/noise/disturbances

a linear regression model is obtained when E[y|X ] is linear in X
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Linear regression model

a linear regression model is

yi = xT
i β + u, i = 1, 2, . . . , N

in matrix notation
y = Xβ + u

• X ∈ RN×n is regression or sensor matrix

• y ∈ RN is the measurement, also called dependent variable or endogenous variable

• β ∈ Rn is the parameter vector (to be estimated)

• u ∈ RN is the error vector

• each row vector of X , xT
i is referred to as regressors/predictors or covariates
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Least-squares estimation

from the linear regression model

y = Xβ + u

the method is to choose an estimate β̂ that minimizes

∥Xβ̂ − y∥

i.e., minimize the deviation between what we actually observed (y), and what we
would observe if β = β̂, and there were no noise (u = 0)

the LS estimate is given by
β̂ls = (XTX)−1XTy

provided that X is full rank

Linear Regression 6-17



Analysis of the LS estimate (static case)
assumptions:

• u is white noise with zero mean and covariance matrix Σ

• the least-square estimate is given by

β̂ = argmin ∥Xβ − y∥

• the regressor X is deterministic

then the following properties hold:

• β̂ is an unbiased estimate of β (Eβ̂ = β, or β̂ = β when u = 0)

• the covariance matrix of β̂ is given by

cov(β̂) = (XTX)−1XTΣX(XTX)−1
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short proof: we can write the LS estimate as

β̂ = (XTX)−1XTy = (XTX)−1XT (Xβ + u) = β + (XTX)−1XTu

• since X is deterministic and u is zero mean, we have Eβ̂ = β

• the covariance of β̂ is derived by

cov(β̂) = E[(β̂ − Eβ̂)(β̂ − Eβ̂)T ]

but Eβ̂ = β and that β̂ − Eβ̂ = (XTX)−1XTu, hence,

cov(β̂) = cov[(XTX)−1XTu]

= (XTX)−1XT cov(u)X(XTX)−1

= (XTX)−1XTΣX(XTX)−1

if Σ = σ2I , then it reduces to cov(β̂) = σ2(XTX)−1
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BLUE property

assumptions: u is white noise with zero mean and unit covariance (cov(u) = I)

the estimator defined by
β̂ls = (XTX)−1XTy

is the optimum unbiased linear least-mean-squares estimator of β

assume β̂ = By is any other linear estimator of β

• require BX = I in order for ẑ to be unbiased
• cov(β̂) = BBT

• cov(β̂ls) = BX(XTX)−1XTBT (apply BX = I)

Using I −X(XTX)−1XT ⪰ 0, we conclude that

cov(β̂)− cov(β̂ls) = B(I −X(XTX)−1XT )BT ⪰ 0
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• BLUE property is also known as Gauss-Markov theorem

• the assumption that cov(u) = I (or could be σ2I) is equivalent to

– var(ui) = σ2 for all i, i.e., the error terms have the same variance
(homoskedasticity)

– cov(ui, uj) = 0 for i ̸= j, i.e., the error terms are uncorrelated

• the proof on the optimality use the fact that P = X(XTX)−1XT is an
orthogonal projection matrix with

– PT = P
– P 2 = P
– ∥Px∥ ≤ ∥x∥ for all x ∈ Rn

these properties imply that I − P ⪰ 0
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Properties of estimation errors

under the homoskedastic assumption ui ∼ N (0, σ2) and define

û = y −Xβ̂ls, RSS =

N∑
i=1

û2
i, s2 = RSS/(N − n) = (N − n)−1

N∑
i=1

û2
i

Facts:

• s2 is an unbiased estimate for σ2

• (N − n)s2/σ2 ∼ χ2(N − n) (require Gaussian assumption of ui)
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proof sketch:

• unbiased property of s2

– û = (I − P )y ≜ My where M is also an orhogonal projection matrix
– û = Mu from the dgp: y = Xβ + u and that MX = 0
– since M = I −X(XTX)−1XT we have and tr(M ) = tr(IN)− tr(In)
– use E∥û∥22 = E[uTMu] = E[tr(uTMu)]

• chi-square distribution of s2

– (N − n)s2/σ2 = ûT û/σ2 = uTMu/σ2

– use that ui/σ is standard Gaussian and that M is idempotent
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Analysis of the LS estimate (stochastic case)

X is not a deterministic matrix (e.g. LS estimate of time series model)

we will explore the following properties of LS estimate

• identification

• consistency

• asymptotic distribution
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Identification of LS estimate

the ability of LS etimate to permit identification of E[y|X ] is follows

for the linear model, β is identified if

1. E[y|X ] = Xβ

2. Xα = Xβ if and only if α = β

• 1st assumption: the conditional mean is correctly specified ensures that β is of
intrinsic interest

• 2nd assumption: equivalent to N (X) = {0} or X is full rank
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Consistency of LS estimate

assumptions:

1. the data generating process (dgp) is actually the linear model on page 6-16

2. plim(N−1XTX)−1 converges in probability to a finite nonzero matrix

3. plimN−1XTu = 0

the LS estimate can be expressed as

β̂ls = β + (XTX)−1XTu = β + (N−1XTX)−1N−1XTu

apply rules of limit in probability and use the assumptions

plim β̂ls = β + plim(N−1XTX)−1 · plimN−1XTu = β
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Distribution of LS estimator

assumptions:

1. the dgp model is y = Xβ + u or yi = xT
i βi + ui for i = 1, . . . , N

2. data are independent over i (but not identically distributed) with

E[u|X ] = 0, E[uuT |X ] = D = diag(σ2
i )

3. X is full rank
4. Σx = plimN−1XTX exists and finite nonsingular

5. by CLT, 1√
N
XTu

d→ N (0,Σux) where Σux = plimN−1XTuuTX

then the LS estimate β̂ls is consistent for β and
√
N (β̂ls − β)

d→ N (0,Σ−1
x ΣuxΣ

−1
x )
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Proof. with rescaling from page 6-26, the LS estimate can be expressed as

√
N (β̂ls − β) =

(
1

N
XTX

)−1
1√
N
XTu

• assumption 2: xiui are independent, so by CLT (on page 5-43) and weak LLN

(1/
√
N )XTu = (1/

√
N )

N∑
i=1

xiui
d→ N (0,Σux), where

Σux = lim 1

N

N∑
i=1

E[xix
T
i u

2
i ] (note: E[uixi] = 0)

= lim 1

N

∑
i

E[E[u2
ixix

T
i |xi]] = lim 1

N

∑
i

E[E[u2
i|xi]xix

T
i ]

= lim 1

N

∑
i

E[σ2
ixix

T
i ] = lim 1

N
E[XTDX ]
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• assumption 3,4 and by weak LLN (on page 5-12)

1

N
XTX =

1

N

N∑
i=1

xix
T
i

p→ Σx = lim 1

N

N∑
i=1

E[xix
T
i ]

• by continuous mapping theorem and that the inverse operator is continuous on the
space of invertible matrices

(
1

N
XTX

)−1
p→ Σ−1

x

• by product limit normal rule (on page 5-17), we obtained the desired result where

√
N (β̂ls − β)

d→ N (0,Σ−1
x ΣuxΣ

−1
x )
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Error assumptions

we explore the variance of LS estimate under two conditions on the error, u

• (conditional) homoskedasticity: ui has the same variance for all i, σ2

E[uuT |X ] = D = σ2I

• (conditional) heteroskedasticity: ui may have different variance, σ2
i

E[uuT |X ] = D = diag(σ2
i )

for both cases, it means ui’s are uncorrelated, i.e., D is diagonal

if ui’s are correlated, then D is only symmetric
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Asymptotic Variance Matrix of LS estimate

the asymptotic variance matrix of the distribution and the estimate are

P = Σ−1
x ΣuxΣ

−1
x , Avar(β̂) = N−1P

where

Σux = lim 1

N
E[XTDX ], Σx = lim 1

N
E[XTX ], D = diag(σ2

i )

define the LS residual
û = y −Xβ̂

the asymptotic covariance matrices can be substituted by their estimates

Σ̂ux =
1

N
XT D̂X, Σ̂x =

1

N
XTX, D̂ = diag(û2)
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homoskedascity assumption: the estimated variance matrix can be simplified

if we assume homoskedasticity, E[u2
i|xi] is the same across i, i.e., D = σ2I

hence, Σux = σ2Σx and the asymptotic variance matrix reduces to

Avar(β̂ls) = N−1P = N−1σ2Σ−1
x

its estimate is given by

σ̂2 = ∥û∥22/(N − n), Âvar(β̂ls) = N−1σ̂2Σ̂−1
x = σ̂2(XTX)−1

• compare with the result on page 6-18

• σ̂2 is a consistent estimate of σ2, regardless of the normalization N − n

• many computer packages use this as the default OLS variance estimate
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consistency proof of σ̂2

• apply the definition and dgp: y = Xβ + u where u is homoskedastic

σ̂2 =
1

N − n
uTMu =

N

N − n

[
uTu

N
−
(
uTX

N

)(
XTX

N

)−1(
XTu

N

)]

• apply the limit in probability and the product limit rule
– limN→∞N/(N − n) = 1
– plim(1/N )uTu = σ2 (weak LLN)
– plim(1/N )XTX = Σx (assume to obtain positive matrix in large samples)
– plim(1/N )XTu = 0 (assume E[u|X ] = 0)

(1/N )XTu = (1/N )

N∑
i=1

uixi
p→ E[uixi] = Ex[E[uixi|xi]] = Ex[xiE[ui|xi]] = 0

• note that the proof follows even when the division is not N − n (e.g., N)
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heteroskedascity assumption: the asymptotic variance matrix is

Avar(β̂ls) = N−1Σ−1
x ΣuxΣ

−1
x

and its estimate is

Âvar(β̂ls) = N−1Σ̂−1
x Σ̂uxΣ̂

−1
x = (XTX)−1XT D̂X(XTX)−1

where D̂ = diag(û2) and û = y −Xβ̂

• Âvar(β̂ls) is called heteroskedastic-consistent estimate of Avar(β̂ls)

• many names for the standard errors, the square roots of the diagonals of Âvar(β̂ls)

– white standard errors
– heteroskedasticity-robust standard errors
– huber standard errors
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Weighted least-squares

given W a positive definite matrix that can be factorized as W = LTL

a weighted least-squares (WLS) problem is

minimize
x

(Xβ − y)TW (Xβ − y)

• equivalent formulation: minimizex ∥L(Xβ − y)∥2

• can be solved from the modified normal equation

XTWXβ = XTWy

• the solution is β̂wls = (XTWX)−1XTWy (if X is full rank)
• Xβwls is the orthogonal projection on R(X) w.r.t the new inner product

⟨x, y⟩W = ⟨Wx, y⟩
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Interpretation of WLS

when m-measurements contain some outliers (samples 3,9,10)
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using W = diag(w1, w2, . . . , wm) gives WLS objective:
∑m

i=1wi(yi − xT
i β)

2

• use relatively low w3, w9, w10 to penalize less on those samples
• the linear model tends not to adapt to outliers – making WLS a more robust

method than LS
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Generalized Least-Squares Estimator

revisit BLUE property of LS: suppose cov(u) is not I , says E[uuT ] = Σ ≻ 0

scale the equation y = Xβ + u by Σ−1/2

Σ−1/2y = Σ−1/2Xβ + Σ−1/2u

the optimal unbiased linear least-mean-squares estimator of β is

β̂gls = (XTΣ−1X)−1XTΣ−1y

this is a special case of weighted least-squares solution when W = Σ−1

• if Σ is known the weighted LS estimate is BLUE if W = Σ−1

• large Σii means ui is more uncertain, so we should put less penalty on this residual

• this solution is known as generalized least-squares estimator
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Feasible Generalized Least-Squares Estimator

the GLS estimator cannot be implemented because cov(u) = Σ is not known

if we replace Σ by a Σ̂ in GLS estimator then it yields

β̂fgls = (XT Σ̂−1X)−1XT Σ̂−1y

known as the feasible generalized least-squares (FGLS) estimator

let us specify that Σ = Σ(γ) where γ is a parameter vector

√
N (β̂fgls − β)

d→ N
[
0,
(
plimN−1XTΣ−1X

)−1
]

if we use Σ̂ = Σ(γ̂) and γ̂ is consistent for γ

conclusion: FGLS estimator is a special case of weighted LS estimator

Linear Regression 6-38



Analysis of the WLS estimate (static case)

assumptions:

• the dgp is y = Xβ + u

• u is white noise with zero mean and covariance matrix Σ

• the weighted least-square estimate is given by β̂ = (XTWX)−1XTWy

• the regressor X is deterministic

then the following properties hold:

• β̂ is an unbiased estimate of β (Eβ̂ = β, or β̂ = β when u = 0)

• the covariance matrix of β̂ is given by

cov(β̂) = (XTWX)−1XTWΣWX(XTWX)−1
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Asymptotic asymptotic covariance matrix of WLS
assumptions: (dynamic case)

• the dgp is y = Xβ + u

• u is white noise with zero mean and covariance matrix Σ

• the weighted least-square estimate is given by β̂ = (XTWX)−1XTWy

• the regressor X is stochastic

then the estimated asymptotic covariance matrix of WLS estimator is

Âvar(β̂wls) = (XTWX)−1XTW Σ̂WX(XTWX)−1

where Σ̂ (estimated covariance matrix of error) is such that

plimN−1XTW Σ̂WX = plimN−1XTWΣWX

conclusion: W must be chosen to be a good estimate of Σ−1
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MATLAB functions

• fitlm fits a linear regression

• glmfit fit a generalized linear model (linear regression is a special case and the
default option)

• fgls solve feasible generalized least squares

• robustfit fit robust regressions
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