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6. Linear Regression

linear least-squares/regression
solving linear least-squares
BLUE property

distribution of LS estimators

weighted least-squares and other variants
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Linear regression

a linear relationship between variables y and ;. using a linear function:

y = Bix1+ Boxo + -+ - + BnTn = $T5

where y € R™, 2 € R™*", B € R"

y contains the measurement variables and is often called the
regressed /response/explained /dependent variable

xy's are the input variables that explain the behavior of y; called the
predictor/explanatory/independent variables

B is the regression coefficient

example: product sale amount (unit) is explained by advertising costs (USD)
Sales = 31 - TV + 35 - Radio + 33 - News paper

B1 gives the average sale increase for one unit increase in TV ads (others fixed)
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e given a data set: {(x;,y;)}*, we can form a matrix form

U1 11 T12 o Tin B

Y  [T2ar X2 -+ Ton B A B

. o . . . . o y o X/B
_ym_ _xml Lm?2 et xmn_ _ﬁn_

e the matrix X is sometimes called the design/regressor matrix

e given y and X, one would like to estimate (3 that gives the linear model output
match best with y

e in practice, in the presence of noise and disturbance, more data should be collected
in order to get a better estimate — leading to overdetermined linear equations

e an exact solution to y = X (3 does not usually exist; however, it can be solved by
linear least-squares formulation
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Problem statement

overdetermined linear equations:
Xp=y, XismXxXnwithm>n

for most y cannot solve for (3
linear least-squares formulation:

1/2

miniﬂmize ly — X B2 = Z(Z X85 — vi)®

i=1 j=1

o v =1y — X[ is called the residual error
e [ with smallest residual norm ||| is called the least-squares solution

e equivalent to minimizing ||y — X 3]
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Fitting linear least-squares

left: explain the sale amount by advertising on TV

_ Sales (Unit)

| | | |
100 50 20 250 0 ; l:
Advertised cost on TV (USD) x2 1

e left: sum squared distance of data points to the line is minimum (this line fits best)

e right: for two predictors, LS solution is the normal vector of hyperplane that lies
closest to all data points of y
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Example 1: data fitting

given data points {(¢;,y;) }/*,, we aim to approximate y using a function g(t)

e gi(t) : R — R is a basis function

— polynomial functions: 1,¢, ¢, ...t
— sinusoidal functions: cos(wyit), sin(wgt) for k =1,2,...,n

e the linear regression model can be formulated as

Y1
Y2

Ym

g1(t1)
g1 (.752)

gl<;5m)

g2(t1)
g2(t2)

g2(tm)

B
B

5,

Yy = g(t) = 5191(75) + 6292<t> +oee 5ngn<t>

e often have m > n, i.e., explaining y using a few parameters in the model
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fitting a 6th-order polynomial to data points generated from f(t) = 1/(1 + t?)
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e (right) the weighted sum of basis functions (z*) is the fitted polynomial

5

e the ground-truth function f is nonlinear, but can be decomposed as a sum of
polynomials
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Example 2: scalar first-order model

given data set: {(u(t),y(t)},, we aim to estimate a scalar ARX model
y(t) =ay(t —1)+bu(t — 1) +e(t)

y(t) is linear in model parameters: a, b

y(2) y(1) u(l)

y@3) | _ | w2 u(2) H
: : : b

y(N)] YN =1) u(N-—1)]

e the model is first-order, the equation is initialized with y(1), u(1)

e the model can be generalized to
yt)=ayt —1)+---+apylt —p) +bu(t — 1)+ - + bpu(t —m) +e(t)

where 0 = (a1, as,...,ap,b1, b, ..., by,) is the parameter vector
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data generation:

e ¢ =0.8,b=1 are true parameters

e ¢ is white noise with variance 0.1

e PRBS input
PRBS input 5
1t — 1 — e M M 4l —e—act.ualoutput
3 —e— estimate
0.5f > ° ®
1%’ 2o T W ﬁ
0 = JHII W B
I AT TS AT
d ! I [V) E I )
05 2%
) S S e [ 10 20 30 40
10 20 30 40 50

estimated parameters: a = 0.75, b =1.08
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Closed-form of least-squares estimate

the zero gradient condition of LS objective is

Ty = XBI3 = ~XT(y ~ XB) =0
which is equivalent to the normal equation
XT'xp=Xx1y
if X is full rank:

e |east-squares solution can be found by solving the normal equations
e 1 equations in n variables with a positive definite coefficient matrix
e the closed-form solution is 8 = (X1 X)~1 X1y

o (XTX)"1X" is a left inverse of X

Linear Regression
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Properties of full rank matrices
suppose X is an m X n matrix; we always have
rank(X) < min(m,n)
if X is full rank with m > n (tall matrix)

e rank(X)=nand N(X)={0} (Xz=0< 2z=0)

o X1 X is positive definite: for any z # 0 then

XXz = Xz2]]* >0

similarly, if X is full rank with m < n (fat matrix)

e rank(X) =m and N(X1) = {0}

e X X7 is positive definite

Linear Regression
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Geometric interpretation of a LS problem

e ||y — X ||z is the distance from y to

XpB =P+ Baxa+ -+ + BnTn

e solution () gives the linear combination of the columns of X closest to y
e X [ is the orthogonal projection of y to the range of X
e Py gives the best approximation; for any y € R(X) and y # Py

ly — Pyl < ly —yll
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Numerical computation

we can solve a least-squares problem via

e Cholesky factorization: factor X7 X > 0 into LL’ where L is lower triangular

e QR factorization

most programming languages provide built-in commands

returned output  MATLAB Python

15 X\y scipy.linalg.Istsq
estimated model fitlm sklearn.linear_model.LinearRegression

the closed-form (3 = (XTX)~1X Ty is for analysis purpose
we do not actually compute B from this expression
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Analysis of LS estimate

e linear regression model in estimation

e analysis of LS estimate

— LS model with deterministic/fixed regressor
— LS model with stochastic regressor

e identification
e consistency

e asymptotic ditribution
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General regression model

the general regression model with additive errors is given by
y = E[y|X]+u

e the data are (y, X) where y is observation and X is a matrix of explanatory
variables

e E[y|X] is considered as a conditional function that gives the average value of y
given X

e w is a vector of unknown random errors/noise/disturbances

a linear regression model is obtained when E|y| X] is linear in X
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Linear regression model

a linear regression model is
=] =1,2,...,N
yz_xz'ﬁ_'_ua t=1,4,...,

in matrix notation
y=XB+u
e X € RV*™ is regression or sensor matrix
o Yy E R” is the measurement, also called dependent variable or endogenous variable
e 5 € R" is the parameter vector (to be estimated)
N .
e u € R is the error vector

e each row vector of X, ZEZT is referred to as regressors/predictors or covariates
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Least-squares estimation

from the linear regression model
y=X0+u
the method is to choose an estimate B that minimizes
1X3 -yl

i.e., minimize the deviation between what we actually observed (y), and what we
would observe if 8 = /3, and there were no noise (u = 0)

the LS estimate is given by

Bls _ <XTX>_1XTy
provided that X is full rank

Linear Regression 6-17



Analysis of the LS estimate (static case)

assumptions:

e U is white noise with zero mean and covariance matrix X

e the least-square estimate is given by

A

B = argmin || X5 — y|
e the regressor X is deterministic
then the following properties hold:
e (s an unbiased estimate of 3 (EB = 3, or B =3 when u = 0)
e the covariance matrix ofB is given by

cov(f) = (XTX) ' XTex(xTx)™!

Linear Regression
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short proof: we can write the LS estimate as
B=(XTX)"'XTy = (XTX)"'XT(XB+u) =B+ (XTX)"' X u

e since X is deterministic and u is zero mean, we have Ef5 = (5

e the covariance ofB is derived by
cov(3) = E[(5 — EB)(5 — EB)”]

but ES = 3 and that 3 — Ef = (XTX)~1X"Tu, hence,

AN

cov(fB) = cov[(XTX) X1
= (X'X)"'XT cov(u) X(XTX)™!
= (X'X) ' XTex(xtx)™!
if 3 = 021, then it reduces to cov(ﬁA) =o?(XTX)™!
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BLUE property

assumptions: u is white noise with zero mean and unit covariance (cov(u) = I)

the estimator defined by A
Bs = (XTX)"' Xy
is the optimum unbiased linear least-mean-squares estimator of (3

assume B = By is any other linear estimator of 3

e require BX = I in order for z to be unbiased
e cov(f) = BBT
e cov(fy) = BX(XTX)'XTBT (apply BX =1I)

Using I — X(XTX)71XT = 0, we conclude that

cov(f) — cov(B) = B(I — X(XTX)"'XxT)BT = 0
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e BLUE property is also known as Gauss-Markov theorem

e the assumption that cov(u) = I (or could be o*I) is equivalent to

— var(u;) = o for all 4, i.e., the error terms have the same variance
(homoskedasticity)
— cov(u;,u;) =0 for ¢ # 7, i.e., the error terms are uncorrelated

e the proof on the optimality use the fact that P = X (X1 X)71 X7 is an
orthogonal projection matrix with

-pPT=p
- P:=P
— ||[Px|| < ||z|| for all x € R"

these properties imply that I — P > 0
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Properties of estimation errors

under the homoskedastic assumption u; ~ N(0, 0?) and define

AN

N N
i=y—XBs, RSS=) a;, s*=RSS/(N—n)=(N-n)"") 4
1=1 1=1

Facts:

2

e s2is an unbiased estimate for o

o (N—n)s?/o* ~ x*(N —n) (require Gaussian assumption of ;)
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proof sketch:

e unbiased property of s

— 4= (I — P)y & My where M is also an orhogonal projection matrix

— u = Mwu from the dgp: y = X + u and that M X =0

— since M =T — X(X*'X)"1 X" we have and tr(M) = tr(Iy) — tr(1,)
— use E||4]|3 = E[u! Mu] = E[tr(ul Mu)]

e chi-square distribution of s?

- (N —n)s?*/o? = alu/o? = ul Mu/o?
— use that u; /o is standard Gaussian and that M is idempotent

Linear Regression 6-23



Analysis of the LS estimate (stochastic case)

X is not a deterministic matrix (e.g. LS estimate of time series model)

we will explore the following properties of LS estimate

e identification
e consistency

e asymptotic distribution
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Identification of LS estimate

the ability of LS etimate to permit identification of E[y|X] is follows

for the linear model, (3 is identified if

1. Ely|X]=Xp
2. Xa=XpPitandonlyif a =f
e 1st assumption: the conditional mean is correctly specified ensures that (3 is of

Intrinsic interest

e 2nd assumption: equivalent to V(X)) = {0} or X is full rank
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Consistency of LS estimate

assumptions:

1. the data generating process (dgp) is actually the linear model on page 6-16
2. plim(N~1X?X)~! converges in probability to a finite nonzero matrix

3. piim N ' XTu =0
the LS estimate can be expressed as

Bs=0+(XTX) "' XTu =8+ (N'XTX)"IN"'XTy
apply rules of limit in probability and use the assumptions

plim 3, = 8 + plim(N ' X' X)"!. plim N 'X1u =7
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Distribution of LS estimator

assumptions:

1. the dgp model isy = X3 +wory; =zl B; +u; fori=1,...,N

2. data are independent over i (but not identically distributed) with
E[u/X] =0, E[uu'|X]= D = diag(c?)

3. X is full rank

4. ¥, = plim N 7' X1 X exists and finite nonsingular
5. by CLT, - XTu 4 N(0, Sue) where Sy = plim N X TuuT X

then the LS estimate Bls is consistent for 3 and

VN(Bis — 8) 5 N0, 1850
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Proof. with rescaling from page 6-26, the LS estimate can be expressed as

VN(Bs — B) = (%XTX> h \/%XTU

e assumption 2: x;u; are independent, so by CLT (on page 5-43) and weak LLN

(1/VN)XTu = (1/V/N) z:a:zuZ 4 N(0,S0z),  where

1=1

ux—hm—Zme u;]  (note: Efu;x;] = 0)
—hm—ZE Eluiez] |z —hm—ZE CHENE

1
— lim — Z Elo2z;zT] = lim NE[XTDX]
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e assumption 3,4 and by weak LLN (on page 5-12)

| ] & ] &
NXTX =N ;ajzx;f EN Y, = lim — ; E[ﬂi‘zﬂ??]

e by continuous mapping theorem and that the inverse operator is continuous on the
space of invertible matrices

1 —1
(NXTX> L

e by product limit normal rule (on page 5-17), we obtained the desired result where

VN(Bs— B) 5 N0, 57185
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Error assumptions

we explore the variance of LS estimate under two conditions on the error, u
e (conditional) homoskedasticity: u; has the same variance for all 7, o

Eluu’|X] = D = ¢*I

2

e (conditional) heteroskedasticity: u; may have different variance, o;

Ejuu’|X] = D = diag(c?)

for both cases, it means u;'s are uncorrelated, i.e., D is diagonal

if u;'s are correlated, then D is only symmetric
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Asymptotic Variance Matrix of LS estimate

the asymptotic variance matrix of the distribution and the estimate are
P=Y71%,.2"1 Avar(f)=N"'P
where
Nz = lim %E[XTDX], ¥, = lim %E[XTX], D = diag(c7)

define the LS residual
u=y—Xp
the asymptotic covariance matrices can be substituted by their estimates

. 1 o . 1 A
Sz = NXTDX, S = NXTX, D = diag(u*)
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homoskedascity assumption: the estimated variance matrix can be simplified
if we assume homoskedasticity, E[u?|z;] is the same across i, i.e., D = o*I

hence, ¥, = 0°Y, and the asymptotic variance matrix reduces to
Avar(f) = N7'P = N~ lo?y !
its estimate is given by
62 = |[al3/(N —n), Avar(fy) = N"'6?2;' = 6%(xTx) ™!

e compare with the result on page 6-18
e &2 is a consistent estimate of o2, regardless of the normalization N — n

e many computer packages use this as the default OLS variance estimate

Linear Regression
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consistency proof of 62

e apply the definition and dgp: y = X 3 + u where u is homoskedastic
T T T —1 T
52 1 T N o — N fuu (u X\ /(X'X X'u
N —n N—-n| N N N N

e apply the limit in probability and the product limit rule
— limy oo N/(N —n) =1

— plim(1/N)ultu = o* (weak LLN)
— plim(1/N)XTX =%,  (assume to obtain positive matrix in large samples)
— plim(1/N) X% u =0 (assume E[u|X] = 0)

(1/N)XTu = (1/N) Zuzxz EN Elu;x;] = Ex|Elu;x;|x;]] = Eglx;Elu|z;]] =0

e note that the proof follows even when the division is not N —n (e.g., IV)
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heteroskedascity assumption: the asymptotic variance matrix is
Avar(f) = N2y, 50t

and its estimate is

AN A

m(ﬁlg) _ N—lz—liuxz—l _ (XTX>—1XTZA)X(XTX>—1

x x

where D = diag(4?) and & =y — X3

/\

o Avar(Bls) is called heteroskedastic-consistent estimate of Avar(ﬁls)

—_—

e many names for the standard errors, the square roots of the diagonals of Avar(Bls)

— white standard errors
— heteroskedasticity-robust standard errors
— huber standard errors
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Weighted least-squares

given T a positive definite matrix that can be factorized as W = LY L

a weighted least-squares (WLS) problem is
minimize (X3 —y)!W(XB —y)
e equivalent formulation: minimize, |L(XS3 —y)|*

e can be solved from the modified normal equation

XTwxp=X"Wy

e the solution is Byis = (XTW X)L XTWy (if X is full rank)

o X (s is the orthogonal projection on R(X) w.r.t the new inner product

<xvy>W — <W:C7 y>
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Interpretation of WLS

when m-measurements contain some outliers (samples 3,9,10)

3.5

3 L

using W = diag(wy, ws, ..., w,,) gives WLS objective: Z:’ll w;(y; — xl B)?

o data
—LS ||
WLS

e use relatively low ws, wq, wqy to penalize less on those samples

e the linear model tends not to adapt to outliers — making WLS a more robust

method than LS

Linear Regression
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Generalized Least-Squares Estimator

revisit BLUE property of LS: suppose cov(u) is not I, says E[uul] =3 = 0
scale the equation y = X3 4+ u by 71/2
STy =STPX B4+ N
the optimal unbiased linear least-mean-squares estimator of (3 is
Bgls — (XTy1x)"Lx Tyl
this is a special case of weighted least-squares solution when W = X!

e if 2 is known the weighted LS estimate is BLUE if W = X!
e large >;; means u; is more uncertain, so we should put less penalty on this residual

e this solution is known as generalized least-squares estimator
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Feasible Generalized Least-Squares Estimator
the GLS estimator cannot be implemented because cov(u) = ¥ is not known
if we replace X by a >) in GLS estimator then it yields

Bfgls — (X5 1x)~Lx Ty
known as the feasible generalized least-squares (FGLS) estimator

let us specify that ¥ = >() where y is a parameter vector
VN (Bigs = B) 5 N |0, (plim N~ X T2 ~1x) |

if we use & = X(4) and 4 is consistent for ~y

conclusion: FGLS estimator is a special case of weighted LS estimator
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Analysis of the WLS estimate (static case)
assumptions:

e thedgpisy=XG+u
e wu is white noise with zero mean and covariance matrix X
e the weighted least-square estimate is given by 3 = (XTWX)"1XTWy

e the regressor X is deterministic

then the following properties hold:

e (3 is an unbiased estimate of 3 (EB = 8, or B =3 when u = 0)
e the covariance matrix ofB is given by

cov(f) = (XTWX) ' XTWEw X (XTwx)™!
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Asymptotic asymptotic covariance matrix of WLS

assumptions: (dynamic case)

e thedgpisy=XG+u
e wu is white noise with zero mean and covariance matrix X
e the weighted least-square estimate is given by 3 = (XTWX)1XTWy

e the regressor X is stochastic
then the estimated asymptotic covariance matrix of WLS estimator is
Avar(By) = (XTWX) ' XTWEW X (XTW X) ™
where . (estimated covariance matrix of error) is such that
plim N ' XTWEW X = plim N ' XTWEW X
conclusion: W must be chosen to be a good estimate of X!
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MATLAB functions

e fitlm fits a linear regression

e glmfit fit a generalized linear model (linear regression is a special case and the
default option)

e fgls solve feasible generalized least squares

e robustfit fit robust regressions
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