2104664 Statistics for Financial Engineering

Jitkomut Songsiri

7. Variable selection in regression

- significance test
- variable selection
- step-wise regression

Recap of linear regression

a linear regression model is

$$y = X\beta + u, \quad X \in \mathbf{R}^{N \times n}$$

homoskedasticity assumption: u_i has the same variance for all i, given by σ^2

- prediction (fitted) error: $\hat{u} := \hat{y} y = X\hat{\beta} y$
- residual sum of squares: $RSS = ||\hat{u}||_2^2$
- a consistent estimate of σ^2 : $s^2 = RSS/(N-n)$
- $(N-n)s^2 \sim \chi^2(N-n)$ (under Gaussian assumption on u)
- square root of s^2 is called **standard error of the regression**
- $\operatorname{Avar}(\hat{\beta}) = s^2 (X^T X)^{-1}$ (estimated asymptotic covariance)

Significance tests for linear regression

• testing a hypothesis about a coefficient

$$H_0: \beta_k = 0 \quad \text{VS} \quad H_1: \beta_k \neq 0$$

we can use both t and F statistics

• testing using the fit of the regression

 H_0 : reduced model VS H_1 : full model

if H_0 were true, the reduced model ($\beta_k = 0$) would lead to smaller prediction error than that of the full model ($\beta_k \neq 0$)

Testing a hypothesis about a coefficient

statistics for testing hypotheses:

$$H_0: \beta_k = 0$$
 VS $H_1: \beta_k \neq 0$

•
$$\frac{\hat{\beta}_k}{\sqrt{s^2((X^TX)^{-1})_{kk}}} \sim t_{N-n}$$

•
$$\frac{(\hat{\beta}_k)^2}{s^2((X^TX)^{-1})_{kk}} \sim F_{1,N-n}$$

the above statistics are Wald statistics (see derivations in Greene book)

- the term $\sqrt{s^2((X^TX)^{-1})_{kk}}$ is referred to standard error of the coefficient
- the expression of SE can be simplified or derived in many ways (please check)
- e.g. MATLAB, R use *t*-statistic (two-tail test)

Testing on reduced models

hypotheses are based on the fitting quality of reduced/full models

 H_0 : reduced model VS H_1 : full model

reduced model: $\beta_k = 0$ and full model: $\beta_k \neq 0$

the F-statistic used in this test

$$\frac{(\text{RSS}_R - \text{RSS})}{\text{RSS}/(N-n)} \sim F(1, N-n)$$

- RSS_R and RSS are the residual sum squares of reduced and full models
- RSS_R cannot be smaller than RSS, so if H_0 were true, then the F statistic would be zero
- \bullet e.g. fitlm in MATLAB use this F statistic, or in ANOVA table

F-test for regression

most statistical softwares assume an *intercept* term in the model

$$y = \beta_0 + X_1 \beta_1 + \dots + X_n \beta_n$$

we ask if all of the regression coefficients are zero (except β_0)

 $H_0: \beta_1 = \beta_2 = \cdots = \beta_n = 0$, VS $H_1:$ at least one β_j is non-zero

the F-statistic is

$$F = \frac{(\text{TSS} - \text{RSS})/n}{\text{RSS}/(N - n - 1)} \sim F(n, N - n - 1)$$

where $TSS = \sum (y_i - \bar{y})^2 = \|y - \bar{y}\mathbf{1}\|_2^2$ (to test a regression versus a constant model)

- if linear model assumption is correct then we can show $\mathbf{E}[\mathrm{RSS}/(N-n-1)] = \sigma^2$
- $\mathbf{E}[(TSS RSS)/n] = \sigma^2$ if H_0 is true and is $> \sigma^2$ if H_1 is true
- if no relationship between predictors and y then F-statistic should be close to 1
- this F statistic is reported in almost all regression software (test model versus constant model)

proof sketch of F statistic

let $(\hat{\beta}_0, \hat{u}_0)$ and $(\hat{\beta}, \hat{u})$ be (solution, error) of restricted and unrestricted models resp.

$$\hat{u}_0 = y - X\hat{\beta}_0 = \hat{u} - X(\hat{\beta}_0 - \hat{\beta}) \implies \hat{u}_0^T\hat{u}_0 = \hat{u}^T\hat{u} + (\hat{\beta}_0 - \hat{\beta})^T X^T X(\hat{\beta}_0 - \hat{\beta})$$

- above equation needs the result that $X^T \hat{u} = 0$ (optimal residual is orthogonal to regressor)
- RSS in restricted model must be greater than that of full model
- the difference between restricted and full RSS is chi-square distributed under H_0

$$(1/\sigma^2)(\hat{u}_0^T\hat{u}_0 - \hat{u}^T\hat{u}) \triangleq (\mathsf{TSS-RSS})/\sigma^2 = (\hat{\beta}_0 - \hat{\beta})^T (\sigma^2 (X^T X)^{-1})^{-1} (\hat{\beta}_0 - \hat{\beta}) \sim \mathcal{X}^2(n)$$

(see more in Wald test statistics)

- $\operatorname{RSS}/\sigma^2 = (N n 1)s^2/\sigma^2 \sim \mathcal{X}^2(N n 1)$
- $\bullet\,$ ratio of two chi-square variables is then an F distribution

Example: single VS multiple regressions

we explore Advertising data set³

- we regress the units of **sales** (in thousand) on different budgets of advertising channels: **TV**, **radio and newspaper** (in thousand dollars) for 200 different markets
- performing single and multiple regressions can give different results ?

³taken from the book, G.James et al., An Introduction to Statistical Learning, Springer, 2015

regress sales on TV

	Estimate	SE	tStat	pValue
(Intercept) x1	7.0326 0.047537	0.45784 0.0026906	15.36 17.668	1.4063e-35 1.4674e-42
regress sales on radio				
	Estimate	SE	tStat	pValue
(Intercept) x1	9.3116 0.2025	0.5629 0.020411	16.542 9.9208	3.5611e-39 4.355e-19
regress sales on newspaper				
	Estimate	SE	tStat	pValue
(Intercept) x1	12.351 0.054693	0.62142 0.016576	19.876 3.2996	4.7135e-49 0.0011482

regress sales on TV, radio, newspaper

	Estimate	SE	tStat	pValue
(Intercept)	2.9389	0.31191	9.4223	1.2673e-17
x1	0.045765	0.0013949	32.809	1.51e-81
x2	0.18853	0.0086112	21.893	1.5053e-54
x3	-0.0010375	0.005871	-0.17671	0.85992

- single regression:
 - spending 1000 dollars in each of advertising channels (TV, radio, newspaper) increases the sales around 48, 203, and 55 units respectively
 - with a significance level of $\alpha = 0.001$, all predictors are significant
- multiple regression:
 - regression coef. of TV and radio are almost similar to those in single regression
 - p value of newspaper coefficient is no longer significant, contrary to result in single regression

explanation on advertising data set

- in single regression, the coefficient represents the average affect of the predictor while *ignoring* other predictors
- in multiple regression, a predictor coef. represents the average effect while *holding* other predictors fixed
- correlation matrix of all preditors
 - >> corrcoef([x.TV x.radio x.newspaper])

1.0000	0.0548	0.0566
0.0548	1.0000	0.3541
0.0566	0.3541	1.0000

a tendency to spend more on newspaper where more is spent on radio

 newspaper does not actually affect sales but a higher in sales is a result of a tendency of spending more on radio

Variable selection

performing a multiple linear regressing raise questions such as

- is at least one of X_1, X_2, \ldots, X_n useful in predicting Y?
- do all predictors help to explain Y or only a subset is useful?

example: advertisting data set (multiple regression test)

```
Number of observations: 200, Error degrees of freedom: 196
Root Mean Squared Error: 1.69
R-squared: 0.897, Adjusted R-Squared: 0.896
F-statistic vs. constant model: 570, p-value = 1.58e-96
```

- F is relatively larger than 1 and p-value with F statistic is essentially zero
- at least one of TV, radio, newspaper is associated with the increased sale

the first step in multiple regression is to compute F-statistic and see if at least one predictor is associated with the response

a problem of variable selection involves

- find a subset of predictors that are associated with the response
- fit a single model consisting of those predictors

these requires model selection criteria such as

- AIC, BIC
- \bullet adjusted R^2

Best subset selection

consider x_1, x_2, \ldots, x_p as p predictors

 S_k : the model class that each contains k predictors (S_0 has only constant term) there are $\binom{p}{k}$ sub-models in S_k and no. of all possible sub-models is $\sum_{k=1}^{p} \binom{p}{k} = 2^p$ we would like to pick the 'best' model according to some model selection criterion **steps in variable selection**

1. for k = 1, ..., p

2. for $j = 1, ..., {p \choose k}$

- (a) fit all 'p choose k' sub-models that contain k predictors
- (b) pick the best among $\binom{p}{k}$ models and call it M_j
- (c) here 'best' is defined as having the smallest RSS on training data
- 3. select a single best model among M_0, M_1, \ldots, M_p using *cross-validated* prediction error, AIC, BIC or adjusted R^2

step 3 is one of the two approaches to obtain the best model having a low test error

- *indirectly* estimate test error by *adjusting* training error to account for bias due to overfitting (here, using model selection score instead)
- *directly* estimate the test error, using a validation set/CV approach

Stepwise selection

when p is large, the best subset selection suffers from looking in a large search space

- stepwise selection explores over a a more *restricted* set of models
- forward selection starts from a null model, while backward selection starts from a full model

Forward and backward selection

forward selection

- starts with the **null model** (or model with an intercept)
- sequentially *add* the predictor that *most* improve the fit
- if no predictor improves the model, stop the process and return the model

backward selection

- starts with the **full model**
- sequentially *delete* the predictor that *least* impact on the fit
- stop the process until a stopping rule is satisfied

backward selection can only be used when N > n while forward selection can always be used

mixed selection

- start with no variables in the model and with forward selection
- add the variable that provides the best fit
- continue to add variables one-by-one (*p*-values for variables can become larger)
- if at any point, the *p*-value for one of the variables rises above a certain threshold, remove that variable from the model
- perform these forward and backward steps untill all variables have a sufficiently low *p*-value and all variables outside the model would have a large *p*-value if added to the model

Step-wise regression in MATLAB

according to MATLAB implementaion

- stepwiselm uses forward and backward stepwise regression to determine a final model
- at each step, the function searches for terms to add to the model or remove from the model based on a criterion (specified by the user)
- model specification is given by the user (constant, linear, linear with cross terms, quadratic, etc.)
- criterion functions are sum-squared-error (sse), AIC, BIC, R^2 , and adjusted R^2

example: advertising data (y is sales, X are TV, radio, newspaper)

Adding TV, FStat = 312.145, pValue = 1.46739e-42
 Adding radio, FStat = 546.7388, pValue = 9.776972e-59

```
Linear regression model:
sales ~ 1 + TV + radio
```

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	2.9211	0.29449	9.9192	4.5656e-19
TV	0.045755	0.0013904	32.909	5.437e-82
radio	0.18799	0.00804	23.382	9.777e-59

```
Number of observations: 200, Error degrees of freedom: 197
Root Mean Squared Error: 1.68
R-squared: 0.897, Adjusted R-Squared: 0.896
F-statistic vs. constant model: 860, p-value = 4.83e-98
```

MATLAB commands

- common tests are available in many statistical softwares, e.g, minitab, lm in R, fitlm in MATLAB,
- stepwiselm perform a step-wise regression

References

G. James, D. Witten, T. Hastie and R. Tibshirani, *An Introduction to Statistical Learning: with Application in R*, Springer, 2015

Chapter 4-5 in

W.H. Greene, Econometric Analysis, Prentice Hall, 2008

Review of Basic Statistics (online course)

https://onlinecourses.science.psu.edu/statprogram

Stat 501 (online course)

https://onlinecourses.science.psu.edu/stat501