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14. Model validation

e resampling method

e cross-validation
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Resampling methods

e a process of repeatedly drawing samples from a training set and refitting a model
on each sample

e we seek for information that would not be obtained from fitting the model only
once using the original training sample

e resampling approaches can be computationally expensive but with nowaday
technology, it becomes less prohibitive

— cross-validation: used in estimation of test error or model flexibility
— bootstrap: a measure of accuracy of a parameter estimate (not given in this
lecture)
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Test and Training error rates

e training error rate: the average error that results from using a trained model (or
method) back on the training data set

o . the average error that results from using a statistical learning
method to predict the response on a new observation

e training error can be quite different from the test error rate

e when test data set is limited, a number of techniques can be used to estimate test
error rate using the available training data
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Cross-validation

e validation set approach
e |eave-one-out cross validation

e k-fold cross validation
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Validation set approach

divide available data into two parts:

e training set: used for fitting a model

e validation set: used for predicting the response from the fitted model
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e use Auto data (fit y = ag+ a1z + - - - + a,x")

e left: validation error from a single split of data
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e right: randomly split the training and validation sets; repeat 10 times
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e using quadratic term can reduce MSE more considerably than a linear term

e cubic term does not give better prediction than using a quadratic term

e all ten curves on RHS confirm that using higher order than quadratic do not gain a
benefit in prediction

drawbacks of validation set approach

e validation estimate of test error rate can be highly varied, depending on which
observations included in the training and validation sets

e it may overestimate test error rate for the model fit on the entire data set (because
the model is fitted on fewer observations — poorer performance)
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Leave-one-out cross validation (LOOCV)

divide available data {(x;, y;)}I, into two parts:

e training set: {(x2,¥2), ..., (Zn,yn)} (shown in blue)

e validation set: {(z1,41)} (shown in beige color)
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e repeat choosing {(xx,yx)} as the validation set, where kK = 2,...,n and compute

MSE,, MSE,. ..., MSE,

e the test error rate is estimated by averaging the n MSE'’s
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k-fold cross validation
divide available data {(x;,y;)}, into k groups or folds:

e validation set: the first fold (shown in beige color)

e training set: the remaining k — 1 folds (shown in blue)
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e repeated k times where each time a different fold is regarded as validation set and

compute MSE;, MSE,, ..., MSE,

e the test error rate is estimated by averaging the £ MSE's
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results on Auto data

properties:

e loocv is a special of k-fold when &k =n

set:
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e loocv requires computation of n times and fitting process can be demanding (if the
model is not linear)

e k-fold requires only k£ times of fitting models; can be more feasible if training

process is computationally expensive

e variation of test error from k-fold is less than that of validation set approach
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accuracy of test error rate (on simulation data set):

f is close to linear
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using model of smoothing splines

f is far from linear

true test MSE
10-fold CV
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we can compute the true test MSE (assume to know the true description, f) as a

function of model complexity

(left): cv estimates have the correct general U shape but underestimate the test

MSE

(center): cross validation gives oversetimate of test MSE at high flexibility

(right): the true test MSE and the cv estimates are almost identical
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Usage of cross-validation

most of the times we may perform cv on

e a number of statistical methods: and to see which method has the lowest test MSE

e a single statistical method but different flexibilities: and to see which model
complexity yield the lowest test MSE

though sometimes cv method underestimate the true test MSE, they can select the
correct level of flexibility
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Trade-off for k-fold

examine the unbiasedness and variance of test MSE

method validation set loocv k-fold
computation less high feasible
training samples  ratio e.g. 70:30 n—1 (k—1)n/k
unbiasedness low approximately unbiased intermediate
variance high less

e test MSE is calculated by taking the average of many MSE's:

e most of MSE's from loocv are highly correlated while MSE's of k-fold are less
correlated (since loocv uses more overlapped data in training — hence, fitted
models are almost identical)

e fact: the sample mean of highly correlated entries has more variance than the
sample mean of less correlated entries

conclusion: trade-off between bias and variance when choosing k in k-fold
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