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4. Optimization problems
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General setting

(mathematical) optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• x = (x1, . . . , xn): optimization variables
• f0 : Rn → R: objective function
• fi : Rn → R, i = 1, . . . ,m: inequality constraint functions
• hi : Rn → R, i = 1, . . . , p: equality constraint functions

optimal solution x⋆ has smallest value of f0 among all vectors that satisfy the
constraints

if there are no constraint functions, the problem is called unconstrained
optimization
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example: let x = (x1, x2)

maximize (x1 − 2)e5.8−0.25x1 + (x2 − 1.5)e7.2−0.2x2

subject to e5.8−0.25x1 + e7.2−0.2x2 ≤ 200,
x1 ≥ 0,
x2 ≥ 0.

• x1 is the price for students

• x2 is the price for general public

• we maximize the profit (as a function of prices)

• the objective is separable but the first constraint is not

• all prices must be nonnegative values
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Equivalent form

we can represent an optimization problem in the form of

minimize f0(x)
subject to x ∈ C

where C is called the constraint set

C = {x | fi(x) ≤ 0, i = 1, . . . ,m and hi(x) = 0, i = 1, . . . , p }

• a point x is called feasible if x ∈ C

• an optimization problem is feasible if C is non-empty

• if a problem has more constraints, the set C is smaller
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Minimizer

a point x⋆ is called a local minimizer of f0 over C if

∃ϵ > 0 such that f0(x) ≥ f (x⋆) ∀x ∈ C ∩ ∥x− x⋆∥ < ϵ

(in a small neighborhood of x⋆, there are no other better solutions)

a point x⋆ is called a global minimizer of f0 over C if

f (x) ≥ f (x⋆) ∀x ∈ C

(x⋆ is the best solution globally)

we call p∗ = infx∈C f0(x) the optimal value of the problem
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Basic properties

we are concerned with two properties of an optimization problem

1. existence: a solution does not exist if the problem is infeasible

P1 minimize f0(x) subject to x1 + x2 ≤ 1, 2x1 + 2x2 ≥ 6

2. uniqueness: can the optimal value (p∗) be attained by several values of x∗ ?

P2 minimize x1 + 3x2 + 3x3 subject to
∑

i |xi| ≤ 1

P3 minimize x1 + 3x2 + 2x3 subject to
∑

i |xi| ≤ 1

these properties are associated with the problem statement, not by a numerical
method to solve it
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Problem types

we can categorize optimization problems by

• constraints

• linearity

• parameter randomness

• convexity

• smoothness of the objective
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other specific problem types are : integer programming, discrete optimization, vector
optimization, etc.
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Unconstrained VS Constrained problems

easy examples: variables in least-square problems are regarded as nonnegative values

minimize ∥Ax− b∥22
minimize ∥Ax− b∥22
subject to x ⪰ 0

• solving unconstrained problems is based on the optimality condition:

∇f0(x) = 0

find x that make the gradient zero in the cost objective (necessary condition)

• solving constrained problems depends on the type of constraint functions
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suppose we compare two optimization problems having the same objective

• the constrained problem has higher optimal value

• if more constraints (constraint set is smaller) then optimal value is higher
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Linear contraints

a typical constraint set is a polyhedron described by linear inequalities:

C = {x ∈ Rn | aTi x ≤ bi, i = 1, 2, . . . ,m } = {x ∈ Rn | Ax ⪯ b }

• set C could be a bounded or unbounded set (depending on the number of
inequalities and the normal vectors ai’s)

• if C is represented by a set of linear equations: Ax = b, we usually consider a fat
A to make a problem feasible (otherwise, C could be empty)
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Linear program (LP)

a general linear program has the form

minimize cTx
subject to Gx ⪯ h

Ax = b,

where G ∈ Rm×n and A ∈ Rp×n

example: minimize the cheapest diet that satisfies the nutritional requiremenets

• x = (x1, . . . , xn) is nonnegative quantity of n different foods

• each food has a cost of cj; cost objective is cTx

• one unit quantity of food j contains aij amount of nutrients i

• constraints are Ax ⪰ b and x ⪰ 0
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Quadratic program (QP)

a quadratic program (QP) is in the form

minimize (1/2)xTPx + qTx
subject to Gx ⪯ h

Ax = b,

where P is positive semidefinite, G ∈ Rm×n and A ∈ Rp×n

example: constrained least-squares

minimize ∥Ax− b∥22
subject to l ⪯ x ⪯ u

QP has linear constraints
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QCQP

a quadratically constrained quadratic program (QCQP) is in the form

minimize (1/x)xTP0x + qT0 x
subject to (1/2)xTPix + qTi x + ri ≤ 0, i = 1, . . . ,m

Ax = b,

where Pi’s are positive semidefinite, G ∈ Rm×n and A ∈ Rp×n

QCQP has both linear and quadratic constraints
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Stochastic optimization

a problem is called a stochastic optimization if

• fi(x) contains some randomness, e.g., problem paraters are random variables, or

• a random (Monte Carlo) choice is made in the search direction of the algorithm

example: an LP problem where c is a random vector

minimize cTx
subject to Gx ⪯ h

Ax = b.

one way is to change the minimization objective
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the cost cTx is random with mean c̄Tx and variance

var(cTx) = var(xT c) = xT cov(c)x ≜ xTΣx

• generally there is a trade-off between the mean and the variance

• one way is to minimize a combination of the two quantities:

minimize c̄Tx + γxTΣx
subject to Gx ⪯ h

Ax = b.

where γ controls the weight between the two

• the resulting problem is an QP
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How to solve an optimization problem?

solving a problem is based on the duality theory

• KKT conditions: describe optimality conditions of a problem
(if x∗ is optimal then x∗ must satistify KKT conditions)

• KKT conditions vary upon the problem type; some can be simplified into an
analytical form but not mostly

• an algorithm is a numerical method to find a numerical answer of an optimization
problem
(one problem can be solved by several algorithms)
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Overview of available methods

• unconstrained problems: gradient descent, Newton, quasi Newton

• convex programs: interior point, gradient projection, ellipsoid method, proximal
methods

• linear programming: simplex, interior point

• quadratic programming: interior point, active set, conjugate gradient, augmented
Lagrangian
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Essential considerations

numerical methods are mostly iterative

• generate a sequence of points x(k), k = 0, 1, 2, . . . that converge to a solution;
x(k) is called the kth iterate; x(0) is the starting point

• computing x(k+1) from x(k) is called one iteration of the algorithm

• each iteration typically requires evaluations of f (or ∇f,∇f 2) at x(k)

• the update rule is typically of the form

x(k+1) = x(k) + α(k)s(k)

• s(k) is called a search direction and α(k) is a step size

example: gradient-descent method

x(k+1) = x(k) − α(k)∇f (x(k))
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we look at these factors when considering a method

• rate of convergence

• search direction (greatly impact the convergence)

• choice of step size (not all values is applicable)

• computational cost (storage needed, complexity)

• stopping criterion (practical conditions for checking optimality)

• descent property (objective values are monotonically decreasing)

• speed of the algorithm depends on:

– the cost of evaluating f (x) (and possibly, ∇f (x) , ∇f 2(x))
– the number of iterations
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