2104664 Statistics for Financial Engineering and the statistics of the statistics for Financial Engineering and the statistic statistics of \sim 1014664 Statistics for Financial Engineering

4. Optimization problems

- *•* general setting
- *•* problem types
- *•* basic considerations
- *•* available methods

General setting

(mathematical) optimization problem

minimize
$$
f_0(x)
$$

subject to $f_i(x) \le 0$, $i = 1,..., m$
 $h_i(x) = 0$, $i = 1,..., p$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- \bullet $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \ldots, m$: inequality constraint functions
- \bullet $h_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \ldots, p$: equality constraint functions

 $\mathbf{optimal}$ $\mathbf{solution}$ x^{\star} has smallest value of f_0 among all vectors that satisfy the constraints

if there are no constraint functions, the problem is called **unconstrained optimization**

example: let $x = (x_1, x_2)$

maximize
$$
(x_1 - 2)e^{5.8 - 0.25x_1} + (x_2 - 1.5)e^{7.2 - 0.2x_2}
$$

\nsubject to $e^{5.8 - 0.25x_1} + e^{7.2 - 0.2x_2} \le 200$,
\n $x_1 \ge 0$,
\n $x_2 \ge 0$.

- x_1 is the price for students
- x_2 is the price for general public
- *•* we maximize the profit (as a function of prices)
- *•* the objective is separable but the first constraint is not
- *•* all prices must be nonnegative values

Equivalent form

we can represent an optimization problem in the form of

minimize $f_0(x)$ subject to $x \in C$

where *C* is called the **constraint set**

$$
C = \{x \mid f_i(x) \le 0, \quad i = 1, \dots, m \text{ and } h_i(x) = 0, \quad i = 1, \dots, p \}
$$

- *•* a point *x* is called **feasible** if *x ∈ C*
- *•* an optimization problem is **feasible** if *C* is non-empty
- *•* if a problem has more constraints, the set *C* is smaller

Minimizer

a point x^\star is called a local minimizer of f_0 over C if

$$
\exists \epsilon > 0 \quad \text{such that} \quad f_0(x) \geq f(x^\star) \quad \forall x \in C \cap \|x - x^\star\| < \epsilon
$$

(in a small neighborhood of x^* , there are no other better solutions)

a point x^\star is called a \bold{global} minimizer of f_0 over C if

 $f(x) \ge f(x^*) \quad \forall x \in C$

 $(x^*$ is the best solution globally)

we call $p^* = \inf_{x \in C} f_0(x)$ the **optimal value** of the problem

Basic properties

we are concerned with two properties of an optimization problem

1. **existence:** a solution does not exist if the problem is infeasible

P1 minimize $f_0(x)$ subject to $x_1 + x_2 \le 1, 2x_1 + 2x_2 \ge 6$

2. $\,$ <code>uniqueness:</code> can the optimal value (p^*) be attained by several values of x^* ?

\n- **P2** minimize
$$
x_1 + 3x_2 + 3x_3
$$
 subject to $\sum_i |x_i| \leq 1$
\n- **P3** minimize $x_1 + 3x_2 + 2x_3$ subject to $\sum_i |x_i| \leq 1$
\n

these properties are associated with the problem statement, not by a numerical method to solve it

Problem types

we can categorize optimization problems by

- *•* constraints
- *•* linearity
- *•* parameter randomness
- *•* convexity
- *•* smoothness of the objective

other specific problem types are : integer programming, discrete optimization, vector optimization, etc.

Unconstrained VS Constrained problems

easy examples: variables in least-square problems are regarded as nonnegative values

 m inimize $||Ax - b||_2^2$ 2 $\textsf{minimize} \quad ||Ax - b||_2^2$ 2 subject to $x \succ 0$

• solving unconstrained problems is based on the optimality condition:

$$
\nabla f_0(x) = 0
$$

find *x* that make the gradient zero in the cost objective (necessary condition)

• solving constrained problems depends on the type of constraint functions

suppose we compare two optimization problems having the same objective

- *•* the constrained problem has higher optimal value
- *•* if more constraints (constraint set is smaller) then optimal value is higher

Linear contraints

a typical constraint set is a polyhedron described by linear inequalities:

$$
C = \{ x \in \mathbf{R}^n \mid a_i^T x \le b_i, \quad i = 1, 2, \dots, m \} = \{ x \in \mathbf{R}^n \mid Ax \le b \}
$$

- *•* set *C* could be a bounded or unbounded set (depending on the number of inequalities and the normal vectors ${a_i}^{\prime}$ s)
- if C is represented by a set of linear equations: $Ax = b$, we usually consider a *fat A* to make a problem feasible (otherwise, *C* could be empty)

Linear program (LP)

a general linear program has the form

$$
\begin{array}{ll}\text{minimize} & c^T x\\ \text{subject to} & Gx \leq h\\ & Ax = b, \end{array}
$$

where $G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$

example: minimize the cheapest diet that satisfies the nutritional requiremenets

- $x = (x_1, \ldots, x_n)$ is nonnegative quantity of *n* different foods
- \bullet each food has a cost of c_j ; cost objective is $c^T x$
- *•* one unit quantity of food *j* contains *aij* amount of nutrients *i*
- constraints are $Ax \succeq b$ and $x \succeq 0$

Quadratic program (QP)

a **quadratic program (QP)** is in the form

minimize $(1/2)x^T P x + q^T x$ subject to $Gx \preceq h$ $Ax = b$,

where P is positive semidefinite, $G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$

example: constrained least-squares

$$
\begin{array}{ll}\text{minimize} & \|Ax - b\|_2^2\\ \text{subject to} & l \leq x \leq u \end{array}
$$

QP has **linear** constraints

QCQP

a **quadratically constrained quadratic program (QCQP)** is in the form

minimize
$$
(1/x)x^T P_0 x + q_0^T x
$$

subject to
$$
(1/2)x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, ..., m
$$

$$
Ax = b,
$$

where P_i 's are positive semidefinite, $G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$

QCQP has both **linear and quadratic** constraints

Stochastic optimization

a problem is called a stochastic optimization if

- *• fi*(*x*) contains some randomness, *e.g.*, problem paraters are random variables, or
- *•* a random (Monte Carlo) choice is made in the search direction of the algorithm

example: an LP problem where *c* is a **random** vector

$$
\begin{array}{ll}\text{minimize} & c^T x\\ \text{subject to} & Gx \preceq h\\ & Ax = b. \end{array}
$$

one way is to change the minimization objective

the cost $c^T x$ is random with mean $\bar{c}^T x$ and variance

$$
\mathbf{var}(c^T x) = \mathbf{var}(x^T c) = x^T \mathbf{cov}(c)x \triangleq x^T \Sigma x
$$

- *•* generally there is a trade-off between the mean and the variance
- one way is to minimize a combination of the two quantities:

minimize
$$
\bar{c}^T x + \gamma x^T \Sigma x
$$

subject to $Gx \leq h$
 $Ax = b$.

where *γ* controls the weight between the two

• the resulting problem is an QP

How to solve an optimization problem?

solving a problem is based on the **duality theory**

- *•* KKT conditions: describe optimality conditions of a problem (if *x ∗* is optimal then *x [∗]* must satistify KKT conditions)
- *•* KKT conditions vary upon the problem type; some can be simplified into an analytical form but not mostly
- *•* an **algorithm** is a numerical method to find a numerical answer of an optimization problem (one problem can be solved by several algorithms)

Overview of available methods

- *•* unconstrained problems: gradient descent, Newton, quasi Newton
- *•* convex programs: interior point, gradient projection, ellipsoid method, proximal methods
- *•* linear programming: simplex, interior point
- *•* quadratic programming: interior point, active set, conjugate gradient, augmented Lagrangian

Essential considerations

numerical methods are mostly iterative

- \bullet generate a sequence of points $x^{(k)}$, $k=0,1,2,\ldots$ that converge to a solution; $x^{(k)}$ is called the k th *iterate*; $x^{(0)}$ is the *starting point*
- \bullet computing $x^{(k+1)}$ from $x^{(k)}$ is called one *iteration* of the algorithm
- \bullet each iteration typically requires evaluations of f (or $\nabla f, \nabla f^2)$ at $x^{(k)}$
- the update rule is typically of the form

$$
x^{(k+1)} = x^{(k)} + \alpha^{(k)} s^{(k)}
$$

 $\bullet \ \ s^{(k)}$ is called a search direction and $\alpha^{(k)}$ is a step size

example: gradient-descent method

$$
x^{(k+1)} = x^{(k)} - \alpha^{(k)} \nabla f(x^{(k)})
$$

we look at these factors when considering a method

- *•* rate of convergence
- *•* search direction (greatly impact the convergence)
- choice of step size (not all values is applicable)
- *•* computational cost (storage needed, complexity)
- *•* stopping criterion (practical conditions for checking optimality)
- *•* descent property (objective values are monotonically decreasing)
- *•* speed of the algorithm depends on:
	- $-$ the cost of evaluating $f(x)$ (and possibly, $\nabla f(x)$, $\nabla f^2(x))$
	- **–** the number of iterations

References

Lecture notes on

Convex Optimization, EE263B, L. Vandenberhge, UCLA

Lecture notes on

Nonlinear equations with one variable, EE103, L. Vandenberhge, UCLA

S. Boyd and L. Vandenberghe, *Convex Optimization*, Cambridge, 2004