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3. Probability and Statistics

e definitions, probability measures
e conditional expectations

e correlation and covariance

e some important random variables

e multivariate random variables
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Definition

a random variable X is a function mapping an outcome to a real number

e the sample space, S, is the domain of the random variable

e Sx is the range of the random variable

example: toss a coin three times and note the sequence of heads and tails
S = {HHH,HHT HTH,THHHTT, THT,TTHTTT}
Let X be the number of heads in the three tosses

Sx =10,1,2,3}
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Probability measures

Cumulative distribution function (CDF)
F(a) = P(X < a)
Probability mass function (PMF) for discrete RVs
p(k) = P(X = k)

Probability density function (PDF) for continuous RVs

Probability and Statistics
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Probability Density Function

Probability Density Function (PDF)

e flx) =0

o Pla< X <b)= [’ f(x)dz

x

o F(x) :_f f(u)du

Probability Mass Function (PMF)
e p(k) >0 forall k

e > plk)=1

keS
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Expected values

let g(X) be a function of random variable X

( > g(x)p(x) X is discrete
z€eS

Elg(X)]=<¢
[9( )] _f g(x)f(CU)dZC X is continuous

Mean )
> zp(x) X is discrete
xeS
u=E[X]={"S
[ xf(x)dr X is continuous
\—OO
Variance

o’ = var[X] = E[(X — p)’]

nt" Moment
E[X"]

Probability and Statistics

3-5



Facts

Let Y = g(X)=aX +b, a,b are constants

e EY|=aE|X|+b
e var[Y] = a* var[X]

o var[X] = E[X?| — (E[X])’

Probability and Statistics
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Discrete RVs

e Bernoulli

e Binomial

e Geometric

e Negative binomial
e Poisson

e Uniform

Probability and Statistics

Example of Random Variables

Continuous RVs

e Uniform

e Exponential

e Gaussian (Normal)

e Gamma, Chi-squared, Student’s ¢, F’

e Logistics
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Joint cumulative distribution function

ny<a,b> — P(X S a,,Y S b)
e a joint CDF is a nondecreasing function of x and y:

Fxy(z1,y1) < Fxy(x2,y2), ifx; <x9and y; < o

o Fxy(x,—00) =0, Fxy(—00,y1) =0, Fxy(oco,00) =1

o Plry < X <mo,y1 <Y < o)

= Fxy(®2,y2) — Fxv(@2,y1) — Fxv(x1,y2) + Fxy (21,91
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Joint PMF for discrete RVs

pr<£E,y):P(X:ZE,Y:y>, (:C,y) SV}
Joint PDF for continuous RVs

O*Fxy(z,y)
0x0y

fXY<x7y) -

Marginal PMF

px<CE‘> — ZpXY<xay>7 pY(?J) — ZpXY(:Em?/)

yeS xEeS

Marginal PDF

fr@) = [ pevsdn )= [ ferlad:

Probability and Statistics
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Conditional Probability

Discrete RVs

the conditional PMF of Y given X = x is defined by

P X =z,Y =y)

prixule) = POV =ylX =2) = =5

pXY<377 y)
px(x)

Continuous RVs

the conditional PDF of Y given X = x is defined by

frix(ylz) = f>}1}/{<(27>y)

Probability and Statistics
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Conditional Expectation

the conditional expectation of Y given X = x is defined by

Continuous RVs

E[Y|X] = /OO y fyx(ylz)dy

— OO

Discrete RVs

e E|Y|X] is the center of mass associated with the conditional pdf or pmf

e E[Y|X] can be viewed as a function of random variable X

e EE

E[Y|X] = Zypwx ylz)

Y[X]] = E[Y]

Probability and Statistics
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in fact, we can show that

for any function h(-) that E[|h(Y)|] < o

proof.

BERY)|X]] = /OO E[h(Y)|o]fx ()da

N / / Y) fyix(ylz)dy fx(z)de
= [ [ vt ast
fr(

= /_O:O hy)fy(y) dy

= E[n(Y)]

Probability and Statistics
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Independence of two random variables
X and Y are independent if and only if
FXY<x7y) :Fx<ZC>Fy(y>, Va:,y

this is equivalent to

Discrete Random Variables

pxy(z,y) = px(x)py(y)
py|x(ylz) = py(y)

Continuous Random Variables

fxy(z,y) = fx(z)fy(y)
fY|X<y|5L’) = fY|X(y)

If X and Y are independent, so are any pair of functions g(X) and h(Y)
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Expected Values and Covariance

the expected value of Z = ¢(X,Y) is defined as

E|Z] = / / g(z,y) fxy(x,y) dr dy X, Y continuous

EZ] = ZZg(az,y)pxy(a:,y) X, Y discrete
Ty

[
o

X +Y]=E[X]|+E[Y]
e EXY|=EX|E]Y] if X and Y are independent

Covariance of X and Y
cov(X,Y)=E[X — EX]|)(Y —E)Y)|)] =EXY| - EX|E[Y]

e cov(X,Y)=0if X and Y are independent (the converse is NOT true)
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Correlation Coefficient

denote
ox =+/var(X), oy =+/var(Y)

the standard deviations of X and Y

the correlation coefficient of X and Y is defined by

o —1<pxy <1

® pxy gives the linear dependence between X and Y: for Y = aX + b,

pxy =1 ifa >0 and pxy = —1 if a <0

e X and Y are said to be uncorrelated if pxy =0

Probability and Statistics
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if X and Y are independent then X and Y are uncorrelated

but the converse is NOT true
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Law of Total Variance

suppose that X and Y are random variables
var(Y) = E[var(Y|X)] + var(E[Y | X])

aka Eve's Law; we say the unconditional variance equals EV plus VE

Proof. using E[E[Y | X|| = E[Y]

var(Y) = E[Y7] - (E[Y])’
E[Y?|X]] - (E[E[Y]X]])°
var(Y|X)] + E[(E[Y|X])!] - (E[E[Y]X]])"

var(Y|X)|] + var/E|Y | X]]

|
0 8 3 9
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Moment Generating Functions

the moment generating function (MGF) ®(¢) is defined for all ¢ by

o0 tx d X . "
@(t) = E[etx] — f—oo Z f(£U> X, !5 C(.)n INUOUS
Zaz € p(%), X IS dlscrete

e except for a sign change, ®(t) is the 2-sided Laplace transform of pdf
e knowing ®(t) is equivalent to knowing f(x)
d"®

(t)

dt™

e E[X") =

t=0
e MGF of the sum of independent RVs is the product of the individual MGF

Oy (t) = B[] = Oy (1) Dy (t)
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Gaussian (Normal) random variables

e arise as the outcome of the central limit theorem
e the sum of a /arge number of RVs is distributed approximately normally
e many results involving Gaussian RVs can be derived in analytical form

e let X be a Gaussian RV with parameters mean 1 and variance o>

Notation X ~ N(p,0?%)
PDF : ( 2
_ R o _
f(x)—mexp oz 00 < x < 00
Mean E[X]|=_pu Variance var|[X]| = o*

MGF  &(t) = eritot'/2
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let Z ~ N(0,1) be the normalized Gaussian variable

CDF of Z is : ;
Fy(z) :—Tw/ et 2qr 2

then CDF of X ~ AN (u,0?) can be obtained by

Fy(z) = @ (x — “)

o

in MATLAB, the error function is defined as

2 T
erf(x) = ﬁfo et dt

hence, ®(z) can be computed via the erf command as

O(z) = % [1 + erf (\%)]

Probability and Statistics
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Gamma random variables

PDF
)\(}\x)a—le—kx

Dle)

x>0 a,A>0

flz) =

where ['(z) is the gamma function, defined by
['(2) :/ r* te dx, z>0
0

Mean EX|=¢% Variance var/X|= %

22
MGF  &(t) — (ﬁ)a_l

e if X7 and X are independent gamma RVs with parameters (a1, \) and (ag, A)
then X7 + X, is a gamma RV with parameters (a1 + g, A)
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Properties of the gamma function

L(1/2) = Vn
[(z+1) = =zI[(z) forz>0

['((m+1) = ml, for m a nonnegative integer

Special cases

a Gamma RV becomes

e exponential RV when a =1
e m-Erlang RV when oo = m, a positive integer

e chi-square RV with n DF when a =n/2, A = 1/2
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Chi-square random variables

it 21,2, ..., 7, are independent normal RVs, then X defined by
X=Z+73+--+ 25~
is said to have a chi-square distribution with n degrees of freedom

o 0(t) = E[[T7, '%] = [T}, Ble'%] = (1 —20)™"2
e we recognize that X is a gamma RV with parameters (n/2,1/2)

e sum of independent chi-square RVs with n; and ny DF is the chi-square with
ny, + no DF

o (1/2)e*/2(z /2"
flx) = [(n/2) , x>0
Mean E[X|=n Variance var(X)=2n
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t random variables

if Z ~ N(0,1) and x? are independent then

is said to have a t-distribution with n degree of freedom

0.40

0.35)
0.30}
0.25}
% 0.20}
0.15F
0.10}

0.05F

0.0 =

4 -3 2 -1 0 1 2 3

X
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A

VX5

T, =

t density is symmetric about zero

t has greater variability than the normal

T, — Z for n large

for 0 < a < 1 such that P(T,, > to.n) = @),

P(T, > —tan)=1—«

=

_toz,n — tl—oz,n
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F' random variables

if X2 and x?, are independent chi-square RVs then the RV F, ,,, defined by

2
Fn,m — XQn/n
X/ M

is said to have an F'-distribution with n and m degree of freedoms

e forany a € (0,1), let Fyy . be such that P(F,, ., > Fiy n.m) = « then

2 1
P(Xm/m> )zl—oz

X2/n — Fanm

: X2 /m . :
e since ~%.— is another I, ,, RV, it follows that

X7/

2 1
l—-a=P Xm/mZF1—anm = = Fl—amn
X%/n AR Fa,n,m ) )

Probability and Statistics

3-25



Logistics random variables

CDF
o= ) v
F(x) = Er=my —o<x<oo, uv>0
PDF
elw—1)/v
f(x) = —00 < < 00

V(1 + elz=w)/v)2’
Mean EX]|=_pu

o if u =0,v =1 then X is a standard logistic
e (i is the mean of the logistic

e v is called the dispersion parameter
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Multivariate Random Variables

e probabilities
® cross correlation, cross covariance

e Gaussian random vectors
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Random vectors

we denote X a random vector

X is a function that maps each outcome ( to a vector of real numbers

an n-dimensional random variable has n components:

also called a multivariate or multiple random variable
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Probabilities

Joint CDF

F(X) = Fx(z1,29,...,2,) = P(X; <2, X < m9,..., X, < )

Joint PMF

p<X) épx(ﬂ?l,aj%...,ﬁl}n) :P<X1:$1,X2:$2,...,Xn:$n)

Joint PDF

f<X> éfX<$1,CC2,,CIZn>: axlax F<X>
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Marginal PMF

px; () = Z DD prx1,a:2,... n)

Lj—1Lj+1

Marginal PDF

fXj(LIZ‘j) = / .. / fx(ﬂjl,ﬂfg, ce ,l‘n) dﬂfl ce dﬂ?j_ldﬂjj_H ce dﬂ?n

Conditional PDF: the PDF of X, given X;,..., X, _1is

fx(x1,...,25)
le,...,Xn_1<x17 <o 73371,—1)

flxp|xy, ... xn_1) =

Probability and Statistics
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Characteristic Function

the characteristic function of an n-dimensional RV is defined by

O(w) = D(wy,...,wp) = E[eXittwonXa)
- / e X f(X)dX
X
where _ _ .
w1 I
W = C‘-.JQ , X = x.2
| W, | £

$(w) is the n-dimensional Fourier transform of f(X)

Probability and Statistics
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Independence

the random variables X1, ..., X,, are independent if
the joint pdf (or pmf) is equal to the product of their marginal’s

Discrete
px(x1,. .., Tn) = px,(z1) - px,(2n)
Continuous

fx(@1, .. 20) = fx(21) -+ fx,(T0)

we can specify an RV by the characteristic function in place of the pdf,

Xi,...,X,, are independent if

O(w) = Prfwr) - Oplwn)

Probability and Statistics
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Expected Values

the expected value of a function

g(X) — g(X17 ce 7Xn>

of a vector random variable X is defined by

E[g(X)] = / 9(2)f (z)da

Elg(X)] = g(z)p(x)
Mean vector L
X1
p=EX]=E X2
_Xn_

Probability and Statistics
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Continuous

Discrete
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Correlation and Covariance matrices

Correlation matrix has the second moments of X as its entries:

E[X,X] E[X.X) - E[X.X,]
R 2 BxxT = |FRAEGGE B
E[X,X] EX,X) - E[X,X,]

with
R;j = E[X; X}

Covariance matrix has the second-order central moments as its entries:
A T
C = E[(X —u)(X —p)]

with
Cij = cov(Xy, Xj) = E[(X; — i) (X — py)]
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Properties of correlation and covariance matrices

let X be a (real) n-dimensional random vector with mean

Facts:

e R and C' are n X n symmetric matrices

e R and C are positive semidefinite

o If Xy,...,X,, are independent, then C' is diagonal
e the diagonals of C' are given by the variances of X},
e if X has zero mean, then R =C

o C=R—pup"
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Cross Correlation and Cross Covariance

let X,Y be vector random variables with means (. x, p1y respectively

Cross Correlation

cor(X,Y)=E[XY"]

if cor(X,Y) =0 then X and Y are said to be orthogonal

Cross Covariance

cov(X,Y) = E[(X —ux)Y — py)']
= cor(X,Y) — puxps

if cov(X,Y) =0 then X and Y are said to be uncorrelated
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Affine transformation

let Y be an affine transformation of X:

Y =AX+b
where A and b are deterministic matrices
® uy =Apx +b

uy = E[AX + b = AE[X] + E[b] = Apx + b

o Oy = ACx AT

Cy =E[(Y — uy)(Y — py)'] = B[(A(X — px))(AX — px))"]
= AE[(X — px)(X — px)']AT = ACx A"

Probability and Statistics
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Gaussian random vector

X1,...,X, are said to be jointly Gaussian if their joint pdf is given by

1 1 e
2m)yn2det(X)/2 T 2 N
2 det ) P (X —p) X7 (X — )

f(X) = fx(x1,x9,...,0p) =

p is the mean (n x 1) and X > 0 is the covariance matrix (n x n):

oA Y Y o D
= ,U:Z Con- 2:21 2:22 ' E:Qn
_,Un_ _an ZnQ e Znn_

and

Probability and Statistics 3-38



example: the joint density function of X (not normalized) is given by

f(xla X2, 553) — €Xp —

e f is an exponential of negative quadratic in x so X must be a Gaussian

e the mean vector is (0,0, 1)

e the covariance matrix is

Probability and Statistics

w

x4+ 323 + 2(x3 — 1) + 221 (23 — 1)

L1
L9

263—1

T

2

10 1
0 3 0
10 2
0 -1
1/3 0
0 1

X1
X2
r3 — 1
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e the variance of x is highest while x5 is smallest

e 1y and x» are uncorrelated, so are x5 and x5
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examples of Gaussian density contour (the exponent of exponential)
T —1
Ty (211 21 Tl _ 4
o 219 2122 X2

uncorrelated different variances ~_correlated
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Properties of Gaussian variables

many results on Gaussian RVs can be obtained analytically:

e marginal's of X is also Gaussian
e conditional pdf of X}, given the other variables is a Gaussian distribution
e uncorrelated Gaussian random variables are independent

e any affine transformation of a Gaussian is also a Gaussian

these are well-known facts
and more can be found in the areas of estimation, statistical learning, etc.

Probability and Statistics
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Characteristic function of Gaussian

. T
D(w) = P(w,wa, ..., wy) = eIMTW e_%

Proof. By definition and arranging the quadratic term in the power of exp

1 T, (X=wTy Tl x—p
(I)(w> — (27T>n/2|2|1/2 /X € € ’ dx

elMT‘*’ e 7 (X —p—iv) Ty N X —p—ivw)
= e 2 dx
(2m)™/215[2 Jx

1
—exp (ip! w) exp (—éwTZw)

(the integral equals 1 since it is a form of Gaussian distribution)

for one-dimensional Gaussian with zero mean and variance ¥ = o2,
2 2
o w
P(w) =e" 2
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Affine Transformation of a Gaussian is Gaussian

let X be an n-dimensional Gaussian, X ~ N (u,Y) and define
Y =AX+b

where Aism xn andbism x 1 (so Y ism x 1)

(I)Y(W) _ E[einY] _ E[ein(AXer)]
_ E[einAX . 6inb] _ einbq)X<ATw>

T T AT
:elwb.el,u,Aw

iwl (Ap+b)

) e—wTAZATw/Q

—wTAEATw/Q

= € €

we read off that Y is Gaussian with mean Ay + b and covariance AX AL

Probability and Statistics
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Marginal of Gaussian is Gaussian

the k™" component of X is obtained by
Xe=1[0 -+ 1 0]X £ eX

(e}, is a standard unit column vector; all entries are zero except the £t position)
hence, X} is simply a linear transformation (in fact, a projection) of X

X is then a Gaussian with mean
T
€ b = Mk

and covariance
eg > €L — Zkzkz
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Uncorrelated Gaussians are independent

suppose (X,Y) is a jointly Gaussian vector with

[z

Cx 0]
oy

] and covariance [O Oy

mean = [

in otherwords, X and Y are uncorrelated Gaussians:
cov(X,Y)=E[XY'] - EX|E[Y]! =0

the joint density can be written as

_ 1 Uz — ] [Cx' 0] [2—
fXY(ajay) o (27T>n‘CX’1/2|CY|1/2 eXp 2 [y L /'Ly] [ O C;l Y — ,uy

1 o~ b@—p1a) O @) !
(27-‘->n/2‘CX|1/2 <27-‘->n/2|CY‘1/2

o3 W—my) CF (y—ny)

proving the independence
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Conditional of Gaussian is Gaussian

let Z be an n-dimensional Gaussian which can be decomposed as
X L4 > )y
7 N N T ’ T wy])
(b e

the conditional pdf of X given Y is also Gaussian with conditional mean

and conditional covariance

x|y =Xz — Loyl Yoy

Probability and Statistics
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Proof:

from the matrix inversion lemma, > ~! can be written as

-1 S =S ey Xy
B ANVT o—1  yv—1 AT -1 1
—Zyy ZmyS Zyy + Zyy ExyS nyzyy_

where S is called the Schur complement of >, in > and

S = Sar—ZayEy,Ys,
detX = detS-det,,

we can show that X > 0 if any only if S > 0 and 2, > 0
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from fxv(zly) = fx(z,y)/fyv(y), we calculate the exponent terms

= (2= pa) ST — ) — (2 — ) ST N0y T (v — )
—(y — py) " Sy Ty ST H @ — pta)
Y — ) (B, S0y ST 00y Ty ) (Y — )

= [z — By Sy (v — )] ST — e — Ty Ty (Y — 1)

& (o= ) TSy @ — pxpy)
fx|v(x|y) is an exponential of quadratic function in

so it has a form of Gaussian
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Standard Gaussian vectors

for an n-dimensional Gaussian vector X ~ N (u, C) with C' = 0
let A be an n X n invertible matrix such that
AAT =C

(A is called a factor of C)

then the random vector
Z=A"NX —p)

is a standard Gaussian vector, i.e.,

Z ~ N(0,1)

(obtain A via eigenvalue decomposition or Cholesky factorization)
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Quadratic Form Theorems

let X = (X1,...,X,,) be a standard n-dimensional Gaussian vector:
X ~ N(0,1)

then the following results hold

o XTX ~ %n)

e let A be a symmetric and idempotent matrix and m = tr(A) then

XTAX ~ x*m)

Probability and Statistics
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Proof: the eigenvalue decomposition of A: A = UDU?! where
MNA) =01 U'U=U0U"=1

it follows that

XT"AX = X"UDU"X =Y'DY =) d;;Y}

1=1

e since U is orthogonal, Y is also a standard Gaussian vector

e since A is idempotent, d;; is either 0 or 1 and tr(D) =m

therefore X©T AX is the m-sum of standard normal RVs

Probability and Statistics
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