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Computing
Granger causality

- Non-linear models
- Linear models

VAR
VARMA
State-space

Significance test/classification
of zero causality

Clustering methods

- GMM [1]

Statistical methods

- Parametric

- Non-parametric
- Permutation test
- Bootstraps




Objectives

* To develop a scheme for classifying the zero patterns of the Granger
causality of state-space models using the permutation test.

 To compare the performance of the permutation test with the Gaussian
mixture models method in classification of zero and non-zero entries of
Granger causality matrix obtained from state-space model



Methodology
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Figure 1. The scheme for learning GC pattern using state-space models.



Ground truth model

Generate a VAR
model with sparse
GC matrix

AN (2)

Generate a diagonal
filter

G(2)
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A State-space model

x(t+1) = Ax(t) + Bw(t)
y(t) = Cx(t)

equivalent to G(z)A™1(2)
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Figure 2. The scheme for generating ground truth model and time series data.



Subspace identification

We consider estimating parameters A,C,W,V,S of a stochastic state-space model
x(t+1) =Ax(t) + w(t)

y(t) = Cx(¢) + v(t)
This method is based on orthogonal projection. Suppose that the outputs Y is known,
it was shown in [2] that

O; = Yij2i-1 /Yoji-1 = Y5 /Y, (Projecting the future outputs onto the past output space)
0; =X, = X, =T'0; and X1, = T],0;_,
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Granger causality of state-space model

The measure of the Granger causality from y; to y; is defined by
R

Fij = lOgE—u
L

where %;; is the covariance of the prediction error given all other v, and Zf is the
covariance of the prediction error given all other y; except y; [3].

Together with this definition, we can define a Granger causality matrix
(F11 Fiz - Fip]

P=| T T

-Fnl Fnz an-



Granger causality of state-space model

For a state-space model
x(t+1) =Ax(t) + w(t)
y(t) = Cx(t) + v(t)
where E [W] [W]T = lW S] we consider the reduced model with
vilv sT vl

x(t+1) = Ax(t) + w(t)
yR(t) = CRx(t) + vi(t)
where y® is y without y; and C® is C without j** row.

We have £ = CPCT + V and 2 = CRPR(C®)T + VR where VR is V without j'* row and
column and P is solved from DARE [1]

P = APAT — (APCT + S)(CPCT + V) Y (CPAT + ST + W



Permutation test

- The distribution of F;; is unknown

- The null hypothesis Hy: F;; = 0 is to be
tested

Justification: Under the true null hypothesis, y;
is not Granger-caused by y;, so rearranging data
in channel y; does not change the outcome.

So, we may form a distribution of F;; under H,
empirically from the permutations of data [4].
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Figure 3. One of the possible permutations.



Permutation test
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Figure 4. The scheme for calculating p-values.
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Permutation test

The number of permutations (P) is the factorial of the number of windows. Since this
number can be very large, we performed a Monte-Carlo permutation test in which the
number of permutations used is smaller than the number of all possible permutations
and the samples of rearrangement are drawn randomly [5].

Repeat for all j and the p-value matrix is then obtained

(P11 P12 DPin
P21 P22 ° DP2n
Pn1 Pn2 °°° DPnnl

For a given significance level a, F;; can be tested to decide that F;; = 0 or not by
thresholding the p-values.



Preliminary results

An experiment was performed to study how the number of permutation (P)
affects the performance of the permutation test

Hypothesis: The performance of the permutation test increase with the
number of permutation

Control variable:

We generated 15 ground truth models with the following specification

- 5 channels

- 20 states (generate a VAR models of order 2 and a filter with 2 poles)
- 1000 time points for time series data

The estimation of state-space models were done with exactly 20 states.
Data were partitioned into 10 windows in permutation tests.



Preliminary results

The performance of the permutation test
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Figure 5. The performance of the permutation test.



Preliminary results
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Figure 6. An example of the results after thresholding.
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Project Planning

of zero causality

4. Experiment 1: Study the effect of the number of permutation on the performance of

permutation test

Process 2102490 2102499
Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr
1. Literature review on Granger causality and the equivalence of ARMA models and
state-space models
2. Writing a MATLAB code on generating ground truth models
3. Study permutation test and p-value correction methods for testing the significance

5. Write a proposal report and prepare for the proposal presentation

6. Experiment 2: Compare the performance between the permutation test with all
permutations and the Monte-Carlo permutation test

7. Experiment 3: Study the effect of the model order of state-space model on the performance
of permutation test

8. Experiment 4: Compare the performance, the computational cost and the assumptions
required of permutation test with GMM method

9. Discuss the results and adjust the proposed scheme

10. Write a senior project report and prepare for the final presentation

Figure 7. The Gantt chart of this project.




Project Planning

We plan to do the following experiments in the next semester.

e Experiment 2: Compare the performance of the permutation test with every permutations with
the Monte-Carlo permutation.

Experiment settings: With the same data, we use large window size (W = 5) for the normal
permutation test so that the number of permutation is 5! = 120 which is feasible. Then we compare
the result with the Monte-Carlo permutation test.

e Experiment 3: Study the effect of the number of states used in subspace identification on the
performance of the permutation test.

Experiment settings: With the same data, we estimate state-space models with different
assumption on the number of states and compare them.



Project Planning

e Experiment 4: Compare the performance and the computational cost of the permutation test with
the GMM method

Experiment settings: With the same data, we compare the performance measures of the
permutation test with the GMM method proposed in [1]. The parameters of the permutation test
are chosen based on the previous result. The computation time is also compared.
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