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Granger causality (GC) is a tool to measure causal connectivities between variables in time series
based on model estimation. A state-space model is considered as it is more general than other
linear models such as autoregressive model or moving average model.

* Learning causalities in time series data has many applications especially in neuroscience in which
causal relationships between brain regions are explored.

*  The statistical distribution of GC of the state-space model is unknown, so a method to classify

zero and non-zero causalities is proposed in [1] by fitting averaged GC measures to a Gaussian
Mixture Model (GMM).

*  We consider applying permutation test, which does not required knowledge of GC distribution, to
classify zero and non-zero causalities.



Project Overview
- Objectives

 To develop a scheme for classifying the zero patterns of the GC of
state-space models using the permutation test.

 To compare the performance of the permutation test with the GMM
method in classification of zero and non-zero entries of GC matrix
obtained from state-space model

Scope of work

We perform GC estimation on simulated data

We compare performance, computational cost and assumptions required
between permutation test and GMM method



Methodology: GC learning scheme
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The scheme for obtaining permutation distribution.



Methodology: GC learning scheme
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The scheme learning GC using permutation test.



Methodology: Ground truth model generation

Generate a VAR A~1(2) Zy
model with sparse
GC matrix
Time series data
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The scheme for generating ground truth model and time series data.



Methodology: Subspace identification

We consider estimating parameters A,C,W,V,S of a stochastic state-space model
x(t+1) = Ax(t) + w(t)
y(t) = Cx(t) + v(t)
This method is based on orthogonal projection. Suppose that the outputs Y is known,
it was shown in [2] that
O; = Yi2i—1 /Yoji-1 = Y /Y, (Projecting the future outputs onto the past output space)

0; =T X = %, =T10; and £y =T ,0;_4
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Methodology: Granger causality

The measure of the Granger causality from y; to y; is defined by
R

F;; = log—=
. - . -J Zii- -
where X is the covariance of the prediction error given all other y, and X is the
covariance of the prediction error given all other y, except y; [3].

The calculation of X and R are done by solving P from the Discrete Algebraic Riccati
Equation (DARE)

P = APAT — (APCT + S)(CPCT + V) L(CPAT + ST + W

And using the fact that X = CPCT + V. For 2%, we again solve DARE but without jt"
row in C, and without both j* row and column in V.



Methodology: Permutation test

- The distribution of F;; is unknown
- The null hypothesis Hy: F;; = 0 is to be
tested

Justification: Under the true null hypothesis, y;
is not Granger-caused by y;, so rearranging data
in channel y; does not change the outcome.

So, we may form a distribution of F;; under H,
empirically from the permutations of data [4].
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Methodology: Permutation test
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Methodology: Permutation test

For a given significance level a, F;; can be tested to decide that F;; = 0 or F;; # 0 by
thresholding the p-values.

* Multiple testing issue: Testing many hypotheses (F;; = 0 for all i,j) at once may
give overall Type | error, or a family-wise error rate (FWER), greater than «a.

* Remedies: Let N be the number of hypotheses to be tested.

* Bonferroni Correction: Test each hypotheses with a corrected significance level

o«
aBon—ﬁ-

* Benjamini-Hochberg procedure: Sorting p-values in the ascending order
P1=P2 =" =Dn
Then use a corrected significance level agy = %max{k|pk < %a} for thresholding.



Comparative method: Gaussian
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The scheme for obtaining GMM from time series data.
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Comparative method: Gaussian Mixture Model (GMM)
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Comparative method: Gaussian Mixture Model (GMM) [1]

An example of fitting a GMM to data with 3 modes
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An example of fitting a GMM to data with 3 modes.
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Results & Discussion
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* Complete permutations and Monte-Carlo permutation test

» Comparison of the performance between permutation test and GMM method

» Performance under different ground truth network densities

* Comparison of the computation time between permutation test and GMM
method



Results & Discussion

The performance of the permutation test when choosing the number of
partitioning segments to be 5 (Complete) and 10 (Monte-Carlo) segments
respectively.

Performance 5 segments 10 segments
index Simple | Bon B-H | Simple | Bon B-H
ACC 0.9678 | 0.9047 | 0.9047 | 0.9650 | 0.9944 | 0.9944
TPR 1 0 0 1 1 1
TNR 0.9644 1 1 0.9613 | 0.9939 | 0.9939
FPR 0.0356 0 0 0.0387 | 0.0061 | 0.0061
FNR 0 1 1 0 0 0

* Complete test yielded slightly better ACC without correction.
* Monte-Carlo test allowed applying correction methods and gave much better
performance.
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Results & Discussion

The performance of GMM method and permutation test on data from ground truth models

with sparse GC.

Performance indices

20000 time points

50000 time points

Permutation test

Permutation test

GMM | Simple | Bon B-H GMM | Simple | Bon B-H
ACC 0.9558 | 0.9297 | 0.9922 | 0.9803 | 0.9933 | 0.9447 | 0.9936 | 0.9869
TPR 1 1 1 1 1 1 1 1
TNR 0.9512 | 0.9223 | 0.9914 | 0.9782 | 0.9926 | 0.9389 | 0.9929 | 0.9856
FPR 0.0488 | 0.0777 | 0.0086 | 0.0218 | 0.0074 | 0.0611 | 0.0071 | 0.0144
FNR 0 0 0 0 0 0 0 0

With more data, GMM method can perform as good as permutation test.
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Results & Discussion

Examples of GC patterns obtained from permutation test and GMM on sparse and dense ground
truths.

Ground truth GC Estimated GC Permutation test GMM
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* Permutation test gave more false positives when the ground truth had denser GC.
*  GMM method showed slightly more false positives in both sparse and dense ground truths.



Results & Discussion

The performance of GMM method and permutation test on data from ground truth models with sparse

and dense GC.

20000 time points 50000 time points
Performance indices Permutation test Permutation test
GMM | Simple | Bon B-H GMM | Simple | Bon B-H
g ACC 0.9558 | 0.9207 | 0.9922 | 0.9803 | 0.9933 | 0.9447 | 0.9936 | 0.9869
ad TPR 1 1 1 1 1 1 1 1
wn TNR 0.9512 | 0.9223 | 0.9914 | 0.9782 | 0.9926 | 0.9389 | 0.9929 | 0.9856
FPR 0.0488 | 0.0777 | 0.0086 | 0.0218 | 0.0074 | 0.0611 | 0.0071 | 0.0144
FNR 0 0 0 0 0 0 0 0
20000 time points 50000 time points
Performance indices Permutation test Permutation test
GMM | Simple | Bon B-H GMM | Simple | Bon B-H
@ ACC 0.9472 | 0.9444 | 0.9781 | 0.9614 | 0.9869 | 0.9386 | 0.9672 | 0.9533
5 TPR 1 0.9949 | 0.9667 | 0.9898 1 0.9898 | 0.9411 | 0.9795
) TNR 0.9218 | 0.9201 | 0.9835 | 0.9477 | 0.9807 | 0.9140 | 0.9798 | 0.9407
FPR 0.0782 | 0.0799 | 0.0165 | 0.0523 | 0.0193 | 0.0860 | 0.0202 | 0.0593
FNR 0 0.0051 | 0.0333 | 0.0102 0 0.0102 | 0.0589 | 0.0205

Both methods performed worse on dense ground truths but permutation test showed

significantly drop in performance.
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Results & Discussion

The computation time (seconds) of GMM method and permutation

Average computation time (sec) | GMM method | Permutation test
20000 time points 3.1948 278.0139
50000 time points 4.5904 667.2358

Method Computation time

Permutation test (1 +nP)Tss;p(N) + (1 + nP)Tg

GMM method
Ny
+ Tritom

N
(1 + NO)TSSID (_> + (1 + NO)TGC

N = length of time series data

P = number of permutations used in permutation test
n = number of dimensions in time series data

Ny = number of GC samples used in GMM method
Tss;p(n) = computation time of subspace
identification on data of length n

T;c = computation time of calculating GC matrix
T¢item = computation time of fitting GMM

* Permutation test required much more computation time than GMM method
since, in general, nP > N, and Tss;p(N) > Tss;p(N/Ny).



Conclusion

* Higher number of permutations in Monte-Carlo permutation test gives higher
performance.

* Monte-Carlo permutation test is more preferable as it allows using p-value correction
methods which yield higher performance.

»  Overestimating order of state-space model does not hinder the performance as much
as underestimating.

* On sparse ground truths, permutation test performs better than GMM method but
the difference can be reduced by increasing the length of the time series data.

* Both permutation test and GMM methods perform worse on dense ground truths
when compared to sparse ground truths. The decrease in performance is significant
In permutation test.

* Permutation test requires much more computation time than GMM method.
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