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1 Introduction

Granger causality (GC) is one of powerful methods for determining causal relationships between variables
in time series. For a time series y(t) = [y1(t) y2(t) · · · yn(t)]T , we say that yj Granger-causes yi if the
prediction of yi is improved by using the past information of yj given all other information of yk where
k 6= j. Quantitatively, a GC measure is defined by

Fij = log
ΣR
ii

Σii
(1)

where Σii is the variance of the prediction error of yi given all past information and ΣR
ii is the variance

of the prediction error of yi given other past information except yj . There are many applications that
concern about establishing connectivities between time series, so determining zero and non-zero causality
is of great interest. In this context, the applications of the Granger causality can be found in many fields
especially in neuroscience where the existences of connectivities between regions of a human brain were
explored from brain signals such as EEG or fMRI [1].

The Granger causality can be applied to both linear and non-linear dynamical models, but linear
model such as vector autoregressive (VAR) models are considered mostly. In VAR models, many prop-
erties of the GC measure was studied. It was shown that the GC measures of VAR models has an
asymptotic mean-shifted χ2−distribution [2]. This allows many powerful parametric methods to be uti-
lized for further significance tests. Modelling time series with VAR model is simple but lacking of moving
average (MA) terms make the model impractical to apply to some of the real systems. MA terms can
be induced in many procedures such as data pre-processing, filtering or by observation process. So, a
more general model that can be use to describe both VAR and MA models such as state-space models
are what we are interested in.

While the generality of the state-space models allows us to estimate models for the data described by
both VAR and MA models, and also the combination of them, denoted VARMA models, the statistical
distributions of the GC measures of state space models are not well understood. The distribution
of the GC measures for the state space models was shown, empirically, to be well-approximated by
Γ−distribution [3], but no analytical proof is provided yet. This renders parametric methods less useful.
A clustering method was proposed by fitting a Gaussian Mixture Model (GMM) to a vectorized matrices
of GC measures [4]. In this method, the GC measures were sampled many times to construct a mixture
Gaussian distribution and used the first two Gaussian components with the lowest means to determine
a threshold for classifying zero entries. While this method required no knowledge about statistical
property of the Granger causality, many samples of Granger causality matrix were required to meet the
CLT assumption and the classification performance of non-zero causality could be deteriorated if the
causality is weak.

Therefore, this project aims to develop a scheme for classifying zero and non-zero GC measures by
using a non-parametric statistical method, namely, a permutation test, and compare the performance
with the GMM method. We start by reviewing the Granger causality and linear models especially the
state-space models and its equivalent models, which is the VARMA models. Then we develop a method
and code for generating, arbitrarily, ground truth model and time series data for later experiments. Next,
we set up experiments to study the classification performance of a permutation test. After that, an
experiment for comparing the performance, the computational cost, and the required assumptions of
the permutation test and the GMM method is conducted. Lastly, we discuss the results and conclude
our method. We expect that this project will provide a scheme for classifying GC patterns based on the
permutation test, MATLAB codes for executing the scheme numerically and the comparative results
between our method and the GMM method.

2 Objectives

1. To develop a scheme for classifying the zero patterns of the Granger causality of state-space
models using the permutation test.
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2. To compare the performance of the permutation test with the Gaussian mixture models method
in classification of zero and non-zero entries of Granger causality matrix obtained from state-space
model.

3 Methodology

This section describes the method for learning GC patterns from time series data including the test of
significance of GC by permutation test. The scheme for learning GC pattern is proposed in Figure 1.

Subspace 
identification 

GC estimation 

Estimated state-space matrices 
𝐴 , 𝐶 , 𝑊 , 𝑉 , 𝑆  

Computing 
permutation 
distributions 

under 𝐻0: 𝐹𝑖𝑗 = 0 

Cumulative permutation 
distribution Φ𝑖𝑗(𝑥) 

𝐹  

Significance test 
and thresholding 

GC zero pattern 

Time series data 

Figure 1: The scheme for learning Granger causality pattern from time series data.

From the given time series data, we start with estimating a state-space model in the form

x(t+ 1) = Ax(t) + w(t) (2a)

y(t) = Cx(t) + v(t) (2b)

where

E

[
w(t)
v(t)

] [
w(t)
v(t)

]T
=

[
W S
ST V

]
. (3)

Then, a matrix of Granger causality measures (F = [Fij ]) is calculated from the parameters of the
estimated state-space model. After that, we calculate permutation distributions (Φij) of Fij and use
them to compute p-values for each Fij . A significance level α is then selected to test the null hypothesis
H0 : Fij = 0 for every entries of F , and, thus, the GC pattern is acquired.

3.1 Ground truth model

To examine the performance of the permutation method, we require state space models whose param-
eters and GC matrix are known. We refer to this model as the ground truth model. Since we are
interested in the zero pattern of the GC matrix, the ground truth model should be generated arbitrarily
with controlled sparsity of zero entries. The scheme for generating ground truth models is shown in
Figure 2.

Firstly, we generate a stable VAR model of order p described by

y(t) = A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p) + w(t), (4)

or by a transfer function

A−1(z) = (I −A1z
−1 −A2z

−2 − · · · −Apz
−p)−1. (5)

It has been shown that, for any VAR models [5],

(Ak)ij = 0, ∀k = 1, . . . , p⇐⇒ Fij = 0. (6)
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Figure 2: The scheme for generating ground truth state-space models and time series data.

So by generating A1, A2, . . . , Ap with common zero entries, we obtain a model whose GC matrix’s
sparsity can be chosen arbitrarily.

Next, in order to make the model more general, the VAR model can be filtered to introduce moving
average terms. It has been proved that the GC matrix is invariant under any stable invertible diagonal
filter that has minimum phase [6]. So we consider generating a diagonal filter

G(z) =


p1(z)
q1(z)

0 · · · 0

0 p2(z)
q2(z)

· · · 0
...

...
. . .

...

0 0 · · · pn(z)
qn(z)

 (7)

where pi(z), qi(z) 6= 0 are polynomials in z. To guarantee the stability and minimum phase, roots
of pi(z) and qi(z) for all i = 1, . . . , n must be generated so that they lie inside a unit circle. Since
qi(z) 6= 0, the filter is invertible.

From the previous results, passing a VAR model under a stable invertible diagonal filter gives a new
system described by a transfer function

H(z) = G(z)A−1(z). (8)

This transfer function can be realized into a state-space model

x(t+ 1) = Ax(t) +Bw(t), (9a)

y(t) = Cx(t). (9b)

This state-space model has the same GC pattern with the VAR model and is considered to be our ground
truth model. Hence, we may conclude the generation of ground truth model into the following step.

1. Generate a random stable VAR model of order p with common zero entries in its parameters
A1, A2, . . . , Ap to obtain the transfer function A−1(z).

2. Generate a random diagonal filter that is stable, invertible and has minimum phase. In this step
we obtain the transfer function G(z) of the filter.

3. Realize G(z)A−1(z) using ss command with minimal option in MATLAB to obtain a minimal
state-space form. This state-space model is then used as the ground truth model.

Time series data can be generated directly from the state-space model using lsim command in MATLAB.
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3.2 Subspace identification

We consider the estimation of a stochastic state-space model shown in (2) with (3) where x ∈ Rn and
y ∈ Rm. Suppose that the time series data {y(t)}Nt=1 is observed. The parameter (A,C,W, V, S) can
by obtained by a subspace identification method in the following steps [7]. Firstly, we project the future
output (Yf ) onto the past output (Yp) space to obtain the orthogonal projection

Oi , Yi|2i−1/Y0|i−1 = Yf/Yp (10)

where Y0|i−1 = Yp is the observed data from t = 0 to t = i − 1 representing the past output and
Yi|2i−1 = Yf is the observed data from t = i to t = 2i − 1 representing the future output. Let no be
the rank of Oi. Then, by SVD decomposition,

Oi =
[
U1 U2

] [Σno 0
0 0

] [
V T
1

V T
2

]
= U1ΣnoV

T
1 . (11)

Let Γi be an extended observability matrix. Then, from [8], we have

Oi = ΓiX̂i (12)

where X̂i is the estimated state. So, for some non-singular matrix T , we can obtain

Γi = U1Σ
1/2
no
T (13)

From this result, the estimated states is
X̂i = Γ†iOi (14)

where Γ†i denotes the pseudo-inverse of Γi. Next, the shifted state X̂i+1 can be computed by

X̂i+1 = (Γi)
†Oi−1 = (Γi)

†(Yi+1|2i−1/Y0|i) (15)

where Γi denotes Γi without the last row. Lastly, we form the equation[
X̂i+1

Yi|i

]
=

[
A
C

]
X̂i +

[
ρw
ρv

]
. (16)

We can solve for A and C in least-square sense and obtain[
Â

Ĉ

]
=

[
X̂i+1

Yi|i

]
X̂†i

The covariances of w(t) and v(t) are then obtained by[
Ŵ Ŝ

ŜT V̂

]
= (1/j)

[
ρw
ρv

] [
ρw
ρv

]T
. (17)

3.3 Granger causality of state-space models

After the stochastic state-space model have been identified, we examine causal relationships between
every pair of output yi and yj when i 6= j. The Granger causality from yj to yi is quantified by how
prediction of the future of yi can be improved by the past of yj given all past information compared to
without using the past of yj . The measure of the Granger causality from yj to yi is then defined as [3]

Fij = log
ΣR
ii

Σii
(18)

where Σii and ΣR
ii are the covariances of the prediction errors of the full model and the reduced model,

respectively. Using more information generally gives better prediction, so it follows that Σii ≤ ΣR
ii .

Hence, we always have Fij ≥ 0.

5



To obtain Σii and ΣR
ii , we note that not using yj is equivalent to removing yj from (2). So we

consider the full model described by (2) and the reduced model

x(t+ 1) = Ax(t) + w(t), (19a)

yR(t) = CRx(t) + vR(t) (19b)

where yR is obtained by removing yj from y and CR is obtained by removing the jth row from C. It
has been shown in [4] that, through Kalman filter, we have

Σ = cov(y(t)− ŷ(t|t− 1)) = CPCT + V (20)

where ŷ(t|t−1)) is the optimal estimator of y(t) in mean squared error sense and P can be solved from
the discrete-time algebraic Riccati equation (DARE):

P = APAT − (APCT + S)(CPCT + V )−1(CPAT + ST ) +W. (21)

Similarly, ΣR can be obtained in the same manner by first solving (21) for PR using CR and V R instead
of C and V where V R denotes V with its jth row and column being removed. Then, we have

ΣR = CRPR(CR)T + V R. (22)

By extracting the diagonal entries of Σ and ΣR, the GC measures can be calculated by (18) for all i. A
GC matrix is then defined by

F =


F11 F12 · · · F1n

F21 F22 · · · F2n
...

...
. . .

...
Fn1 Fn2 · · · Fnn

 . (23)

Since we are interest only the causal relationship between different variables, the diagonal entries of F
are of no interest and left without computation.

3.4 Permutation test

After obtaining the estimated GC matrix F̂ , each entries in F̂ must be classified into zero or non-zero.
Since the estimation is never perfect, F̂ is deviated from the true GC matrix F . A statistical test is
then required for classification. So we state a null hypothesis as

H0 : Fij = 0. (24)

Since Fij ≥ 0, our test is a one-tail test. It is not know what the distribution of Fij under the true null
hypothesis is. So, our approach is to use a non-parametric test, specifically, a permutation test.

In the permutation test, under the true null hypothesis, we construct distributions of the test statistics
(Fij), called permutation distributions, from the data we have [9], which is, in our case, the time series
data. As the name suggests, the permutation distribution is constructed from the test statistics obtained
by every possible permutations (or rearrangements) of the data. The permutation done on the data must
be justified under the true null hypothesis, that is, the rearranging must not affect the null hypothesis.

Under the null hypothesis (24), yi is not Granger-caused by yj . It follows that rearranging the data
in yj has no effect on Fij in this sense. Hence, more samples of Fij can be acquired by estimating GC
matrix again from different permutations. For the time series data of length N , there are overwhelming
N ! possible ways to rearrange the data. To limit the number of permutation, we can permute chunks
of the data instead by partitioning the data into many windows with the some length W . For example,
see Figure 3. This gives bNW c! permutations if we discard the residual data from partitioning. If we only
select some of the permutation randomly from all possible permutation, we call the test the Monte-Carlo
permutation test [10].

For each permutation on yj for j = 1, . . . , n, we obtain samples of Fij for i = 1, . . . , n denoted

{F̂ (k)
ij }Pk=1 where P is the number of permutations. These samples are used to construct (cumulative)

permutation distributions Φij for all Fij .
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Figure 3: One of the possible permutations of time series data partitioned into 5 windows.

Given a significance level α, we can test the significance of F̂ij to accept or reject the null hypothesis
(24). The p-value is then calculated from the probability of Fij being at least as extreme as F̂ij . Using
the permutation distributions, one-tail p-value for any F̂ij is computed by

pij = 1− Φij(F̂ij) =
Number of elements in {k|F̂ (k)

ij ≥ F̂ij}
P

. (25)

If F̂ij > 0, we can see that pij should be small since permuting the data generally neutralized the
causality.

By choosing α for thresholding, we can simply classify that Fij 6= 0 if pij ≤ α (reject the null
hypothesis) or classify that Fij = 0 if pij > α (accept the null hypothesis). While this method is simple,
testing all F̂ij repeatedly with α as a threshold has some concern about the Type I error (the probability
of incorrectly rejected the null hypothesis) since multiple hypotheses testing is being done.

A family-wise error rate (FWER) is the probability of having one or more Type I errors. Suppose
that F ∈ Rn×n, it follows that we have a family of n2 − n hypotheses to be tested (excluding the
diagonal). So, if we test each hypothesis using α as a threshold, and the tests are independent, then

FWER = 1− (1− α)n
2−n ≥ α (26)

To ensure that FWER ≤ α, the Bonferroni correction provide a method to correct the p-values by using

p̃ij = min{(n2 − n)pij , 1} (27)

or, equivalently, using a modified α

α̃ =
α

n2 − n
. (28)

By Boole’s inequality, it can be shown that [11]

FWER = P

{⋃
i 6=j

(
pij ≤ α̃

)}
(29)

≤
∑
i 6=j

P

(
pij ≤

α

n2 − n

)
(30)

= (n2 − n)
α

n2 − n
(31)

= α. (32)
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Therefore, by choosing α̃ = α/(n2 − n) as a threshold, our tests become conservative. But, the value
of α̃ can be very small such that even large Fij could be classified as zero.

Another method called the Benjamini-Hochberg procedure approaches by controlling false discovery
rate (FDR) instead. Let U be the number of false discoveries (incorrectly rejected null hypotheses)
and R be number of discoveries (all rejected null hypotheses). Then, the false discovery rate is usually
defined by [12]

FDR = E

[
U

R

]
(= 0 if R = 0). (33)

The Benjamini-Hochberg procedure start by sorting p-values in an ascending order

p(1) ≤ p(2) ≤ · · · ≤ p(n2−n). (34)

Next, we find the largest index k such that

p(k) ≤
k

n2 − n
α. (35)

Then, we reject the first k hypotheses associated to p(1), . . . , p(k). It has been shown in [11] that if the
p-values corresponding to the correct null hypotheses are independent, then, by using the Benjamini-
Hochberg procedure, we have

FDR ≤ α. (36)

This method does not guarantee that FWER ≤ α, so it is not conservative. Instead, the ratio of false
discoveries to all discoveries is controlled by α.

4 Preliminary results

In this section, an experiment was performed to study the effect of the number of permutations to the
performance of the Monte-Carlo permutation test. Our hypothesis was that the performance increased as
the number of permutations increased. This experiment could give us the best number of permutations
to be chosen to reduce the computation time.

So, we set up the control conditions as follows. We created 15 state-space models by generating
VAR models of order 2 with dimension of 5 and filtered the VAR models with diagonal filters with 1
zero and 2 poles. The obtained state-space models then had 20 states. Time series data were generated
from each models with 1000 time points. The number of states use in subspace method was chosen to
be the same with the true system (20 states). We varied the number of permutation P from 1 to 200
with the same window length of 100. Then, with the significance level α, we compared the estimated
GC patterns obtained by simple thresholding, Bonferroni correction and Benjamini-Hochberg procedure
from each models to the true GC patterns.

To test the performance, we considered the following indices.

• True positive (TP): correctly classified non-zeros in F

• True negative (NP): correctly classified zeros in F

• False positive (FP): incorrectly classified non-zeros in F

• False negative (FP): incorrectly classified zeros in F
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Together with these indices, we can determine the following classification performance.

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
(37a)

True positive rate (TPR) =
TP

TP + FN
(37b)

True negative rate (TNR) =
TN

TN + FP
(37c)

False positive rate (FPR) =
FP

TN + FP
= 1− TNR (37d)

False negative rate (FNR) =
FN

TP + FN
= 1− TPR (37e)
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Figure 4: The performances of the Monte-Carlo permutation test for P = 1, 2, . . . , 200 with no correc-
tion, with Bonferroni correction and with Benjamini-Hochberg procedure.

The result in Figure 4 showed that, for P < 20, ACC and TNR increased as P was increased. In
contrast, the FPR declined as P increased. For P > 20, ACC, TNR and FPR became steady and did not
have significant changes. For simple thresholding, TPR and FNR were constants at 1 and 0, respectively,
for all P while Bonferroni correction and Benjamini-Hochberg procedure had slightly decrease in TPR
and slightly increase in FNR as P increased. This result agree with our hypothesis that the performance
is improved as the number of permutation increase. Since we performed the Monte-Carlo permutation
test, the result is expected to be improved as more permutations are used. It is possible that, for simple
thresholding case, the TPR and FNR of constants 1 and 0, respectively, were resulted from that the
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Figure 5: An example of the estimation of GC pattern for P = 5, 10, 15, 20, 100 and 200, using signifi-
cance level α = 0.05, thresholding without correction, with Bonferroni correction and with Benjamini-
Hochberg procedure, compared to the true pattern. White squares represent zero entries and black
squares represent non-zero entries.

estimated non-zero entries were too extreme. In other word, the true causality was significantly strong
so that the chance to have a permutation that gives even higher causality than the estimated causality
was very low. Another notable result is that for all performance measures, the Benjamini-Hochberg
procedure lay mostly between the simple thresholding and the Bonferroni correction. This showed that
the Benjamini-Hochberg procedure can control the FPR better than the simple thresholding but slightly
worse than the Bonferroni correction. On the other hand, the Benjamini-Hochberg procedure had lower
FNR and higher TPR than the Bonferroni correction, demonstrating a trade-off between controlling
FPR and FNR.

Figure 5 showed an example of estimated GC patterns. In this example, all methods gave the same
results for P = 5, 10 and 20 with 2, 1 and 1 false positives respectively. When P = 100 and 200, the
Bonferroni correction and the Benjamini-Hochberg procedure gave the same pattern as the true GC
pattern while the simple thresholding had one false positive. This example agree with our hypothesis.
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The results also showed that the Bonferroni correction and Benjamini-Hochberg procedure had better
control of the false positives.

5 Project description

In this section, we explain the scope of work and the project plans in the form of a Gantt chart.

5.1 Scope of work

The scope of this project is the following.

1. We perform and verify the estimation of GC pattern on simulation data only.

2. We compare the performance, the computational cost, and required assumptions of the permuta-
tion method with the GMM method for learning GC patterns.

5.2 Project plans
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Figure 6: The Gantt chart of this project.

Figure 6 shows the plans of this project for both semesters. In the first semester, we reviewed on the
Granger causality, ARMA models and the method of converting to state-space. In addition, we wrote a
MATLAB code for generating ground truth models with arbitrary GC patterns and controllable sparsity.

For the next semester, we plan to perform the following experiments to study the factors that affect
the performance of the permutation test and to reach our objective on comparison with the GMM
method.

• Experiment 2: Compare the performance of the permutation test with every permutations with
the Monte-Carlo permutation.

– Hypothesis: The permutation test with every permutations has better performance than the
Monte-Carlo permutation test.

– Experiment settings: We generate many ground truth models with the same parameters and
time series data generated form each model are of the same length. The numbers of states
used in subspace identification are the same with the ground truth models. The number
of partitioning for the permutation test is chosen at 5 so that the number of permutation
(= 5! = 120) do not exceed 200. So the number of permutation is also fixed at 120 for the
Monte-Carlo method. The number of partition of the Monte-Carlo can still be varied. The
performance measures of both methods are then computed and compared
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• Experiment 3: Study the effect of the number of states used in subspace identification on the
performance of the permutation test.

– Hypothesis: The performance of the permutation test is improve as the number of states
used is closer to the true number of states.

– Experiment settings: We generate many ground truth models with the same parameters
and time series data generated form each model are of the same length. The numbers of
permutations and the number of partitions are chosen to be equal for each number of states.
For the true number of state ns, the number of states for estimation is vary in range of
ns ± 10. Then, the performance measures are calculated for each number of states and
compared.

• Experiment 4: Compare the performance and the computational cost of the permutation test with
the GMM method.

– Hypothesis: The permutation test gives better performance but the GMM method has lower
computation time

– Experiment settings: We generate many ground truth models with the same parameters
and time series data generated form each model are of the same length. This time, we can
vary any parameters in permutation test but we will choose the parameters based on the
previous experiments for the optimal choice. For the GMM method, we refer to [4]. Then,
the performance measures are computed for both method and compared. The computational
times are also collected for each method to be compared.

After the experiments, we will discuss the results and may adjust our method according to the
experiments’ results for better performance or lower computation time.
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