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Abstract

This project aims to develop a scheme to learn a Granger causality of time series data. The
Granger causality is calculated from state-space parameters estimated using subspace identification
method, then permutation test is applied to classify zero and non-zero causality. We explored
the parameters that affect the performance of permutation test. It was shown that increasing the
number of permutations used in the test improves the performance. Moreover, we found that using
all possible permutations can give slightly better performance than randomly sample permutations
but only when there is no p-value correction applied. This result encourages us to use a Monte-
Carlo permutation test as the correction methods can improve the performance significantly. The
order of state-space models in estimation also affects the performance of permutation test. We
observed through simulations that underestimation of the model order yields worse performance than
overestimation. In the comparison between permutation test and GMM method, the performance
of permutation test was found to be generally higher when ground truth models have sparse GC
matrices. With large number of data, however, GMM method could give a very close performance
to permutation test. When ground truth models have denser GC matrices, the performance of
permutation test become worse when the length of time series data is longer and can be worse than
GMM method. For the computational cost, permutation test suffers heavily from the excessive use
of subspace identification algorithm.
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1 Introduction

Granger causality (GC) is one of powerful methods for determining causal relationships between variables
in time series. For a time series y(t) = [y1(t) y2(t) · · · yn(t)]T , we say that yj Granger-causes yi if the
prediction of yi is improved by using the past information of yj given all other information of yk where
k 6= j. Quantitatively, a GC measure is defined by

Fij = log
ΣR
ii

Σii
, i, j = 1, 2, . . . , n

where Σii is the variance of the prediction error of yi given all past information and ΣR
ii is the variance

of the prediction error of yi given other past information except yj . There are many applications that
concern about establishing connectivities between time series, so determining zero and non-zero causality
is of great interest. In this context, the applications of the Granger causality can be found in many fields
especially in neuroscience where the existences of connectivities between regions of a human brain were
explored from brain signals such as EEG or fMRI [KFL19].

The Granger causality can be applied to both linear and non-linear dynamical models, but linear
model such as vector autoregressive (VAR) models are considered mostly. In VAR models, many prop-
erties of the GC measure was studied. It was shown that the GC measures of VAR models has an
asymptotic mean-shifted χ2−distribution [BS14]. This allows many powerful parametric methods to be
utilized for further significance tests. Modelling time series with VAR model is simple but lacking of
moving average (MA) terms make the model impractical to apply to some of the real systems. MA terms
can be induced in many procedures such as data pre-processing, filtering or by observation process. So,
a more general model that can be use to describe both VAR and MA models such as state-space models
are what we are interested in.

While the generality of the state-space models allows us to estimate models for the data described by
both VAR and MA models, and also the combination of them, denoted VARMA models, the statistical
distributions of the GC measures of state space models are not well understood. The distribution
of the GC measures for the state space models was shown, empirically, to be well-approximated by
Γ−distribution [BS15], but no analytical proof is provided yet. This renders parametric methods less
useful. A clustering method was proposed by fitting a Gaussian Mixture Model (GMM) to a vectorized
matrices of GC measures [Son19]. In this method, the GC measures were sampled many times to
construct a mixture Gaussian distribution and used the first two Gaussian components with the lowest
means to determine a threshold for classifying zero entries. While this method required no knowledge
about statistical property of the Granger causality, many samples of Granger causality matrix were
required to meet the assumption of the central limit theorem and the classification performance of
non-zero causality could be deteriorated if the causality is weak.

Therefore, this project aims to develop a scheme for classifying zero and non-zero GC measures by
using a non-parametric statistical method, namely, a permutation test, and compare the performance
with the GMM method. We start by reviewing the Granger causality and linear models especially the
state-space models and its equivalent models, which is the VARMA models. Then we develop a method
and code for generating, arbitrarily, ground truth model and time series data for later experiments. Next,
we set up experiments to study the classification performance of a permutation test. After that, an
experiment for comparing the performance, the computational cost, and the required assumptions of
the permutation test and the GMM method is conducted. Lastly, we discuss the results and conclude
our method. We expect that this project will provide a scheme for classifying GC patterns based on the
permutation test, MATLAB codes for executing the scheme numerically and the comparative results
between our method and the GMM method.
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2 Project Overview

2.1 Objectives

1. To develop a scheme for classifying the zero patterns of the Granger causality of state-space
models using the permutation test.

2. To compare the performance of the permutation test with the GMM method in classification of
zero and non-zero entries of Granger causality matrix obtained from state-space model.

2.2 Scope of work

The scope of this project is the following.

1. We perform and verify the estimation of GC pattern on simulation data only.

2. We compare the performance, the computational cost, and required assumptions of the permuta-
tion method with the GMM method for learning GC patterns.

2.3 Expected Outcomes

1. A scheme for classifying zero and non-zero causality between variables in time series using state-
space models and permutation test.

2. MATLAB codes for executing the developed scheme for classifying zero and non-zero causality.

3. Results from the comparison between the method using permutation test and the GMM method
in classifying zero and non-zero causality.

3 Methodology

This section describes the method for learning GC patterns from time series data including the test of
significance of GC by permutation test. The scheme for learning GC pattern is proposed in Figure 1
which will be explained as follows.

From the given n-dimensional time series data, we start with estimating a state-space model in the
form

x(t+ 1) = Ax(t) + w(t) (1a)

y(t) = Cx(t) + v(t) (1b)

where

E

[
w(t)
v(t)

] [
w(t)
v(t)

]T
=

[
W S
ST V

]
. (2)

Then, a matrix of GC measures (F̂ = [F̂ij ]) is calculated from the parameters of the estimated state-
space model. By uncertainties in the estimation, Fij are never found to be exactly zero as shown in
Figure 2 (left). So we apply permutation test to test that Fij is zero or non-zero.

To perform permutation test, we return to the time series data. First, we partition the time series
into many segments. Next, for each row jth, we permute (rearrange) the segments in this row randomly
and insert back into the time series. This permuted time series is then used to estimate state-space

parameters by subspace identification algorithm. From these parameters, samples of GC measures F̂
(k)
ij

for i = 1, . . . , n are obtained. This procedure is repeated from k = 1, . . . , P for every row j = 1, . . . , n.
Then, all GC measures obtained are used to construct a cumulative permutation distribution Φij for all
i, j = 1, . . . , n where i 6= j.

With the GC matrix F̂ , we can calculate p-values for each F̂ij using Φij and then define a significance
level α to test the null hypothesis H0 : Fij = 0 for every entries of F , and, thus, the GC pattern in the
form of a binary matrix is acquired as represented in Figure 2 (right).
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Figure 1: Our scheme for learning GC pattern using permutation test.
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In the following sections, we will describe the necessary procedures used in our scheme for estimating
GC patterns including the generation of ground truth models used in all of our simulations, subspace
identification algorithm for estimating state-space parameters, calculation of GC matrices, permutation
test and performance indices which are considered in our experiments.

Figure 2: (left) The estimated GC matrix F̂ can never be the same as the GC matrix of the ground
truth model. So the entries that suppose to be zeros are estimated at best to be close to zero. In this
gray-scale representation, the entry at (i, j) is darker as F̂ij is greater than zero and is whiter as F̂ij is
closer to zero. (right) The GC pattern in binary form after permutation test. Black entries represent
non-zero causalities and white entries represent zero causalities.

3.1 Ground truth model generation

To examine the performance of the permutation method, we require state space models whose param-
eters and GC matrix are known. We refer to this model as the ground truth model. Since we are
interested in the zero pattern of the GC matrix, the ground truth model should be generated arbitrarily
with controlled sparsity of zero entries. The scheme for generating ground truth models is shown in
Figure 3.

Generate a VAR 
model with 

sparse GC matrix 

Generate a 
diagonal filter 

State-space model 
 

𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵𝑤 𝑡  
        𝑦 𝑡 = 𝐶𝑥 𝑡  

 

 equivalent to 𝐺 𝑧 𝐴−1(𝑧) 

Σ𝑤 

𝑦 𝑡 𝑡=1
𝑁  𝐺 𝑧  

𝐴−1 𝑧  

Figure 3: The scheme for generating ground truth state-space models and time series data.

Firstly, we generate a stable VAR model of order p described by

y(t) = A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p) + w(t),

or by a transfer function

A−1(z) = (I −A1z
−1 −A2z

−2 − · · · −Apz−p)−1.
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It has been shown that, for any VAR models [Lüt05],

(Ak)ij = 0,∀k = 1, . . . , p ⇐⇒ Fij = 0.

So by generating A1, A2, . . . , Ap with common zero entries, we obtain a model whose GC matrix’s
sparsity can be chosen arbitrarily.

Next, in order to make the model more general, the VAR model can be filtered to introduce moving
average terms. It has been proved that the GC matrix is invariant under any stable invertible diagonal
filter that has minimum phase [BS11]. So we consider generating a diagonal filter

G(z) =


p1(z)
q1(z) 0 · · · 0

0 p2(z)
q2(z) · · · 0

...
...

. . .
...

0 0 · · · pn(z)
qn(z)


where pi(z), qi(z) 6= 0 are polynomials in z. To guarantee the stability and minimum phase, roots
of pi(z) and qi(z) for all i = 1, . . . , n must be generated so that they lie inside a unit circle. Since
qi(z) 6= 0, the filter is invertible.

From the previous results, passing a VAR model under a stable invertible diagonal filter gives a new
system described by a transfer function

H(z) = G(z)A−1(z).

This transfer function can be realized into a state-space model

x(t+ 1) = Ax(t) +Bw(t),

y(t) = Cx(t).

This state-space model has the same GC pattern with the VAR model and is considered to be our ground
truth model. Hence, we may conclude the generation of ground truth model into the following step.

1. Generate a random stable VAR model of order p with common zero entries in its parameters
A1, A2, . . . , Ap to obtain the transfer function A−1(z).

2. Generate a random diagonal filter that is stable, invertible and has minimum phase. In this step
we obtain the transfer function G(z) of the filter.

3. Realize G(z)A−1(z) using ss command with minimal option in MATLAB to obtain a minimal
state-space form. This state-space model is then used as the ground truth model.

Time series data can be generated directly from the state-space model using lsim command in MATLAB.

3.2 Subspace identification

In the calculation of GC matrix, parameters of state-space model are required. So we consider the
estimation of a stochastic state-space model shown in (1) with (2) where x ∈ Rn and y ∈ Rm. Suppose
that the time series data {y(t)}Nt=1 is observed. Let define the notation for projection of the row space
of the matrix P on the row space of the matrix Q as

P/Q , PQT (QQT )†Q

where (QQT )† is the pseudo-inverse of (QQT ). The parameter (A,C,W, V, S) can by obtained by a
subspace identification method in the following steps [Son]. Firstly, we project the future output (Yf )
onto the past output (Yp) space to obtain the orthogonal projection

Oi , Yi|2i−1/Y0|i−1 = Yf/Yp
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where Y0|i−1 = Yp is the observed data from t = 0 to t = i − 1 representing the past output and
Yi|2i−1 = Yf is the observed data from t = i to t = 2i − 1 representing the future output. Let no be
the rank of Oi. Then, by SVD decomposition,

Oi =
[
U1 U2

] [Σno 0
0 0

] [
V T

1

V T
2

]
= U1ΣnoV

T
1 .

Let Γi be an extended observability matrix. Then, from [OM12], we have

Oi = ΓiX̂i

where X̂i is the estimated state. So, for some non-singular matrix T , we can obtain

Γi = U1Σ1/2
no
T

From this result, the estimated states is
X̂i = Γ†iOi

where Γ†i denotes the pseudo-inverse of Γi. Next, the shifted state X̂i+1 can be computed by

X̂i+1 = (Γi)
†Oi−1 = (Γi)

†(Yi+1|2i−1/Y0|i)

where Γi denotes Γi without the last row. Lastly, we form the equation[
X̂i+1

Yi|i

]
=

[
A
C

]
X̂i +

[
ρw
ρv

]
.

We can solve for A and C in least-square sense and obtain[
Â

Ĉ

]
=

[
X̂i+1

Yi|i

]
X̂†i

The covariances of w(t) and v(t) are then obtained by[
Ŵ Ŝ

ŜT V̂

]
= (1/j)

[
ρw
ρv

] [
ρw
ρv

]T
.

The implementation of this method in MATLAB is available from the author of [OM12] in the
function subid which can be used to identify deterministic system, stochastic system or the combination
of both.

3.3 Granger causality of state-space models

After the stochastic state-space model have been identified, we examine causal relationships between
every pair of output yi and yj when i 6= j. The Granger causality from yj to yi is quantified by how
prediction of the future of yi can be improved by the past of yj given all past information compared to
without using the past of yj . The measure of the Granger causality from yj to yi is then defined as
[BS15]

Fij = log
ΣR
ii

Σii
(4)

where Σii and ΣR
ii are the covariances of the prediction errors of the full model and the reduced model,

respectively. Using more information generally gives better prediction, so it follows that Σii ≤ ΣR
ii .

Hence, we always have Fij ≥ 0.
To obtain Σii and ΣR

ii , we note that not using yj is equivalent to removing yj from (1). So we
consider the full model described by (1) and the reduced model

x(t+ 1) = Ax(t) + w(t),

yR(t) = CRx(t) + vR(t)

11



where yR is obtained by removing yj from y and CR is obtained by removing the jth row from C. It
has been shown in [Son19] that, through Kalman filter, we have

Σ = cov(y(t)− ŷ(t|t− 1)) = CPCT + V

where ŷ(t|t−1)) is the optimal estimator of y(t) in mean squared error sense and P can be solved from
the discrete-time algebraic Riccati equation (DARE):

P = APAT − (APCT + S)(CPCT + V )−1(CPAT + ST ) +W. (6)

Similarly, ΣR can be obtained in the same manner by first solving (6) for PR using CR and V R instead
of C and V where V R denotes V with its jth row and column being removed. Then, we have

ΣR = CRPR(CR)T + V R.

By extracting the diagonal entries of Σ and ΣR, the GC measures can be calculated by (4) for all i. A
GC matrix is then defined by

F =


F11 F12 · · · F1n

F21 F22 · · · F2n
...

...
. . .

...
Fn1 Fn2 · · · Fnn

 .
Since we are interest only the causal relationship between different variables, the diagonal entries of F
are of no interest and left without computation.

3.4 Permutation test

After obtaining the estimated GC matrix F̂ , each entries in F̂ must be classified into zero or non-zero.
Since the estimation is never perfect, F̂ is deviated from the true GC matrix F . A statistical test is
then required for classification. So we state a null hypothesis as

H0 : Fij = 0. (7)

Since Fij ≥ 0 by definition, our test is a one-tail test. It is not known what the distribution of Fij under
the true null hypothesis is. So, our approach is to use a non-parametric test, specifically, a permutation
test.

In permutation test, under the true null hypothesis, we construct distributions of the test statistics
(Fij), called permutation distributions, from the data [NH02], which is, in our case, the time series data.
As the name suggests, the permutation distribution is constructed from the test statistics obtained by
every possible permutations (or rearrangements) of the data. The permutation done on the data must
be justified under the true null hypothesis, that is, the rearranging must not affect the null hypothesis.

Under the null hypothesis (7), yi is not Granger-caused by yj . It follows that rearranging the data
in yj has no effect on Fij in this sense. Hence, more samples of Fij can be acquired by estimating GC
matrix again from different permutations. For the time series data of length N , there are overwhelming
N ! possible ways to rearrange the data. To limit the number of permutation, we can permute chunks
of the data instead by partitioning the data into many segments with the some length W . For example,
see Figure 4. This gives bNW c! permutations if we discard the residual data from partitioning. If we only
select some of the permutation randomly from all possible permutation, we call the test the Monte-
Carlo permutation test [Goo05] and we will refer the test using all possible permutations of all segments
as complete permutation test.

For each permutation on yj for j = 1, . . . , n, we obtain samples of Fij for i = 1, . . . , n denoted

{F̂ (k)
ij }Pk=1 where P is the number of permutations. These samples are used to construct (cumulative)

permutation distributions Φij for all Fij . Note that the total times that subspace identification algorithm
is called is, for n-dimensional time series data, nP .
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Figure 4: One of the possible permutations of time series data partitioned into 5 segments.

Given a significance level α, we can test the significance of F̂ij to accept or reject the null hypothesis
(7). The p-value is then calculated from the probability of Fij being at least as extreme as F̂ij . Using
the permutation distributions, one-tail p-value for any F̂ij is computed by

pij = 1− Φij(F̂ij) =
Number of elements in

{
k|F̂ (k)

ij ≥ F̂ij
}

P
. (8)

If F̂ij > 0, we can see that pij should be small since permuting the data generally neutralized the
causality. By choosing α for thresholding, we can classify that

Fij 6= 0 if pij ≤ α, (reject the null hypothesis)

or classify that
Fij = 0 if pij > α, (accept the null hypothesis).

While this method is simple, testing all F̂ij repeatedly with α as a threshold has some concern
about the Type I error (the probability of incorrectly rejected the null hypothesis) since we have to test
many hypotheses simultaneously (that is testing for Fij = 0 for all i, j when i 6= j). Testing multiple
hypotheses simultaneously is called multiple comparisons or multiple testing [NH02].

Suppose that F ∈ Rn×n, it follows that we have a family of n2 − n hypotheses to be tested
(excluding the diagonal). To explore the problem with multiple testing, we consider a family-wise error
rate (FWER) which is the probability of having one or more Type I errors [Efr12]. So, if we test each
hypothesis using α as a threshold, and the tests are independent, then we have

FWER = 1− (1− α)n
2−n ≥ α

which is undesirable since the probability of having at least one Type I error will be greater than α.
p-values obtained from testing each hypothesis individually with α as a threshold are referred to as the
uncorrected p-values [NH02]. To cope with this problem, we introduce two p-value correction methods,
the Bonferroni correction and the Benjamini-Holchberg procedure [Efr12].

The Bonferroni correction is a method for correcting the p-values by using

p̃ij = min{(n2 − n)pij , 1}

13



in testing with α as a threshold or, equivalently, using a modified α:

α̃ =
α

n2 − n
.

as a threshold in testing with uncorrected p-values. By Boole’s inequality, it can be shown that [Efr12]

FWER = P

{⋃
i 6=j

(
pij ≤ α̃

)}

≤
∑
i 6=j

P

(
pij ≤

α

n2 − n

)
= (n2 − n)

α

n2 − n
= α.

Therefore, by choosing α̃ = α/(n2 − n) as a threshold in multiple test with uncorrected p-value, our
tests become conservative. But, the value of α̃ can be very small such that even large Fij could be
classified as zero.

Another method called the Benjamini-Hochberg procedure approaches by controlling false discovery
rate (FDR) instead. Let U be the number of false discoveries (incorrectly rejected null hypotheses or
false positives) and R be number of discoveries (all rejected null hypotheses or the sum of false positives
and true positives). Then, the false discovery rate is defined by [Sto11]

FDR =

{
E[U/R] , if R 6= 0

0 , if R = 0

The Benjamini-Hochberg procedure starts by sorting uncorrected p-values (pij) in the ascending order

p(1) ≤ p(2) ≤ · · · ≤ p(n2−n).

Next, we find the largest index k such that

p(k) ≤
k

n2 − n
α.

Then, we reject the first k hypotheses associated with p(1), . . . , p(k). It has been shown in [Efr12]
that if the p-values corresponding to the correct null hypotheses are independent, then, by using the
Benjamini-Hochberg procedure, we have

FDR ≤ α.

This method does not guarantee that FWER ≤ α, so it is not conservative. Instead, the ratio of false
discoveries to all discoveries, that is the ratio of false positives to sum of both false positives and true
positives, is controlled by α.

In our work, we consider on both correction methods. The test with uncorrected p-values is only
considered when the other two methods are unavailable, namely when the complete permutation test
is performed with small number of permutations since the achievable minimum p-value can always be
greater than the modified significance level α̃.

Now, we can explain our scheme in Figure 1 in more detail. With a given n-dimensional time series
data, we start with estimate state-space parameters and calculate GC matrix from the original data.
Then, the length of partition W is chosen (or, equivalently, the number of partitions) and we partition
the data into bNW c segments.

For each row, say, jth row, of the time series data, we repeatedly permute the order of segments in
jth row for P times. For each permutation, we insert the permuted jth row back into the original time
series data and perform subspace identification and GC calculation to obtain samples of GC measure
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F̂
(k)
ij from channel j to channel i when i = 1, . . . , n and i 6= j. As this procedure is repeat for all row

j = 1, . . . , n, we obtain all samples of GC measure F̂
(k)
ij for i, j = 1, . . . , n, i 6= j and k = 1, . . . , P .

With these samples, we can calculate p-values using (8) or we may construct cumulative permutation
distributions Φij first and then calculate p-values later.

Now that we have p-values, we can test the hypothesis (7) by choosing a significance level α and
thresholding the p-values using α directly or apply p-value correction methods, that is, Bonferroni
method and Benjamini-Hochberg procedure. Finally, we obtain the GC pattern in binary matrix form as
shown in Figure 2 (right) where black entries represent non-zero causality and white entries represent
zero causality.

3.5 Performance indices

Learning zero and non-zero entries of GC matrix F is basically a binary classification problems of two
possible outcomes, Fij = 0 and Fij > 0. So we adopt the following indices used in classification.

• True positive (TP): correctly classified non-zeros in F

• True negative (NP): correctly classified zeros in F

• False positive (FP): incorrectly classified non-zeros in F

• False negative (FP): incorrectly classified zeros in F

Together with these indices, we can determine the following classification performance.

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN

True positive rate (TPR) =
TP

TP + FN

True negative rate (TNR) =
TN

TN + FP

False positive rate (FPR) =
FP

TN + FP
= 1− TNR

False negative rate (FNR) =
FN

TP + FN
= 1− TPR

4 Comparative method: Gaussian Mixture Model (GMM)

In this section, we describe Gaussian Mixture Model (GMM) method for learning GC pattern proposed
in [Son19]. This method will be used to compare its performances with our proposed scheme using
permutation test. Originally, this method is applied on multi-trials time series data while in this project,
we consider long single-trial time series data. So, we adapt this method to our data by splitting a long
time series data into many short segments and treat them as separate trials.

A GMM has the form of
Y = Z1Y1 + Z2Y2 + · · ·+ ZKYK

where K is the number of Gaussian components or the number of modes, Yk is the Gaussian random
variable with mean µk and variance σk for k = 1, . . . ,K and Z = (Z1, . . . , ZK) is a random vector
having a multinomial distribution with the possible values

Z = (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)

corresponding to a multinomial pmf π = (π1, π2, . . . , πK). The pdf of Y is then given by

f(y) = π1f1(y;µ1, σ
2
1) + · · ·+ πKfK(y;µK , σ

2
K)

where fk(y;µk, σ
2
k) = (1/

√
2πσk) exp(− (y−µk)2

2σ2
k

) is the Gaussian pdf for k = 1, . . . ,K.
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An example of fitting a GMM to data with 3 modes
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Figure 5: An example of fitting a 3-modes GMM to training data.

As proposed in [Son19], this method suggests fitting a GMM to samples of vectorized averaged GC
matrices acquired from GC estimation on each trial, or each segment in our case. The averaging is
required by the assumption of the central limit theorem which allows us to treat the averaged samples
as having Gaussian distributions instead of working with samples of GC matrices whose distribution is
unknown. The obtained samples are then vectorized and used as training data for fitting a GMM. This
means all entries except the diagonal of obtained GC matrices are used to train a single GMM. An
example of fitting GMM is shown in Figure 5. The fitting process employ Expectation-Maximization
(EM) algorithm to maximize the log-likelihood function. After fitting, we look for the mode with the
smallest mean. This mode is considered to be zero and any entries of the GC matrix that are clustered
by the posterior probabilities into this mode are classified as zero. The scheme for this method is shown
in Figure 6.

In summary, GMM method is performed in the following steps.

1. Partition time series data into N0 segments. Each segment is then used to estimate a sample of
GC matrix F (i), i = 1, . . . , N0.

2. Find sample means of F (i) over n̄ samples (that is averaging F (1), F (2), . . . , F (n̄) and F (n̄+1),
F (n̄+2), . . . , F (2n̄), and so on) to obtain F̄ (i), i = 1, . . . , N0/n̄ = N̄ .

3. Vectorize all F̄ (i) excluding their diagonal entries and then concatenate them together into one
single vector. This vector is treated as data for training GMM.

4. Fit a GMM with the previously obtained training data. This can be done using MATLAB function
fitgmdist.

5. Cluster the entries of a GC matrix F̂ obtain from estimation using all time series data. The entries
of F̂ that are clustered into the mode with the smallest mean are classified as zero and the other
are classified as non-zero.

5 Results and Discussion

5.1 Effect of the number of permutation on the performance of permutation test

In this section, an experiment was performed to study the effect of the number of permutations to the
performance of the Monte-Carlo permutation test. Our hypothesis was that the performance increased
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Figure 6: The scheme for learning GC pattern using GMM method.
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as the number of permutations increased. This experiment could give us the best number of permuta-
tions to be chosen to reduce the computation time.

Experiment setting: We set up the control conditions as follows. We created 15 state-space models
of order 20 with output dimension of 5 and the density of non-zero entries is 0.5. Time series data were
generated from each models with 1000 time points. The number of states use in subspace method was
chosen to be 20 which is the same as the true system. We varied the number of permutation P from 1 to
200 with the same segment length of 100. Then, with the significance level α = 0.05, we compared the
estimated GC patterns obtained by simple thresholding, Bonferroni correction and Benjamini-Hochberg
procedure from each models to the true GC patterns.

Result and discussion: The result in Figure 7 showed that, when the number of permutations P < 20,
ACC and TNR increased as P was increased. In contrast, the FPR declined as P increased. For P > 20,
ACC, TNR and FPR became steady and did not have significant changes. This may imply that the
performance stop improving significantly when P > 1/α. For simple thresholding, TPR and FNR were
constants at 1 and 0, respectively, for all P while Bonferroni correction and Benjamini-Hochberg pro-
cedure had slightly decrease in TPR and slightly increase in FNR as P increased. This result agree
with our hypothesis that the performance is improved as the number of permutation increase. Since
we performed the Monte-Carlo permutation test, the result is expected to be improved as more per-
mutations are used. It is possible that, for simple thresholding case, the TPR and FNR of constants 1
and 0, respectively, were resulted from that the estimated non-zero entries were too extreme. In other
word, the true causality was significantly strong so that the chance to have a permutation that gives
even higher causality than the estimated causality was very low. Another notable result is that for all
performance measures, the Benjamini-Hochberg procedure lay mostly between the simple thresholding
and the Bonferroni correction. This shows that the Benjamini-Hochberg procedure can control the
FPR better than the simple thresholding by controlling the false discovery rate, which is the ratio of
false positives over the sum of false positives and true positives, but slightly worse than the Bonferroni
correction which directly controls Type I error. On the other hand, the Benjamini-Hochberg procedure
had lower FNR and higher TPR than the Bonferroni correction, demonstrating a trade-off between
controlling FPR and FNR.

5.2 Complete permutations and Monte-Carlo permutation test

This experiment was performed to observe the performance of permutations test when using every pos-
sible permutation of the time series data compare to randomly select some of them in Monte-Carlo test.
Our hypothesis is that, when the given number of permutations used is the same, using every possible
permutations gives better performance than using higher number of segments and then randomly sam-
pling permutations.

Experiment setting: Since the number of possible permutations is the factorial of the number of
segments for partitioning, we chose this number to be 5 so that the total number of permutations is
5! = 120 which can be computed in reasonable time. We generated 40 ground truth state-space models
with order 40, 10 output dimension and the density of non-zero entries is 0.1. Time series data were
generated from these models with 10000 time points. The number of states chosen in subspace identi-
fication is 40, the same as the ground truth model. For permutation test, we consider partitioning the
time series into 5 and 10 segments and using 120 permutation. So, in 5 segments case, all permutation
is used. The significance level is chosen to be α = 0.05. We compared the estimated GC patterns
obtained by simple thresholding, Bonferroni correction and Benjamini-Hochberg procedure from each
models to the true GC patterns to calculate performance indices for each p-value correction procedure.

Result and discussion: From Table 1, when using simple thresholding, choosing 5 segments gave
slightly better performance as seen in higher ACC, TNR and lower FPR while TPR and FNR were the
same. But, in 10 segments case, using Bonferroni correction or Benjamini-Hochberg procedure (both
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Figure 7: The performances of the Monte-Carlo permutation test for P = 1, 2, . . . , 200 with no correc-
tion, with Bonferroni correction and with Benjamini-Hochberg procedure.

showed to have the same performance indices) gave much better performance than any method when
using 5 segments. To explain this, we must look at the performance in 5 segments case when using Bon-
ferroni or Benjamini-Hochberg method. We see that in this case, we have TPR = 0 which means that
non-zero causalities are never detected. The reason is that when using all permutations, the smallest
p-value possible is 1/120 as seen from (8). It follows that the corrected significance level for Bonferroni
method is α/(n2 − n) = 0.05/90 < 1/120. Hence, all entries of GC matrix are considered zero by the
test which lead to zero TPR. For Benjamini-Hochberg procedure, all p-value less than 1/120 are rejected,
so none is rejected. This shows that, basically, Bonferroni method and Benjamini-Hochberg procedure
cannot be used when all permutations are used if the number of all permutations are essentially smaller
than (n2 − n)/α.

5.3 Effect of the order of state-space model to the performance of permutation test

In practice, the number of states in a real system is usually unknown. So we carried out this experiment
to study the performance of permutation test for testing zero causality when the chosen order of state-
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Table 1: The performance of the permutation test when choosing the number of partitioning segments
to be 5 and 10 segments respectively. The p-value correction methods used are abbreviated as Simple for
thresholding without correction, Bon for Bonferroni method and B-H for Benjamini-Hochberg procedure.

Performance 5 segments 10 segments
index Simple Bon B-H Simple Bon B-H

ACC 0.9678 0.9047 0.9047 0.9650 0.9944 0.9944

TPR 1 0 0 1 1 1

TNR 0.9644 1 1 0.9613 0.9939 0.9939

FPR 0.0356 0 0 0.0387 0.0061 0.0061

FNR 0 1 1 0 0 0

space models is not equal to the order of ground truth models. We hypothesized that the performance
when the order is underestimate is worse than when the order is overestimate.

Experiment setting: We generated 40 ground truth state-space models with order 40, 10 output
dimension and the density of non-zero entries is 0.1. Time series data were generated from these
models with 10000 time points. We applied subspace identification method with order 20, 40 and 60
respectively. In permutation test, we used 10 segments with length of 1000 time points each and the
number of permutations is chosen to be 200. The significance level is α = 0.05. We compared the
estimated GC patterns obtained by simple thresholding, Bonferroni correction and Benjamini-Hochberg
procedure from each models to the true GC patterns to calculate performance indices for each p-value
correction procedure.

Result and discussion: From Table 2, we see that when the selected order is 20, lower than the
ground truth models’, ACC, TPR and TNR were the lowest of all selected order when compared with
the same correction method. FPR and FNR were also the highest in the same way. When the order
is 60, the performance was also worse than the true order, but still was better than 20 states. Hence,
underestimating the order of the state-space models worsen the performance of permutation test the
most as expected. Another interesting point we can note is that when using Bonferroni correction
method, estimation with 60 states give only slightly worse than estimation with 40 states. So even the
number of states is overestimated, Bonferroni correction method may still yield a very accurate result.

Table 2: The performance of the permutation test when choosing the order of state-space models
to be 20, 40 and 60 respectively. The p-value correction methods used are abbreviated as Simple for
thresholding without correction, Bon for Bonferroni method and B-H for Benjamini-Hochberg procedure.

Performance 20 states 40 states 60 states
index Simple Bon B-H Simple Bon B-H Simple Bon B-H

ACC 0.9369 0.9892 0.9808 0.9678 0.9969 0.9944 0.9406 0.9947 0.9881

TPR 1 0.9883 0.9913 1 1 1 1 1 1

TNR 0.9303 0.9893 0.9797 0.9644 0.9966 0.9939 0.9343 0.9942 0.9868

FPR 0.0697 0.0107 0.0203 0.0356 0.0034 0.0061 0.0657 0.0058 0.0132

FNR 0 0.0117 0.0087 0 0 0 0 0 0

5.4 Comparison of the performance between permutation test and GMM method

In this section, we compared the performance between permutation test which we introduced earlier
with GMM method presented in [Son19] when perform on the data generated from ground truth models
with sparse GC matrices. We must note that GMM method require large number of data since we have
to average GC matrices obtained from partitioning time series into small segments. So the length of
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the generated time series should be large enough to accommodate the requirement of GMM method.
Since permutation test does not require any assumption on time series data (only on the hypothesis we
tested), we expected that permutation test would perform better for both 20000 and 50000 time points
data.

Experiment setting: We generated 40 ground truth state-space models with order 40, 10 output
dimension and the density of non-zero entries is 0.1. Time series data were generated from these mod-
els with 20000 and 50000 time points. The number of states chosen in subspace identification is 40,
equal to the order of ground truth models.

For permutation test, we chose the number of permutation to be 200 with 10 partitioning segments.
This setting was used in both 20000 and 50000 time points cases.

For GMM method, we considered averaging over 4 samples of F in 20000 time points case, each
estimated from 1000 time points of data, to obtain F̄ . So we must have 5 (= 20000

4×1000) samples of F̄ .
For 50000 time points case, we consider averaging over 5 samples of F , each estimated from 2000 time
points of data. This also give 5 (= 50000

5×2000) samples of F̄ . All F̄ were then vectorized with their diagonal
removed. The number of mode is chosen to be 2. In this form, we can obtain a single GMM model for
every entries except the diagonal of F̄ . The first mode of the GMM with the smallest mean is used to
determine if entries of F are zero or non-zero.

Result and discussion: From the result in Table 3, when the length of data is 20000 time points,
permutation test with both p-values correction methods have better performance than GMM method as
shown in higher ACC, TNR and lower FPR. For 50000 time points, the performance of GMM method
is only slightly worse than permutation test with Bonferroni correction. Since using more data allows
more samples in averaging in GMM method, the assumption of central limit theorem is satisfied even
better. So the performance of GMM method is improved significantly as seen in sharply increase in ACC
and TNR. For permutation test, the performances are consistent in both cases when using Bonferroni
correction. Hence, our hypothesis is true for 20000 time points case but not in 50000 time points case
where both methods give about the same performances.

Table 3: The performance of GMM method and permutation test on 20000 and 50000 time points
data from ground truth models with sparse GC. The p-value correction methods used are abbreviated as
Simple for thresholding without correction, Bon for Bonferroni method and B-H for Benjamini-Hochberg
procedure.

20000 time points 50000 time points
Performance indices

GMM
Permutation test

GMM
Permutation test

Simple Bon B-H Simple Bon B-H

ACC 0.9558 0.9297 0.9922 0.9803 0.9933 0.9447 0.9936 0.9869

TPR 1 1 1 1 1 1 1 1

TNR 0.9512 0.9223 0.9914 0.9782 0.9926 0.9389 0.9929 0.9856

FPR 0.0488 0.0777 0.0086 0.0218 0.0074 0.0611 0.0071 0.0144

FNR 0 0 0 0 0 0 0 0

5.5 Performance under different ground truth network densities

In this experiment, we compared the performance of permutation test and GMM method when the GC
matrices of ground truth models are sparse and dense. We hypothesize that the performance for both
permutation test and GMM method on dense ground truths should be the same as on sparse ground
truths.

Experiment setting: The setting of this experiment was the same as section 5.4 except that the
density of GC matrices in ground truth models were set to 0.4 instead of 0.1 to represent dense ground
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Table 4: The performance of GMM method and permutation test on 20000 and 50000 time points
data from ground truth models with dense GC. The p-value correction methods used are abbreviated as
Simple for thresholding without correction, Bon for Bonferroni method and B-H for Benjamini-Hochberg
procedure.

20000 time points 50000 time points
Performance indices

GMM
Permutation test

GMM
Permutation test

Simple Bon B-H Simple Bon B-H

ACC 0.9472 0.9444 0.9781 0.9614 0.9869 0.9386 0.9672 0.9533

TPR 1 0.9949 0.9667 0.9898 1 0.9898 0.9411 0.9795

TNR 0.9218 0.9201 0.9835 0.9477 0.9807 0.9140 0.9798 0.9407

FPR 0.0782 0.0799 0.0165 0.0523 0.0193 0.0860 0.0202 0.0593

FNR 0 0.0051 0.0333 0.0102 0 0.0102 0.0589 0.0205

truth models. The obtained result is then compared with the result in section 5.4.

Result and discussion: Figure 8 shows an example of GC pattern obtained from permutation test
and GMM method on 20000 time points data from both sparse and dense ground truth models. When
comparing the result in Table 4 with the result in Table 3 from section 5.4, we see that both permutation
test and GMM method yield worse performances when ground truth models have denser GC matrices.
The drop in performance is worse for permutation test especially when the length of time series data is
50000 time points as seen in lower ACC, TPR ,TNR and higher FPR and FNR. For GMM method, the
performances are close for both dense and sparse ground truth models. As shown in Figure 9, when the
ground truth has dense GC, non-zero mode spreads wider but it is still clearly distinctable from the zero
mode. So the effect of GC density to the performance of GMM should be small. For permutation test,
by having dense GC in ground truth models, there are more non-zeros to be tested. So this may result
in higher chance of incorrectly classifying the zero causality in permutation test, that is, increasing in
FNR and decreasing in TPR. For the heavy decrease in performance seen in 50000 time points case, one
possible reason is that when ground truth models having denser GC, there are more causalities between
channels in time series data. Permuting the segmented row of time series data with longer segment
length (we fixed the number of partitions, so the length is increased when the data is longer) may have
a higher chance to preserve or intensify the causality when some segments stay at the same positions,
resulting in more GC samples from permutation that are larger than the estimated GC measure. So the
obtained p-values can get higher for non-zero causalities and the thresholding might incorrectly classify
them as zero causalities.

5.6 Comparison of the computation time between permutation test and GMM method

In this experiment, the computation time required for our scheme using permutation test and GMM
method were compared. As permutation test need many samples of GC matrices obtained from each
permutation, we expect see higher computation time in using permutation test than in GMM method.

Experiment setting: We set up timers in the previous experiment in section 5.4. In both 20000
and 50000 time points case, we averaged the computation times for GMM method and our method
separately over all 40 data sets. Note that for permutation test, parallel computing with 6 threads was
employed so that the required times are not too high.

Result and discussion: As expected, for both 20000 and 50000 time points data, computation times
for permutation test were much higher than computation times for GMM method as shown in Table 5.
When increasing the length of time series from 20000 to 50000 time points, GMM method required about
1.5 times higher computation time while permutation test needed more than twice of the computation
time.
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Figure 8: Examples of GC patterns obtained from permutation test and GMM method on 20000 time
points time series data generated from the ground truth model with GC densities of 0.1 (sparse) and
0.4 (dense).
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Figure 9: Examples of histograms of averaged GC samples and the fitted GMMs when the GC densities
of the ground truth is 0.1 (sparse) and 0.4 (dense).

To explain this result, let consider learning GC pattern from n-dimensional time series data of length
N using permutation test with P permutations and GMM method when splitting data into N0 parts.
From Figure 1, we can see that the time required to perform permutation test consists mostly of the
time required for multiple calls of subspace identification algorithm and GC calculation. The times for
the calculation of p-value and thresholding are considered to be negligible. For GMM method, as seen in
Figure 6, there are also multiple calls of subspace identification algorithm and GC calculation but with
GMM fitting and clustering at the end instead. Let TSSID(N) be the computation time of subspace
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identification on time series data of length N , TGC be the computation time for computing GC matrix
and TfitGMM be the computation time for fitting GMM. Then, we may write the computation time of
permutation test as

Tperm = (1 + nP )TSSID(N) + (1 + nP )TGC

and the computation time of GMM method as

TGMM = (1 +N0)TSSID(N/N0) + (1 +N0)TGC + TfitGMM

In our experiment, n = 10, P = 200 and N0 = 20 and 25 for 20000 and 50000 time points data,
respectively. So, we have nP � N0 which means permutation test requires much more times using
subspace identification and computing GC matrix. Other than that, subspace identification is done with
shorter length data in GMM method. So, the large difference between computation time of permutation
test and GMM method are resulted mainly from the sheer difference between the number of times calling
subspace identification algorithm and GC calculation.

Table 5: The computation time (seconds) of GMM method and permutation test on 20000 and 50000
time points data. The computation times shown are averaged from the result of 40 data sets. For
permutation test, parallel computing is also employed.

Average computation time (sec) GMM method Permutation test

20000 time points 3.1948 278.0139

50000 time points 4.5904 667.2358

6 Conclusions

In this project, we aims to develop a scheme for learning GC pattern of time series data using state-
space models and permutation test. The scheme is including estimation of state-space parameters using
subspace identification algorithm, calculation of GC matrix and classifying zero and non-zero GC using
permutation test.

To explore the factors that affect the performance of our scheme, we carried out three experiments
on the generated ground truth models to study the effect of the number of permutations used in the test,
to compare between Monte-Carlo and complete permutation test and to study the effect of the order
of state-space models used in subspace identification. The results showed that the performance was
improved when the number of permutations in the test was increasing especially when p-value correction
methods are applied. Next, we found that using complete permutation test gave only slightly better
performance only when testing with uncorrected p-values. Moreover, both Bonferroni and Benjamini-
Holchberg corrections were invalid for complete permutation test. Since applying p-values correction
methods improve the performance significantly, Monte-Carlo test is more preferable. The effect of the
order of state-space models was observed to give worse performance when underestimate than when
overestimate.

Lastly, the experiment for comparison between our scheme using permutation test and the GMM
method was conducted. We considered when ground truth models have sparse and dense GC matrices.
The results showed, for sparse ground truths, that when the length of time series data is short, permu-
tation test gives better performance while testing with p-values correction methods. In the other hand,
when the length of time series data is long, GMM method can be as good as permutation test with only
negligible difference. For dense ground truth models, both permutation test and GMM method perform
worse compared to when the ground truth models are sparse. The drop in performance is higher in per-
mutation test especially when perform on long time series data. The comparison of computation time,
however, showed that permutation test suffers heavily from the excessive use of subspace identification
while GMM method can be perform in a fraction of the computation time required in our scheme.

The scheme for learning GC pattern using permutation test is shown to perform well when the true
model has sparse GC. The computational cost, however, is very concerning when apply this scheme to
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long time series data. So this scheme may be practical when the length of interested time series data
is not too long.
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8 Appendices

8.1 MATLAB functions

The MATLAB file used in this project is included here. All functions can be found at https://github.
com/anawatnart/GCpermutation.

Ground truth model generation

• gen sparseVAR.m: Generate VAR parameters with controllable sparsity.

• gen diagfilter.m: Generate diagonal filter with random poles and zeros.

Subspace identification

• pvo subspace/subfun/subid.m [OM12]: Perform subspace identification on time series data.

GC computation

• calgcss.m: Calculate GC matrix from state-space parameters.

Permutation test

• permdist gc.m: Calculate all GC matices from each permutation.

• perm pval.m: Calculate p-values from the estimated GC matrix and permutation distribution
obtain from permdist gc.m.

GMM method

• gmm gc.m [Son19]: Perform GMM method on averaged samples of GC matrices.
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