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Structural equation modeling (SEM) is a statistical technique used for seeking a sta-
tistical causal multivariate model (called exploratory modeling) or for testing whether the
model is supported by the given data (called confirmatory modeling). Path analysis is a prob-
lem in SEM analysis where its model describes causal relations among measured variables
in a form of multivariable linear equations. This thesis proposes two alternative estimation
formulations for solving problems of path analysis in SEM. For confirmatory SEM, our first
formulation relaxes the original nonlinear equality constraints of the model parameters to
an inequality, allowing us to transform the original problem into a convex problem that can
be solved by many existing efficient algorithms. The second formulation is a regularized
estimation proposed for exploratory SEM by adding ℓ1-type penalty of the path matrix into
the cost objective of the first formulation which leads to sparse solutions. Practically, our
optimal solution is useful when it has low rank which occurs under a mild condition on
problem parameters. This solution can be used as an estimate of the inverse of covariance
matrix from the original problem. Another contribution of this thesis is a numerical method
based on ADMM algorithm that is suitable for solving the two formulations in a large-scale
setting. This thesis also provides a scheme of learning a causal structure among variables
by applying both proposed formulations. The best causal structure from our scheme is cho-
sen from five model selection criterions, those are BIC, AIC, AICc, KIC and KICc. Our
approach is examined with simulated and real data sets. The simulation results show that
if the causal structure of true model is complex, AIC provides the better accuracy while
BIC, AICc and KICc yield better performance when the causal structure of true model is
simpler. An application of this scheme has been preliminarily illustrated by learning causal
relations among brain regions from fMRI data, recorded from visual-hand hemifield stimuli
experiments. A brain network from our findings shows strong relations among somatosensory,
parietal, premotor, and motor area. In particular, the dominant pairs of strong connection
are somatosensory→visual, somatosensory→parietal and somatosensory→premotor.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Structural equation modeling (SEM) is a statistical technique used for seeking a statistical

causal multivariate model (called exploratory modeling) or for testing whether the model are sup-

ported by the given data (called confirmatory modeling). In the model, it includes two types of

variables that are assumed to be random, observed variables which can be directly measured and the

latent variables that cannot be exactly measured. The relationship between these two types is ex-

plained by a linear model where a nonzero coefficient of a latent variable explain a cause or influence

from such variable to an observed variable. SEM has a long history since 1980s and is widely used

in many behavioral researches such as in psychology [1], sociology [2, 3], business [4], and many

more; a history background can be found in [5, §1]. Path analysis is a special problem in SEM where

it provides a model for explaining relationships among measured variables only (no latent variables

included in the model) and additive error terms. In scientific research, observed variables are often

of primary interest. For example, one aims to explore causal relationship among brain regions from

brain signals (such as fMRI data) [6–10] where the entry of the path coefficient matrix in the model

explains how much change in the activity of one region influences another region.

The problem in path analysis starts from constructing a hypothetical model where directional

paths from one variable to another variable are assumed from a prior knowledge about relationship

structure of variables of interest. This can be encoded as the zero structure of the path coefficient

matrix in the model and becomes a part of problem constraint. The formulation is then to estimate the

value of nonzero entries in the path matrix and the covariance matrix of model residual errors so that

the model-reproduced covariance matrix fits well with the sample covariance matrix in an optimal

sense, evaluated by various types of criterion functions such as maximum likelihood, ordinary or

weighted least-squares [5, §4]. When the zero structure of the path matrix is hypothetically given, the

resulting estimation problem is called confirmatory SEM which find many applications in behavioral

research. In contrast, one may seek for a zero structure of the path matrix that best fits the data since

its pattern reveals a causal structure of variables such as a problem of learning brain connectivity in

neuroscience. The latter type of estimation problem is referred to as exploratory SEM. An existing

approach for latter problem is to begin with a base model where a certain set of paths are affirmative

but the existence of some other paths is in question. This results in a set of a few candidate models

associated with different zero structures of the path matrix and the significance of the difference

between these models can be determined from the χ2 statistic [5, §7]. Examples of this approach



2

can be seen in brain network study [6, 7] where only a few variables (in the order up to 10 brain

regions) are selected. One can locally search for a path structure by starting from a null model

(all path coefficients are zero) and sequentially allowing the coefficient corresponding to the largest

Lagrangian multiplier to be nonzero [8]. The most optimal but far from feasible approach is to

perform an exhaustive search that enumerates all possible path pattern with a fixed number of paths

and chooses the model corresponding to the lowest minimized maximum likelihood function [10]. It

is known that the number of all possible models grows exponentially to the number of variables, so it

is not feasible as the number of variables increases.

Both confirmatory and exploratory SEM problems are nonlinear optimization problems in ma-

trix variables with quadratic equality and positive definite cone constraints. Many existing SEM

commercial softwares have been developed such as LISREL, EQS, Mplus [5, 11, 12]. These soft-

wares implement iterative methods such as Newton-Raphson, or gradient descent to estimate the

model parameters [13, §7], [5, §4], so a starting value for the update iteration is required. Though

these numerical methods work well under normal conditions, it is also known that some initial values

may not lead to the convergence in the optimal solution or may stuck into a local minima, hence

several strategies for selecting initial values have been proposed [5, §4]. These include choosing an

instrumental variable estimate or selecting the strength of the path coefficient magnitude. When the

iterative method in these softwares does not converge, the user is suggested not to interpret the result.

In this work, we present two alternative estimation formulations for both confirmatory and

exploratory SEM problems. In addition, the original nonlinear equality constraints of the model para-

meters is relaxed to an inequality, allowing us to transform the problem into convex formulations that

are supported by rich duality theory for analyzing the problem properties and lead to many existing

convex program solvers. For exploratory SEM, we propose a formulation whose objective function is

added with an `1-type regularization of the path coefficient matrix, called sparse SEM. This is a known

result that such formulation is regarded as a lasso formulation [14] and doing so encourages many

zeros in the path matrix solution, allowing us to read off the zero pattern and interpret it as a causal

structure of the variables. We solve our estimation formulations by a first-order method, called alter-

nating direction method of multipliers or ADMM. This method requires a feasible amount of memory

storage suitable for large-scale implementation and the main computational cost in each update step

depends on eigenvalue decomposition of a symmetric matrix with size 2n where n is the number

of variables. We also show that, under a condition on problem parameters of both confirmatory and

sparse SEM, our optimal covariance error is diagonal, meaning that errors are uncorrelated, and the

optimal solution has low rank, providing an estimate of the path matrix for the original problem.To

apply our estimation formulation to real-world applications, we explore causal relations among brain

regions from fMRI data.
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Despite a difference in our estimation formulation and the original one, we believe that our

proposed formulations serve two folds. Firstly, unlike previous SEM applications that only a few

variables are of interest, many applications tend to consider a much larger number of variables such

as fMRI studies where the variables are neuronal activities and its number is up to thousand [15].

Existing approaches of learning causal structures in the exploratory SEM may experience a computa-

tional difficulty in terms of memory storage or convergence. Secondly, our solution for confirmatory

SEM is obtained under an assumption of homoskedasticity of residual errors, so if this assumption

holds, ours and the original solution coincide. Even if it does not hold, so our solution is not optimal

for the original problem but it can be served as a starting value for the iterative algorithm used in the

original one in case that the convergence is not obtained.

1.2 Objectives

1. To explore causal relationships among observed variables by using confirmatory and exploratory

Structural Equation Modeling (SEM).

2. To present alternative estimation formulations for special case problems in path analysis in a

convex framework.

3. To provide efficient algorithms for solving our alternative estimation problems in large-scale

settings, in order to apply to real-world applications.

1.3 Scope of Thesis

1. Propose two alternative convex formulations for the problems of confirmatory SEM and ex-

ploratory SEM. Express the dual problems and KKT conditions of such formulations.

2. Provide the conditions on problem parameters that the optimal solution in our estimation for-

mulation is useful and can be used as the inverse of estimated covariance matrix of the original

problem. This solution is referred to as a low rank solution.

3. Based on the use of two formulations, we provide a scheme for learning causal relation struc-

tures in variables.

4. Provide an efficient implementation of gradient-based methods for solving our estimation prob-

lems in a larger scale that what have been done in the literatures.

5. Apply our alternative estimation formulations to real applications. For instance, we explore

causal relations among brain regions via functional magnetic resonance imaging (fMRI) data.
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1.4 Methodology

1. A convex formulation for the confirmatory SEM is obtained by relaxing the original equality

constraint into an inequality. The resulting problem becomes a semidefinite programing and it

is referred to as primal convex SEM.

2. Useful solutions of the exploratory SEM are sparse. Therefore, we apply `1-norm minimization

and introduce `1-penalty to the primal convex SEM.

3. The relations between the original problem and our formulation can be explained under some

conditions on the problem parameters. We apply Farka’s lemma and use KKT conditions for

this purpose.

4. Alternating direction method of multipliers (ADMM) or other optimal fast gradient methods

are implemented to solve the problems in large scale.

1.5 Expected Outcomes

1. Two estimation formulations cast in a convex framework.

2. Efficient algorithms for solving our estimation formulations in large-scale settings.

1.6 Achievements

The contributions of this thesis are as follows:

• We propose two alternative convex formulations for both confirmatory and exploratory SEM.

For confirmatory SEM, we relax an equality constraint of the original problem and we refer this

proposed formulation as primal convex SEM. To learn a sparse causal relation structure among

the variables, we add the `1-regularization term on the objective function of primal convex

SEM, which we refer this proposed formulation as sparse SEM.

• We provide an implementation of alternating direction method of multipliers (ADMM) for

solving our two estimation formulations in a large-scale framework.

• We provide a scheme for learning causal relations among observed variables which is a combi-

nation between two proposed formulations, primal convex SEM and sparse SEM. This scheme

includes the model selection procedure for choosing the best model.
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1.7 Thesis Outline

Our thesis is organized as follows. Chapter 2 summarizes the mathematical formulation of the

original path analysis problem which is the maximum likelihood estimation with an quadratic equality

constraint. Chapter 3 describes our convex formulation for confirmatory SEM, referred to as primal

convex SEM, and shows that the solution can be further used under the condition of having a low

rank solution at optimum. Another convex formulation for exploring a sparse causal relation among

variables is proposed in chapter 4 where an `1-regularization is introduced in the cost objective of pri-

mal convex SEM, referred to as the sparse SEM. We show that sparse solutions are obtained and the

sparsity can be controlled by a regularization parameter. Applying the two formulations is used in the

exploratory SEM, proposed in 5. Numerical methods for solving our proposed formulations are ex-

plained in chapter 6. This is the alternating direction method of multipliers method or ADMM which

is suitable for solving large-scale convex problems and yield a reasonably good rate of convergence.

Numerical experiments in chapter 7 describes simulated examples under the condition that low rank

solutions are obtained, the effect of our problem parameters on such conditions and some important

results of our sparse and exploratory SEM. The performance of numerical methods for solving our

estimation formulations are also included to this chapter. Lastly, chapter 8 concludes our work and

comments. Our proofs, the derivation of dual problems of our formulations, the derivation of the

critical value of regularization parameters, and the miscellaneous proofs are shown in Appendices,

which could be omitted if the reader is familiar with the duality theory.

Notation. Sn denotes the set of symmetric matrices of size n× n and Sn+ denotes the set of positive

semidefinite matrices of size n× n. For a square matrix X , tr(X) is the trace of X and diag(X) is

a diagonal matrix containing diagonal entries of X .



CHAPTER II

BACKGROUND ON PATH ANALYSIS IN SEM

Structural equation modeling (SEM) starts with a set of variables involved in a study, measured

variables and latent variables. Measured variables are simply the ones that can be directly measured

(physical quantities), while latent variables are variables that cannot be directly (or exactly) measured

such as intelligence, attitude, etc. Each of these variables can be regarded as either endogenous or

exogenous. An endogenous variable gets an influence from others while an exogenous variable affects

the other variables. A general mathematical model in SEM explains a linear relationship from latent

variables to measured variables and also includes error terms of each variable [5, 13, 16].

In contrast to research in social science, we are only interested in application of SEM that

involves only with observable variables. For this reason, we focus on a special class of model in SEM

that is described by a multiple linear regression:

Y = c+AY + ε (2.1)

where Y ∈ Rn is the measured (or observed) variables, c ∈ Rn is a constant vector representing a

baseline, and ε ∈ Rn is the model error, assumed to be Gaussian distributed. The matrix A ∈ Rn×n

denotes the path matrix where Aij represents a causal relationship among variables in the model, i.e.,

ifAij = 0 then there is no path from Yj to Yi. In other words, a pattern of nonzero entries inA reveals

a causal structure of variables in the model. If this structure is assumed from a prior knowledge, then

the problem of estimating A is called confirmatory SEM.

Let S be a sample covariance matrix of Y which can be computed from sample measurements

of Y . Let Σ be the model-reproduced covariance matrix of Y , derived from (2.1)

Σ = (I −A)−1Ψ(I −A)−T (2.2)

where Ψ = cov(ε). The estimation in SEM is to seek for A and Ψ such that the estimated Σ is close

to S in the sense that the Kullback-Leiber divergence function

d(S,Σ) = log det Σ + tr(SΣ−1)− log detS − n

is minimized, while Σ, A and Ψ are related by (2.2). Moreover, the structure of the path matrix is

presumably encoded by a model hypothesis: i) Aij = 0 if there is no link from Yj to Yi and ii) we

always have diag(A) = 0, meaning that there is no path from Yi to itself. To specify the zero structure

of A, we then define the associated index set IA ⊆ {1, 2, . . . , n} × {1, 2, . . . , n} with properties that

i) (i, j) ∈ IA if Aij = 0 and ii) {(1, 1), (2, 2), . . . , (n, n)} ⊆ IA since diag(A) = 0. In short, IA

denotes the index set of hypothetical zero entries in A and it must include the diagonal entries.
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Given the index set IA, we define a projection operator P : Rn×n → Rn×n

P (X) =

{
Xij , (i, j) ∈ IA,
0, otherwise,

(2.3)

and denote

P c = I − P. (2.4)

The operatorsP c andP are both self-adjoint, i.e., tr(Y TP (X)) = tr(P (Y )TX) and thatP c(P (X)) =

0. Define Q : S2n → S2n a linear operator given by

Q

X1 XT
2

X2 X4

 =

 0 P c(XT
2 )

P c(X2) 0

 , (2.5)

where X1, X4 ∈ Sn and X2 ∈ Rn×n. From the definitions of P and Q, we note that P (X) just

extracts the entries Xij for (i, j) belonging to IA, while Q(X) are all zero except that the (1, 2) block

of Q(X) contains nonzero (i, j) entries for (i, j) ∈ IA. These two projection operators will be used

repeatedly in our analysis.

With the definition of P and a change of variable X = Σ−1, the estimation problem corre-

sponding to confirmatory SEM is

minimize − log detX + tr(SX)− log detS − n,

subject to X = (I −A)TΨ−1(I −A),

P (A) = 0,

(2.6)

with variables A ∈ Rn×n,Ψ ∈ Sn+ and X ∈ Sn+. The condition P (A) = 0 basically explains the zero

constraint on the entries of A, and when there is no information on the path matrix, this condition

reduces to diag(A) = 0. The problem (2.6) is one of estimation formulations considered in SEM

context [5, §4]. Other cost objectives are also used such as ordinary or weighted least-squares.

Special case. If the constraint P (A) = 0 reduces to diag(A) = 0 (we allow A to have as many

free parameters as possible), then we can make the cost objective to be zero by solving S−1 =

(I − A)TΨ−1(I − A) where S is given while A and Ψ are free variables. In this case, we can

arbitrarily make Ψ diagonal. In other words, one can always find a factor B with diag(B) = 1

and a diagonal D such that S−1 = BTDB. Such factors can be obtained by simply performing an

eigenvalue decomposition of S−1 and normalize the matrix of eigenvectors to have unit diagonals.

Another way is to perform LDLT decomposition where L can be normalized to have unit diagonals.

In this case, the optimal path matrix to (2.6) is not unique; one can obtain A as dense or lower

triangular matrix. This could be problematic if one would like to read a causality structure from the

zero pattern in the estimated A. For this reason, it is common to assume some structure in A and

diagonal structure in Ψ (meaning the error terms are uncorrelated). Specifically, we define the degree
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of freedom (df) by,

df = the number of known parameters − the number of estimated parameters . (2.7)

Referring to the cost function and constraints in (2.6), the number of known parameters is the number

of entries in the sample covariance matrix and is equal to n(n − 1)/2 where n is the number of

observed variables. The number of free parameters in (2.7) is the total number of entries in A plus the

total number of entries in Ψ. One can use df as a guideline for identifying the uniqueness of solution.

When df is negative, the estimator may not be unique. We say that the model is identifiable if the df

is nonnegative [11, p. 35]. Therefore, to find a unique solution in a path analysis problem, we must

have some assumptions on the path matrix A and noise covariance Ψ to attain the nonnegative values

in df as a necessary condition. For example, if we assume that Ψ is diagonal, then we must assume

the percentage of zero entries in A about 50% to attain zero df .



CHAPTER III

CONVEX FORMULATION FOR CONFIRMATORY SEM

The problem (2.6) is obviously nonconvex due to the quadratic equality constraint. In this

chapter, we propose an alternative convex formulation and its dual problem. We consider a special

case of path analysis problem where the covariance error is allowed to be diagonal, meaning that the

residual errors are assumed to be uncorrelated. The solution to our formulation is useful only when it

is low rank at optimum which will be shown to occur under some condition on a problem parameter.

The solutions to our formulation and the original problem agree when the covariance error is specified

to be a multiple of the identity matrix.

Consider a convex relaxation of the constraint (2.2) to X � (I − A)TΨ−1(I − A) which is

equivalent to  X (I −A)T

I −A Ψ

 � 0

by using the Schur complement. We then propose an alternative convex formulation:

minimize − log detX + tr(SX),

subject to

 X (I −A)T

I −A Ψ

 � 0,

0 � Ψ � αI,

P (A) = 0,

(3.1)

with variables X ∈ Sn, A ∈ Rn×n and Ψ ∈ Sn, where α > 0 is a given parameter. We note that

the inequality constraint Ψ � αI is additionally introduced to prevent (3.1) from having a trivial

solution, e.g., Ψ can be arbitrarily large and A = 0. We justify that α can serve as an upper bound

on the covariance error in SEM. Throughout this thesis, we refer to (3.1) as the primal convex SEM

formulation which falls into a type of semidefinite programming. We can see that for a given α, a

numerical solution can be solved by many existing convex program solvers. One example is CVX

which is a MATLAB package for specifying and solving convex programs [17].

If we define a variable

X =

X1 XT
2

X2 X4

 , X4 = Ψ, X2 = I −A,
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we see that P (X2) = P (I) − P (A) = P (I) − 0 = I (note that the P projects the entries

assigned by IA which includes the diagonal terms). Another equivalent formulation of the primal is

minimize − log detX1 + tr(SX1),

subject to X =

X1 XT
2

X2 X4

 � 0,

0 � X4 � αI,

P (X2) = I,

(3.2)

with variable X ∈ S2n where X1, X4 ∈ Sn and X2 ∈ Rn×n.

The dual problem of (3.1) is

minimize − log det(S − Z1)− 2 tr(Z2)− α tr(Z4) + n,

subject to Z =

Z1 ZT2

Z2 Z4

 � 0,

Q(Z) = 0,

(3.3)

with variable Z ∈ S2n where each block Zk has size n × n. The constraint Q(Z) = 0 explains that

i) Z1 and Z4 are freely nonzero, ii) the corresponding entries of block Z2 to the zero entries in A are

free, otherwise they are all zeros. If the condition P (A) = 0 reduces to diag(A) = 0 in the primal

problem, then Q(Z) = 0 in the dual is simplified to that Z2 is diagonal. Details of dual problem are

shown in Appendix 9.1.

Problem assumptions. From the cost function in (3.1), we will show that S must be positive defi-

nite. Otherwise, the problem could be unbounded below. To show this, assume S has the eigenvalue

decomposition S = UDUT . Then it follows that tr(SX) = tr(UDUTX) = tr(DUTXU). Let

Y = UTXU and since detX = detY , we can write f(X) = f(Y ) = − log detY + tr(DY ). If

S is positive semidefinite, then dii = 0 for some i, and we can choose Y to be diagonal where yii is

chosen to be arbitrarily large. Hence, the term tr(DY ) = 0 but − log detY → −∞, leading the cost

function to be unbounded below.

3.1 KKT conditions

The KKT conditions are derived as the optimality condition for the optimal solution to (3.1).

These conditions are:
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Zero gradient of the Lagrangian

X = (S − Z1)
−1. (3.4)

Primal feasibility

(I −A)TΨ−1(I −A) � X, (3.5)

0 ≺ Ψ � αI, (3.6)

P (A) = 0. (3.7)

Dual feasibility

Z � 0, (3.8)

Q(Z) = 0. (3.9)

Complementary Slackness condition

tr

Z1 ZT2

Z2 Z4

 X (I −A)T

I −A Ψ

 = 0, (3.10)

tr(Z4(Ψ− αI)) = 0. (3.11)

We will use these conditions to analyze the solution properties later throughout this thesis.

3.2 Trivial solutions

In this section, we show that there is a critical value αc such that if the optimal dual Z? = 0

then α ≥ αc, i.e., if the trivial solution in the dual occurs then we have used too large value of α.

From the zero gradient of the Lagrangian condition and the primal feasibility, if Z = 0 then

X = S−1, X � (I −A)TΨ−1(I −A),

which means Ψ can be sufficiently large and the RHS of the above inequality can be sufficiently small.

The matrix X = S−1 can be chosen to be greater than (I −A)TΨ−1(I −A) as desired.

This section presents an important result that the critical value αc turns out to be the harmonic

mean of the eigenvalues of S. To show this, we firstly make a change of variable: Ã = A− P (A) so

that P (Ã) = 0. If Z? = 0, then the KKT conditions are reduced to

X = S−1, 0 � Ψ � αI,

S−1 � (I − Ã)TΨ−1(I − Ã),
(3.12)

which is a feasibility problem. We can equivalently show that if α ≤ αc then (3.12) has no solution.

To this end, we will prove by contradiction: if α ≤ αc and then (3.12) has a solution by applying a

generalization of Farka’s lemma to semidefinite programming [18].
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Lemma 1. The system

Z � 0, tr(GZ) > 0, tr(FiZ) = 0, i = 1, 2, . . . , n

is a strong alternative for the nonstrict LMI:

n∑
i=1

xiFi +G � 0,

if the matrices Fi satisfy
∑n

i=1 viFi � 0 implies that
∑n

i=1 viFi = 0.

Our result is stated in the following proposition.

Proposition 2. Let αc = n/ tr(S−1) (the harmonic mean of the eigenvalues of S � 0). If α ≤ αc

then (3.12) has no solution, i.e., Z = 0 cannot be an optimal solution for the dual problem (3.3).

Proof. The feasibility problem (3.12) can be expressed as an LMI
S−1 (I − Ã)T 0

I − Ã Ψ 0

0 0 αI −Ψ

 � 0 (3.13)

or equivalently, G+
∑

ij AijFij +
∑

ij ΨijHij � 0 where

G =


−S−1 −I 0

−I 0 0

0 0 −αI

 , ∑
ij

AijFij =


0 ÃT 0

Ã 0 0

0 0 0

 ,

∑
ij

ΨijHij =


0 0 0

0 −Ψ 0

0 0 Ψ

 .
We note that Aij and Ψij are the (i, j) entries of Ã and Ψ, respectively. The matrices Fij and Hij are

the common choice of standard basis matrices that make up to the above summations. To describe

more details, let Eij be a standard basis matrix for set of n× n matrices with zero diagonals and Sij

be a standard basis matrix for Sn. In other words, the entries of Eij are all zero except that the (i, j)

entry is 1. Similarly, the entries of Sij are all zero except that the (i, j) and (j, i) entries are 1. The

expressions of Fij and Hij are

Fij =


0 ETij 0

Eij 0 0

0 0 0

 , for (i, j) /∈ IA,

Hij =


0 0 0

0 −Sij 0

0 0 Sij

 , for i ≥ j = 1, 2, . . . , n.
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From Lemma 1, the LMI (3.13) has no solution if and only if ∃U � 0, U 6= 0 such that

tr(GU) ≥ 0, tr(FijU) = 0, for (i, j) /∈ IA,

tr(HijU) = 0, for i ≥ j.

In what follows, we will show that there always exists such matrix U under the condition α ≤ αc.

For scalars γ and β with β ≥ 0 and γ 6= 0, we construct a positive semidefinite matrix U of the form

U =


(γ2/β)I γI 0

γI βI 0

0 0 βI

 .
With this choice, we can easily check that tr(FijU) = 0 regardless of IA (as long as IA contains the

indices of diagonal entries of A), and that tr(HijU) = 0. We also see that

∑
ij

AijFij +
∑
ij

ΨijHij =


0 ÃT 0

Ã −Ψ 0

0 0 Ψ

 � 0

implies that Ψ = 0 and consequently conclude that Ã = 0 because 0 is in the leading (1, 1) block.

Lastly, the condition tr(GU) ≥ 0 is expressed as

tr(S−1)

β

(
γ2 +

2nβ

tr(S−1)
γ +

n

tr(S−1)
αβ2

)
≤ 0. (3.14)

The above quadratic polynomial in γ can be expressed in terms of α and αc as

γ2 + 2αcβγ + ααcβ
2 ≤ 0.

Therefore, if α ≤ αc then we can always choose any negative real value of γ in the interval(
−αcβ(1 +

√
1− α/αc),−αcβ(1−

√
1− α/αc)

)
so that (3.14) is satisfied. This concludes that if α ≤ αc the alternative of (3.13) always has a solution.

This completes the proof.

3.3 Low rank solutions of the primal convex SEM

The solution of the primal convex SEM is useful if X = (I −A)TΨ−1(I −A) at optimum as

we can use X as the estimate of Σ−1. This occurs if and only if the rank of X (I −A)T

(I −A) Ψ


is n at optimum. Therefore, we aim to find a relation between the parameter α and the low rank

optimal solution of (3.1) from the complementary slackness condition. The result in section 3.2 gave

us a hint that if α is too large, then rank(X) > n which is to be avoided.



14

To show this in detail, we refer to the complementary slackness condition (3.10) and from a

property of trace: tr(AB) = 0 ⇐⇒ AB = 0 for A,B � 0, we haveZ1 ZT2

Z2 Z4


︸ ︷︷ ︸

Z

 X (I −A)T

I −A Ψ


︸ ︷︷ ︸

W

= 0. (3.15)

The result in (3.15) further shows that the columns of W are in the nullspace of Z. Therefore, we

have rank(W ) = nullity(Z) and that rank(Z) = 2n − rank(W ). Since X � 0 is an implicit

constraint, this implies that X must be full rank, i.e., the (1, 1) block of W has rank n. The rank of

W must satisfy n ≤ rank(W ) ≤ 2n and therefore 0 ≤ rank(Z) ≤ n.

We obtain a low rank solution when the optimal primal of (3.1) and the optimal dual of (3.3)

satisfies

X = (I −A)TΨ−1(I −A) or equivalently rank(Z) = n,

(because rank(W ) = n). Furthermore, when this holds, rank(Z4) = n and from the comple-

mentary slackness condition (3.11), it gives Ψ = αI , i.e., the estimated covariance error becomes a

diagonal matrix. From section 3.2, we have shown that if α is smaller than αc = n/ tr(S−1), then

the optimal dual solution is not zero. This suggests that we can consider three ranges of α where the

rank of Z varies as shown in Figure 3.1. The value of αc lies some where in the interval that results

in 0 < rank(Z) < n.

Figure 3.1: Possibility of rank(Z) as α varied.

We can also show that the minimum eigenvalue of S lies on the left to the harmonic mean of

the eigenvalues of S. Suppose λ1 ≤ λ2 ≤ · · · ≤ λn are eigenvalues of S. It follows that

1

λ1
+

1

λ2
+ · · ·+ 1

λn
≤ n

λ1
.

Since the trace of a matrix is the sum of its eigenvalues, we have tr(S−1) =
∑n

k=1 1/λk and this

further implies that

αc =
n

tr(S−1)
=

n
1
λ1

+ 1
λ2

+ · · ·+ 1
λn

≥ λ1 = λmin(S).

If α = λmin(S), then it is often the case that rank(Z) = n which will be shown in the numerical

experiment section. This suggests us that we have put a constraint Ψ � λmin(S)I � S into the esti-

mation problem. Our justification is that we control the covariance error to be less than the covariance

of the variables.
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3.4 Uniqueness of solution

In this section, we attempt to derive a sufficient condition of the uniqueness of solution for the

primal convex SEM. However, we have not successfully found a practical condition and leave this as

an open problem. The information in this section is therefore presented as a background supplement

for future study. Firstly, we assume that α is small enough so that the two matrices Z and W in the

complementary slackness condition:Z1 ZT2

Z2 Z4


︸ ︷︷ ︸

Z

 X (I −A)T

I −A Ψ


︸ ︷︷ ︸

W

= 0, (3.16)

have low rank. When low rank solutions in Z and W are obtained, the KKT conditions of the primal

convex SEM are

X = (S − Z1)
−1 =

1

α
(I −A)T (I −A), (3.17)

P (A) = 0, (3.18)

Z4 = Z2Z
−1
1 ZT2 , (3.19)

Z1 � 0, (3.20)

P c(Z2) = 0, (3.21)

0 = Z1X + ZT2 (I −A). (3.22)

Multiplying (S − Z1) to the LHS of (3.17) gives Z1X = SX − I . Substitute this with X =

(1/α)(I −A)T (I −A) to (3.22). This yields

1

α
S(I −A)T (I −A)− I + ZT2 (I −A) = 0.

Since I −A is also invertible, we can write Z2 in terms of A as

Z2 = (I −A)−T − 1

α
(I −A)S. (3.23)

It turns out that if there exists Z2 and A such that P (A) = 0, P c(Z2) = 0 that make (3.23) satisfied

then we can always constructX as an optimal solution. If (3.23) has many solutions, then the optimal

X is not unique. Let nA be the number of nonzero entries in A (the number of effective parameter),

then the number of zero entries in Z2 is nA because P c(Z2) = 0. Then we can read from (3.23) that

this is a set of n2 nonlinear equations with nA unknowns in A and n2 − nA unknowns in Z2. Out

of n2 equations, the nA equations are set to zero on the LHS and the remaining n2 − nA equations

are set to the free entries of Z2 on the LHS. Therefore, we can say that we try to solve nA nonlinear

equations with nA unknowns of A. Determining the uniqueness of the solution cannot be obtained

in general. One can apply the implicit function theorem that involves deriving the Jacobian matrix of



16

the nonlinear equation, which seems to be difficult for (3.23) as it is a nonlinear matrix equation. The

condition (3.23) can be rewritten in matrix format including the constraints (3.18) and (3.21) as

0 = P c
[
(I − P c(A))−T − 1

α
(I − P c(A))S

]
, (3.24)

by using A = P (A) + P c(A) and Z2 = P (Z2) + P c(Z2). Moreover, even if we have found A

satisfying (3.24), there is one more condition which is Z1 � 0. This is equivalent to X � S−1. In

conclusion, optimal solutions exist under low rank assumption if there exists A satisfying

P c
[
(I − P c(A))−T − 1

α
(I − P c(A))S

]
= 0, (3.25)

1

α
(I −A)T (I −A) � S−1. (3.26)

We consider that the above two conditions are complicated to conclude about the existence in general.



CHAPTER IV

SPARSE SEM WITH `1-NORM REGULARIZATION

In exploratory SEM analysis, one aims to discover a zero structure of A from the estimation

process which reveals a causal structure of how one variable affects to another. An existing approach

performs a local search starting from a null model (all path coefficients are zero) and sequentially

allows the coefficient corresponding to the largest Lagrangian multiplier to be nonzero [8]. Another

method is to start also from a null model and then add an extra path corresponding to the lowest

minimized ML discrepancy selected among all possible paths. This scheme is referred to as tree

growth as the model grows by a single entry inA at a time [10]. The most optimal but far from feasible

approach is to perform a simple brute-force method (or known as forest growth) that searches through

all possible patterns of zero structures in A with a fixed number of paths and chooses the model

corresponding to the lowest minimized ML [10]. It is known that the number of all possible models

grows exponentially to the number of variables (n), so it is not feasible as the problem dimension

increases. Recently, [19] has proposed an overview of regularized structural equation modeling or

RegSEM where `1-regularization is added to the cost objective of general SEM to promote the sparse

relation structure between variables. The performance of RegSEM was evaluated from a typical

example in the case that sample size varied. Their result showed that when sample size increased, the

performance that was measured by averaged false positive percentage also increased as they expected.

In this chapter, we propose a convex formulation for exploratory SEM problem by apply-

ing a widely-used sparse optimization with `1-norm. The effectiveness of this approach has been

well-understood and found applications in many fields including system identification [20], statistical

learning [21, §6] or control [22] since the `1-norm penalty or lasso has been introduced [14, §3]. The

convex formulation we propose is

minimize − log detX + tr(SX) + 2γ
∑

(i,j)/∈IA
|Aij |,

subject to

 X (I −A)T

I −A Ψ

 � 0,

0 � Ψ � αI, P (A) = 0,

(4.1)

with variables X ∈ Sn, A ∈ Rn×n and Ψ ∈ Sn, and the dual of (4.1) is

maximize log det(S − Z1)− 2 tr(Z2)− α tr(Z4) + n,

subject to

Z1 ZT2

Z2 Z4

 � 0,

|(Z2)ij | ≤ γ, ∀ (i, j) /∈ IA,

(4.2)



18

with variable Z =

Z1 ZT2

Z2 Z4

 ∈ S2n. Derivation of the dual is explained in Appendix 9.3.

From (4.1), let

h(A) =
∑

(i,j)/∈IA

|Aij | (4.3)

and h is referred to as an `1-like penalty function (or regularization) as it resembles the 1-norm of

a matrix except that only those entries belonging to IA are penalized. The user gets to hypothesize

about the known location of zeros in A which is encoded as the index set IA. If the user has no

prior knowledge about the zero locations in A at all then at least we apply the constraint P (A) =

diag(A) = 0 since there must be no path from one variable to itself. The constraint P (A) = 0

means we believe these locationsAmust be exactly zero. For (i, j) /∈ IA, then we are not uncertain if

Aij would be zero or not, so we enforce the `1 norm on these terms and let the regularization promote

their sparsity which is controlled by the regularization parameter γ > 0. We refer the problem (4.1)

as sparse SEM.

We see that the sparsity of the optimal path coefficient A can be controlled via the value of the

penalty parameter, γ, e.g., the larger γ, the sparser the matrix A is. In the Appendix 9.4, we will show

that there exists a critical value of γ, denoted by γmax in the sense that if

γ ≥ γmax

then the optimal solution of A in (4.1) is the zero matrix. Moreover, the value of γmax can be calcu-

lated in advance and depends on S (parameter of the problem). This means it is unnecessary to vary γ

arbitrarily in the problem, and we can use γmax as an upper bound of the range of γ used for varying

the sparsity patterns of A, or for controlling the sparseness of A.

Another property of (4.1) is that its cost objective is not differentiable at A = 0 due to the term

|Aij |. As a result, KKT conditions for nonsmooth optimization problems are stated from the concept

of subgradients and subgradient calculus which are provided in the Appendix 9.2. This provides a tool

for the derivation of γmax. The nonsmooth property also makes solving a high-dimensional problem

nontrivial since standard gradient-based methods cannot be applied.

Problem assumption. We will assume that S (the sample covariance matrix) is positive definite.

Otherwise, the sparse SEM problem (4.1) is unbounded below. To show this, assume that S has

the eigenvalue decomposition S = UDUT . Then it follows that tr(SX) = tr(UDUTX) =

tr(DUTXU). Let Y = UTXU and since detX = detY , we can write f(X,A) = f(Y,A) =

− log detY + tr(DY ) + 2γ
∑

(i,j)/∈IA |Aij |. For minimizing f(Y,A) with constraint in (4.1), it has

at least a feasible point that yields an unbounded value in the cost function if S is merely positive

semidefinite. For example, we can choose A to be a zero matrix, providing
∑

(i,j)/∈IA |Aij | = 0, but

if S � 0, then dii = 0 for some i, and one of the feasibility condition requires only Y � (1/α)I ,

so that we can choose Y to be diagonal where yii is chosen to be arbitrarily large. Hence, the term
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tr(DY ) = 0 but − log detY → −∞, leading the cost function to be unbounded below. We com-

ment that the assumption on the positiveness of S might not be held in some applications when the

number of variables are much bigger than the number of samples. In such case, if we replace S by

S̃ = S + εI where ε > 0, then the cost objective of (4.1) is replaced by

− log detX + tr(SX) + ε‖X‖∗ + 2γh(A)

where ‖X‖∗ =
∑n

k=1 σk(X) or the nuclear norm of X . This follows from

tr(S̃X) = tr(SX) + ε tr(X).

Moreover, for a positive definite X , we have σ(X) =
√
λ(XTX) =

√
λ(X2) =

√
λ(X)2 = λ(X).

Hence, tr(X) =
∑

k λk(X) =
∑

k σk(X) = ‖X‖∗. The nuclear norm of a matrix is well-known

to be a convex approximation for the matrix rank. The new problem with the replacement of S̃ can

then be interpreted as an SEM problem with a regularization term on X that promotes rank(X) to

be small. However, X cannot be low rank due to the implicit constraint in the log det function that X

must be invertible.

Solution pathway. Since we can derive the critical regularization parameter, γmax, such that for

any γ ≥ γmax, the solution of Aij for (i, j) /∈ IA reaches to zero, we plot the solution pathway by

plotting the entries of Aij for (i, j) /∈ IA against varied γ as shown in Figure 4.1. This plot illustrates

that as γ increases some of Aij become zero and once an entry of A becomes zero for a value of γ

then it stays zero as γ increases. When γ ≥ γmax, all entries ofAij subject to zero constraints become

zero. In short, we obtain a sparser path matrix as we increase the penalty parameter.
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Figure 4.1: An example of sparse SEM implementation. When γ = γmax, our sparse SEM provides
the sparsest solution, i.e., all entries of Aij for (i, j) /∈ IA are set to zero.
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4.1 KKT conditions

The KKT conditions are derived as the optimality condition for the optimal solution to (4.1).

These conditions are:

Zero gradient of the Lagrangian

X = (S − Z1)
−1. (4.4)

Primal feasibility

(I −A)TΨ−1(I −A) � X, (4.5)

0 ≺ Ψ � αI, (4.6)

P (A) = 0. (4.7)

Dual feasibility

Z =

Z1 ZT2

Z2 Z4

 � 0, (4.8)

‖P c(Z2)‖∞ ≤ γ. (4.9)

Complementary slackness condition

tr

Z1 ZT2

Z2 Z4

 X (I −A)T

I −A Ψ

 = 0, (4.10)

tr (Z4(Ψ− αI)) = 0. (4.11)

We will use these conditions to analyze the solution properties later throughout this thesis.

4.2 Low rank solutions of the sparse SEM

The solution of our sparse SEM is useful if X = (I −A)TΨ−1(I −A) at optimum as we can

use X as the estimate of Σ−1. This occurs if and only if the rank of X (I −A)T

(I −A) Ψ


is n at optimum. To show this in detail, we follow the analysis explained in section 3.3. Referring to

the complementary slackness condition (4.10)], we haveZ1 ZT2

Z2 Z4


︸ ︷︷ ︸

Z

 X (I −A)T

I −A Ψ


︸ ︷︷ ︸

W

= 0. (4.12)
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Similarly to our previous analysis in section 3.3, we obtain low rank solutions of Z and W when the

optimal primal of (4.1) and the optimal dual of (4.2) satisfy

X = (I −A)TΨ−1(I −A) or equivalently rank(Z) = n.

Furthermore, when this holds, rank(Z4) = n and from (4.11), it gives Ψ = αI , i.e., the estimated

covariance error becomes a diagonal matrix.



CHAPTER V

EXPLORATORY SEM

A model that explains the dynamics of a complex system typically has a great number of model

parameters. The estimation of such models may encounter an overfitting problem and the model

estimate suffers from having a large variance. Parsimonious models are then typically preferred and

can be obtained by restricting some of the model parameters on some domain. In our case, putting

restrictions on the zero pattern in the path matrix is in fact a method of obtaining a sparse model.

As we see in chapter 4 that controlling the regularization parameter in the sparse SEM problem can

provide path matrix solution with various sparsity patterns. If γ is large then the path matrix A

contains many zeros, resulting in a simple interpretation on the estimated causal structure but the

goodness of fit becomes bigger. Therefore, choosing an appropriate value of γ is a trade off between

choosing the solution to explain a causal structure in a simple way and to best describe data in a

certain level.

In this chapter, we explain a criterion for selecting a suitable choice of γ. In statistical ap-

proaches, there are several statistic criterions, for instance, Akaike Information Criterion (AIC) [23,

24], Akaike’s Final Prediction-Error Criterion (FPE) [23] or Bayesian Information Criterion (BIC) [25,

§7]. BIC is known to prefer a simpler model since the penalty on the model complexity is higher

relatively to other criterions. Moreover, it can be shown that BIC chooses the correct model with

probability reaching to one when the number of sample sizes grows to infinity. AIC is the first model

selection criterion which has been wildly accepted and is known to perform poorly when the number

of sample sizes is small compared with the number of effective parameters. To solve this problem, the

corrected AIC or AICc was developed to improve the performance of AIC [26]. Kullback Information

Criterion (KIC) is a recent model selection criterion based on Kullback’s symmetric divergence [27].

Similarly to AICc, the corrected KIC (KICc) [28] was developed to reduce bias and improve model

selection for a small-sample setting. For these reasons, we compare the performance of each model

selection criterion, i.e., BIC, AIC, AICc, KIC and KICc for SEM which are given by

BIC = −2L+ d logN,

AIC = −2L+ 2d,

AICc = −2L+
2dN

N − d− 1
,

KIC = −2L+ 3d,

KICc = −2L+
(d+ 1)(3N − d− 2)

N − d− 2
+

d

N − d
,

(5.1)
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where d : the number of effective parameters of model, N is the number of samples and

L =
N

2

(
− log det Σ̂− tr(SΣ̂−1)

)
is the loglikelihood function of samples Y1, Y2, . . . , YN . We note that this is a fair comparison bet-

ween each criterion since each of them consists of two terms; the score from the first time represents

the model fit and the score from the second term depends on the number of effective parameters.

To learn the best causal structure of path matrices, we can choose a range of γ and then solve

sparse SEM (4.1) for each of those values, resulting in the estimated path matrices having different

sparsity patterns ranging from dense to spareset. Each of the estimated sparsity pattern is then used as

a sparsity constraint on A encoded in the primal convex SEM (3.1) and we solve for the optimal path

matrix A equipped with a sparsity pattern, yielding a candidate model. We repeat this process using

all the values of γ and obtain a set of candidate models and then compute all model selection criterion

scores in (5.1) for each of them. The best model of each model selection criterion corresponds to

the one with the minimum model selection scores. In short, we use the sparse SEM to select a finite

number of sparsity patterns in A and use the primal convex SEM to provide the best estimate of the

path matrix corresponding to the sparsity pattern selected from the model selection criterion score.

This procedure is illustrated in Figure 5.1.
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Figure 5.1: Procedure of learning a causal structure of path matrices.



CHAPTER VI

ALTERNATING DIRECTION METHOD OF MULTIPLIERS

In this chapter, we present efficient numerical methods for solving our two estimation for-

mulations, the primal convex SEM and the sparse SEM. These methods mainly rely on a kind of

proximal algorithm, which is called alternating direction method of multipliers or ADMM and pro-

posed by [21]. ADMM is an algorithm that solves the general convex optimization problem by using

the splitting technique to objective function and introducing some auxiliary variables, so that before

using ADMM, we can rearrange the general problem

minimize f(x),

subject to x ∈ C,

where f is convex and C is a convex constraint set, into the form

minimize f(x) + g(z),

subject to Ax+Bz = c,
(6.1)

with variables x ∈ Rn, z ∈ Rm and given A ∈ Rp×n, B ∈ Rp×m, respectively. The function f and g

are assumed to be closed proper convex. In each update step, the algorithm minimizes the augmented

Lagrangian, defined by

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22,

respect to x and z, sequentially. In the above equation, ρ is called the penalty parameter in which its

value relates to the speed of convergence and enforcing the equality constraint. The update rule of

ADMM is described as follows.

xk+1 = argmin
x

Lρ(x, z
k, yk),

zk+1 = argmin
z

Lρ(x
k+1, z, yk),

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c).

(6.2)

From (6.1), let us define rk+1 = Axk+1 + Bzk+1 − c as the primal residual at iteration k + 1 and

sk+1 = ρATB(zk+1−zk) as the dual residual at iteration k+1. The iterations (6.2) should reasonably

stop when the primal and dual residual are less than some tolerance values as,

‖rk‖2 ≤ εpri and ‖sk‖2 ≤ εdual,

where εpri and εdual are the tolerances that depend on the dimension of problem and they can be

computed by
εpri =

√
pεabs + εrel max{‖Axk‖2, ‖Bzk‖2, ‖c‖2},

εdual =
√
nεabs + εrel‖AT yk‖2.
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εabs is an absolute tolerance depending on the scale of typical variable values and εrel is a relative

tolerance that can be chosen by 10−3 or 10−4 depending on the application. The factors
√
p and

√
n

account for the fact that `2 norms are in Rp and Rn respectively.

6.1 ADMM for solving primal convex SEM

In this section, we apply an ADMM algorithm to solve our primal conven SEM formula-

tion (3.2). The detail is described as follows. From section 3.3, the low rank solution holds when

α = λmin(S) and it provides Ψ = αI at the optimum, so that, in this case we prefer to solve (3.2)

with a replacement of 0 � X4 � αI by X4 = αI . Then the primal convex SEM that needs to be

solved is in a form
minimize − log detX1 + tr(SX1),

subject to X =

X1 XT
2

X2 X4

 � 0,

X4 = αI, P (X2) = I,

(6.3)

with variable X ∈ S2n where X1, X4 ∈ Sn and X2 ∈ Rn×n. To rearrange (6.3) into ADMM format,

let us define a function f : S2n → R given by f(X) = − log det(X1) + tr(SX1), the function

g1 : S2n → R and g2 : R2n×2n → R are indicator functions given by

g1(U) =

{
0, U � 0,

∞, otherwise,
g2(V ) =

{
0, P (V2) = I, V4 = αI,

∞, otherwise.

Then the problem (6.3) can then be rearranged into ADMM format as

minimize f(X) + g1(U) + g2(V ),

subject to X − U = 0, X − V = 0,

with variables X,U and V ∈ S2n. The ADMM algorithm starts with forming the augmented La-

grangian defined by

Lρ(X,U, V, Y1, Y2) =− log det(X1) + tr(SX1) + g1(U) + g2(V )

+ tr(Y T
1 (X − U)) + tr(Y T

2 (X − V ))

+
ρ

2
‖X − U‖2F +

ρ

2
‖X − V ‖2F ,

where ρ is called the penalty parameter and the speed of convergence depends on the value of ρ. Let

us denote X and X+ the variables in current and next iteration. The update rule of ADMM is to

minimize Lρ(X,U, V, Y1, Y2) with respect toX,U, V independently and can be described as follows.

X+ = argmin
X

f(X) + tr(Y T
1 (X − U)) + tr(Y T

2 (X − V ))

+
ρ

2
‖X − U‖2F +

ρ

2
‖X − V ‖2F ,

U+ = argmin
U

g1(U) + tr(Y T
1 (X − U)) +

ρ

2
‖X − U‖2F ,

V + = argmin
V

g2(V ) + tr(Y T
2 (X − V )) +

ρ

2
‖X − V ‖2F ,
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where we can show that the X,U and V updates can be derived into a closed form, so that we can

compute these updates efficiently.

X-update. To find the X-update step, we minimize Lρ(X,U, V, Y1, Y2) with respect to X which is

the problem

minimize
X

− log det(X1) + tr(SX1) + ρ‖X −M‖2F ,

where M = 1
2(U + V ) − 1

2ρ(Y1 + Y2) ∈ S2n. Suppose M =

M1 MT
2

M2 M4

. The zero gradient

condition is

∇XLρ(X,U, V, Y1, Y2) =

−X−11 + S 0

0 0

+ 2ρ(X −M) = 0, (6.4)

with an implicit constraint from the domain of f that X1 � 0. We can apply the method based on

eigenvalue decomposition from [21, §6.5] to show that the zero gradient condition on the (1, 1) block:

2ρX1 −X−11 = 2ρM1 − S, (6.5)

can be achieved with a positive definiteX1. The detail starts with taking an eigenvalue decomposition

on the RHS of (6.5), providing

2ρX1 −X−11 = QΛQT , (6.6)

where Q is a matrix of eigenvector and Λ = diag(λ1, . . . , λn). Then we multiply QT on the left and

Q on the right of (6.6). By the property that QTQ = QQT = I , now (6.6) becomes

2ρX̃1 − X̃−11 = Λ, (6.7)

where X̃1 = QTX1Q. The above equation leads us to find the positive number of (X̃1)ii satisfying

2ρ(X̃1)ii − (X̃1)
−1
ii ) = λi. By the quadratic formulation, the solution of (6.7),

(X̃1)ii =
λi +

√
λ2i + 8ρ

4ρ

is always positive. ThereforeX1 = QX̃1Q
T . Other blocks ofX are simplyX2 = M2 andX4 = M4.

The solutionX1, X2 andX4 satisfy the optimality condition (6.4) so these are the closed form solution

in X-update. Hence

X+ =

QX̃1Q
T MT

2

M2 M4

 .
The main computational cost of this step depends on the eigenvalue decomposition of 2M1−S which

is a symmetric matrix.
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U -update. To find the U -update step, we minimize Lρ(X,U, V, Y1, Y2) with respect to U which is the

problem

minimize
U

g1(U) + tr(Y T
1 (X − U)) +

ρ

2
‖X − U‖2F ,

and is equivalent to
minimize

U�0
‖U −M‖2F , (6.8)

where M = X + 1
ρY1. This is a projection problem onto the positive definite cone and it has a closed

form solution. The detail is explained in Appendix 9.6. Hence

U+ = ΠC(M) where C = S2n
+ .

V -update. To find the V -update step, we minimize Lρ(X,U, V, Y1, Y2) with respect to V which is

the problem

minimize
V

g2(V ) + tr(Y T
2 (X − V )) +

ρ

2
‖X − V ‖2F ,

and is equivalent to
minimize

V
‖V −M‖2F ,

subject to P (V2) = I, V4 = αI,

where M = (X + 1
ρY2). From the two constraints in the problem, we can write a feasible V as

V =

V1 V T
2

V 2 V4

 =

 V1 P (V T
2 ) + P c(V T

2 )

P (V2) + P c(V2) V4

 =

 V1 I + P c(V T
2 )

I + P c(V2) αI

 .
Then, the cost function

‖V −M‖2F = ‖V1 −M1‖2F + 2‖(I + P c(V2))−M2‖2F + ‖αI −M4‖2F ,

is minimized by the optimal V given by

V =

 M1 P c(MT
2 ) + I

P c(M2) + I αI

 .
Hence

V + =

 M1 P c(MT
2 ) + I

P c(M2) + I αI

 .
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The update rules of algorithm are described again as follows.

ADMM for solving primal convex SEM (6.3). All variables in the algorithms consist ofX,U, V, Y1, Y2 ∈

S2n. Initialize α = λmin(S), Y1, Y2, U as identity matrix and V such that V1 = 0, V2 = I, V4 = αI .

Repeat these steps:

• Setting M =
1

2
(U + V )− 1

2ρ
(Y1 + Y2), where M =

M1 MT
2

M2 M4

 , then

X+ =

QX̃1Q
T MT

2

M2 M4

 ,
U+ = ΠC(X −

1

ρ
Y1) where C = S2n

+ ,

• Setting M = X +
1

ρ
Y2, where M =

M1 MT
2

M2 M4

 , then

V + =

 M1 P c(MT
2 ) + I

P c(M2) + I αI

 ,
• Y +

1 = Y1 + ρ(X+ − U+),

• Y +
2 = Y2 + ρ(X+ − V +),

until primal residual (r) and dual residual (s) are less than some tolerance values:

‖r‖F =

∥∥∥∥∥∥
X − U
X − V

∥∥∥∥∥∥
F

≤ εpri, ‖s‖F = ρ

∥∥∥∥∥∥∥∥∥


X+ −X

U+ − U

V + − V


∥∥∥∥∥∥∥∥∥
F

≤ εdual.

The tolerance values εpri and εdual can be computed by

εpri = 2nεabs + εrel max{‖X‖F , ‖U‖F , ‖V ‖F },

εdual = 2nεabs + εrel max{‖Y1‖F , ‖Y2‖F },

where εabs = 10−6 and εrel = 10−6 are chosen.
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6.2 ADMM for solving sparse SEM with `1-norm regularization

In this section, we apply ADMM to solve our sparse SEM. The detail is explained as follows.

Let us recall our sparse SEM (4.1) again. We can make a change of variables of this problem by

letting

X =

X1 XT
2

X2 X4

 , X4 = Ψ, X2 = I − Z, Z = A.

Then, the problem (4.1) becomes

minimize
X,Z

− log detX1 + tr(SX1) + 2γ
∑

(i,j)/∈IA
|Zij |,

subject to X =

X1 XT
2

X2 X4

 � 0,

0 � X4 � αI,

X2 = I − Z,

P (Z) = 0,

(6.9)

with variables X ∈ S2n and Z ∈ Rn×n. To rearrange (6.9) into ADMM format, let us define a

function f : S2n → R given by f(X) = − log det(X1) + tr(SX1), the function g1 : Rn×n → R

given by g1(Z) =
∑

(i,j)/∈IA |Zij |, the function g2 : S2n → R and g3 : R2n×2n → R are indicator

functions given by

g2(U) =

{
0, U � 0,

∞, otherwise,
g3(V ) =

{
0, 0 � V4 � αI,
∞, otherwise.

Then the problem (6.9) becomes

minimize f(X) + 2γg1(Z),

subject to X2 = I − Z, P (Z) = 0,

X − U = 0, X − V = 0,

with variables X,U, V ∈ S2n and Z ∈ Rn×n. The ADMM algorithm starts with forming the aug-

mented Lagrangian defined by

Lρ(X,Z,U, V, Y1, Y2, Y3) =f(X) + 2γg1(Z) + g2(U) + g3(V )

+ 2 tr(Y T
1 (X2 + Z − I)) + tr(Y T

2 (X − U)) + tr(Y T
3 (X − V ))

+
ρ

2
‖X2 + Z − I‖2F +

ρ

2
‖X − U‖2F +

ρ

2
‖X − V ‖2F .

Let us denote X and X+ the variables in current and next iteration. The update rule of ADMM

is to minimize Lρ(X,Z,U, V, Y1, Y2, Y3) with respect to X,Z,U and V , independently and can be
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describes as follows

X+ = argmin
X

− log det(X1) + 2 tr(Y T
1 (X2 + Z − I)) + tr(Y T

2 (X − U)) + tr(Y T
3 (X − V ))

+
ρ

2
‖X2 + Z − I‖2F +

ρ

2
‖X − U‖2F +

ρ

2
‖X − V ‖2F ,

Z+ = argmin
Z

g1(Z) + tr(Y T
1 (X2 + Z − I)) +

ρ

2
‖X2 + Z − I‖2F ,

U+ = argmin
U

g2(U) + tr(Y T
1 (X − U)) +

ρ

2
‖X − U‖2F ,

V + = argmin
V

g3(V ) + tr(Y T
2 (X − V )) +

ρ

2
‖X − V ‖2F ,

where we can show that the X,Z,U and V updates can be derived into a closed form.

X-update. For the X-update step, we minimize Lρ(X,Z,U, V, Y1, Y2, Y3) with respect to X which

is the problem

minimize
X

− log det(X1) + tr(SX1) +
ρ

2
‖X2 −H‖2F + ρ‖X −M‖2F ,

where H = I − Z − 1
ρY1 ∈ Rn×n and M = 1

2(U + V ) − 1
2ρ(Y2 + Y3) ∈ S2n. Suppose M =M1 MT

2

M2 M4

. The zero gradient condition is

∇XLρ(X,Z,U, V, Y1, Y2, Y3) =−X−11 + S 0

0 0

+ ρ

 0 (X2 −H)T

X2 −H 0

+ 2ρ

 X1 −M1 2(X2 −M2)
T

2(X2 −M2) X4 −M4

 = 0,

(6.10)

with an implicit constraint from domain of f that X1 � 0. We can apply the method based on

eigenvalue decomposition from [21, §6.5] to show that the zero gradient condition on the (1, 1) block:

2ρX1 −X−11 = 2ρM1 − S

can be achieved with a positive definiteX1. The detail of findingX1 is same as the analysis explained

in section 6.1 which we have shown that X1 can be computed from X1 = QX̃1Q
T where

(X̃1)ii =
λi +

√
λ2i + 8ρ

4ρ
,

and Q is a matrix of eigenvector from eigenvalue decomposition of 2ρM1 − S. Other blocks of X

are simply, given by X2 = (1/5)(H + 4M2), X4 = M4. The solution X1, X2 and X4 satisfy the

optimality condition (6.10) so these are the closed form solution in X-update. Hence

X+ =

 QX̃1Q
T 1

5(H + 4M2)
T

1
5(H + 4M2) M4

 .
The main computational cost of this step depends on the eigenvalue decomposition of a symmetric

matrix.
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Z-update. For the Z-update step, we solve the optimization problem as

minimize
Z

2γ
∑

(i,j)/∈IA

|Zij |+
ρ

2
‖Z −M‖2F ,

subject to P (Z) = 0,

where M = (I − X2 − 1
ρY1). The solution of minimizing the above problem can be performed by

elementwise soft thresholding, given by

Zij = S2γ/ρ(Mij)

where Sk(a) is called soft thresholding operator [21], defined by

Sk(a) =


a− k, a > k,

0, |a| ≤ k,
a+ k, a < −k,

(6.11)

or equivalently Sk(a) = (a− k)+ − (−a− k)+. Hence

Z+
ij = S2γ/ρ(Mij) for (i, j) /∈ IA, and Z+

ij = 0 for (i, j) ∈ IA.

U -update. For the U -update step, we solve the optimization problem as

minimize
U

g2(U) + tr(Y T
2 (X − U)) +

ρ

2
‖X − U‖2F ,

and is equivalent to

minimize
U�0

ρ

2
‖U −M‖2F , (6.12)

where M = X + 1
ρY2. This can be considered as a projection problem onto the positive definite cone

and the closed form solution is explained in Appendix 9.6. Hence

U+ = ΠC(M) where C = S2n
+ .

V -update. For the V -update step, we solve the optimization as

minimize
V

g2(V ) + tr(Y T
2 (X − V )) +

ρ

2
‖X − V ‖2F ,

and is equivalent to
minimize

V

ρ

2
‖V −M‖2F ,

subject to 0 � V4 � αI,
(6.13)

where M = X + 1
ρY3. From the cost function

‖V −M‖2F = ‖V1 −M1‖+ 2‖V2 −M2‖+ ‖V4 −M4‖,

The optimal V that minimizes this cost function is V1 = M1, V2 = M2, but for V4 , it has a constraint

such that 0 � V4 � αI . To find the optimal V4, it can be considered as a projection problem onto

positive definite cone with an upper bound, i.e.,
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minimize
V

‖V4 −M4‖ subject to 0 � V4 � αI.

The closed form solution of this problem is explained in Appendix 9.6 and if we define this solution

as V4 = M̃4, hence

V =

M1 MT
2

M2 M̃4

 .
Therefore

V + =

M1 MT
2

M2 M̃4

 .
The update rules of algorithm are described again as follows.

ADMM for solving sparse SEM (6.9). All variables in the algorithms consist of X,U, V, Y2, Y3 ∈

S2n and Z, Y1 ∈ Rn×n. Initialize α = λmin(S), Y1, Y2, Y3 and U as identity matrix, Z = 0, and V

such that V1 = 0, V2 = I, V4 = αI . Repeat these steps:

• Setting M =
1

2
(U + V )− 1

2ρ
(Y2 + Y3) ∈ S2n where M =

M1 MT
2

M2 M4

 , and

H = I − Z − 1

ρ
Y1 ∈ Rn×n then,

X+ =

 QX̃1Q
T 1

5(H + 4M2)
T

1
5(H + 4M2) M4

 ,
• Setting M = I −X2 −

1

ρ
Y1 ∈ Rn×n then, Z+

ij = S2γ/ρ(Mij), ∀(i, j) /∈ IA, Z+
ij = 0, ∀(i, j) ∈ IA,

• Setting M = X +
1

ρ
Y2 ∈ R2n×2n then, U+ = ΠC(M) where C = S2n

+ ,

• Setting M = X +
1

ρ
Y3 ∈ R2n×2n then, V + =

M1 MT
2

M2 M̃4

 ,
• Y +

1 = Y1 + ρ(X+
2 + Z+ − I), Y +

2 = Y2 + ρ(X+ − U+), Y +
3 = Y3 + ρ(X+ − V +),

until primal residual (r) and dual residual (s) are less than some tolerance values:

‖r1‖F =

∥∥∥∥∥∥
X − U
X − V

∥∥∥∥∥∥
F

≤ εpri, ‖s1‖F = ρ

∥∥∥∥∥∥∥∥∥


X+ −X

U+ − U

V + − V


∥∥∥∥∥∥∥∥∥
F

≤ εdual,

‖r2‖F = ‖X2 + Z − I‖F ≤ εpri, ‖s2‖F = ρ‖Z+ − Z‖F ≤ εdual.

The tolerance values εpri and εdual can be computed by

εpri = 2nεabs + εrel max{‖X‖F , ‖Z‖F , ‖U‖F , ‖V ‖F },

εdual = 2nεabs + εrel max{‖Y1‖F , ‖Y2‖F , ‖Y3‖F },

where εabs = 10−6 and εrel = 10−6 are chosen.



CHAPTER VII

NUMERICAL RESULTS

All numerical experiments and corresponding results are demonstrated in this chapter. The

main results are :

• Our primal convex SEM provides a low rank solution, leading to a useful solution for the

original problem under a mild condition to α. This parameter can be chosen not to be arbitrarily

large according to our guideline on its critical value. The estimation results of the formulation

show that our solution can coincide with the original solution when the noise is homoskedastic.

• The sparse SEM can provide a good estimate of zero pattern in the path coefficient by using an

appropriate regularization parameter . This choice typically depends on the number of samples,

and the assumption of the true model.

• Our two formulations are applied in learning a brain network from fMRI data set and we found

that the causal relation practically agreed with the findings from the original papers used this

data set.

7.1 Results of the primal convex SEM formulation

This section provides the results that verify two main properties of the primal convex SEM

formulation. One is that under an experimental condition on α, the solution is found to be low rank,

making it useful as an estimate of the covariance matrix in the original SEM problem. Another

property is on the magnitude of α that when it is large then the solution becomes zero and as a result,

becomes meaningless. The last experiment in this section illustrate the estimation result when a true

model is generated and we examine the estimation error under several values of the noise variances.

7.1.1 Low rank solutions

To find the condition that leads us to obtain a low rank solution, we generate S and α, and

then solve the primal convex SEM and observe what condition on S and α provides the low rank

solution. The simulation process is explained as follows. A sample covariance matrix (S) was gen-

erated as a positive definite (pdf) matrix in which its eigenvalues were controlled in the interval

[1, 20]. Since A has special structures, i.e., some entries of A are zero including diagonal entries, the

structure of A was randomly generated by setting the sparsity of A about 30%. To vary α, we set

α ∈ [0.5λmin(S), 5λmin(S)] with step size of 0.02. Using the problem parameters: S, α and sparsity
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pattern ofA, we then solve the primal convex SEM (3.1) for each α. To see a relationship between the

low rank solution and rank(Z), we solve the dual of primal convex SEM (3.3) concurrently. Solving

these two problems has been done by CVX package in MATLAB [17]. To compute rank(Z) for

each α, we check the number of eigenvalues of Z that whose magnitude is smaller than a threshold

value of 10−6.
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Figure 7.1: The rank of dual solution and the error of primal solution to a low rank solution versus
α. The experiment was set up with n = 5 and varying α ∈ [0.5λmin(S), 5λmin(S)]. The simulation
results show that a low rank solution is obtained when rank(Z) = n = 5 and when α is small
enough relatively to λmin(S).

Figure 7.1 illustrates the relationship between the low rank solution (rank of W in section 3.3)

and rank of Z as α varies. We see that X = (I − A)TΨ−1(I − A) when rank(Z) = n, and

when α increases, X tends to be strictly greater than (I − A)TΨ−1(I − A) (so that rank(W ) > n)

and therefore rank(Z) is decreasing. Figure 7.2 shows the difference between X (supposed to be

the estimated Σ−1) and (I − A)TΨ−1(I − A) using 50 runs of S with the same n, i.e., solving

the primal convex SEM with one sample of S produces a line in the figure. The norm of error,

‖X − (I −A)TΨ−1(I −A)‖, is zero when we obtain the low rank solution. We notice that the range

of α resulting in the low rank solutions does not depend on n. This often occurs when α ≤ λmin(S).

Therefore, if we solve the primal convex SEM (3.1) instead of the original problem (2.6), we can

heuristically choose α = λmin(S) to obtain a low rank solution.

7.1.2 Large value of α

In this section we show the result of Theorem 2. Let αc = n/ tr(S−1) (the harmonic mean

of eigenvalue of S). If α ≤ αc,then Z = 0 cannot be an optimal solution for dual problem. The

experiment is setup with n = 5 and varying α ∈ [0.5λmin(S), 5λmin(S)], but in this experiment we

generate each S as a positive definite matrix having the same αc (the harmonic mean of eigenvalues of
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Figure 7.2: The error of primal solution to a low rank solution versus α. The experiment was set up by
using n = 5, 10, 20 and varying α ∈ [0.5λmin(S), 5λmin(S)]. Lines with the same color correspond
to the result from using the same n. Each line in the same color is distinguished by each sample of
S. The error between X and (I − A)TΨ−1(I − A) increases as α increases and is zero when α is
sufficiently small relatively to the minimum eigenvalue of S.
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Figure 7.3: rank(Z) as α varies. The critical value αc in the plot is the harmonic mean of eigenvalue
of S, αc = n/ tr(S−1). For each S, the condition rank(Z) = 0 lies on RHS of αc, meaning that if
Z = 0, α > αc.

S) to be 0.5. We then solve the dual of primal convex SEM and plot a relationship between rank(Z)

and α.

From Figure 7.3, the experiment has been done with 50 samples of S and the result illustrates

that for α ≤ αc, Z cannot be zero. This plot can provide other information, for instance, Z =

0, when α is large enough, the portion that rank(Z) = n is approximately 74% and the portion

that rank(Z) < n is approximately 36%, computed from 50 samples of S. Although, we cannot

guarantee the relationship between the low rank solution and rank(Z) with αc but this result can

guide us that if we choose α < αc, we have more chances to get the condition rank(Z) = n (or

more chances to get a low rank solution).
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7.1.3 Estimation results

In this section, we verify that if we suppose to know about the true path matrix, denoted by

Atrue, and variance of noise, σ2, our estimation formulation can provide that the estimate is equal,

Â = Atrue. In this experiment, we firstly generate Atrue with n = 5 and sparsity about 50% cor-

responding to 0 degree of freedom. We then generate noise covariance Ψ = σ2I and we suppose

to generate S by S = σ2(I − Atrue)
−1(I − Atrue)

−T . For our approach, the result of simulation

is illustrated in Figure 7.4. This simulation has been done by setting n = 5 as α varies in range

[0.0001, 0.02], using the step size of 0.0001.

In this plot, Figure 7.4 (top) shows the value of ‖Atrue − Â‖ as α varies. We observe that

Â reaches to Atrue when α reaches to σ2, meaning that our approach can provide Â which is equal

to Atrue if we choose α = σ2. Figure 7.4 (middle and bottom) shows the result of perfect fitting,

X = S−1 and the value of objective of (3.1) is zero (p∗ = 0). This result illustrates that we can

get perfect fitting when α reaches to σ2. But in real applications, we do not have information about

noise variance, therefore we opt to choose α = λmin(S) so that it is guaranteed to obtain a low rank

solution. From this choice of α, the value of estimated A is not significantly different from Atrue and

X reaches to S−1 but it is not exactly equal.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

100

200

300

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

100

200

300

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

1

2

3

4
x 10

4

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

100

200

300

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

100

200

300

400

Figure 7.4: Simulation of estimation results with n = 5 as α varies. When α = σ2, we can get a low
rank solution and a perfect fitting.
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7.2 Results of sparse SEM with `1-norm regularization

This section illustrates the effectiveness of our sparse SEM formulation proposed in Section 4.

The goal is to show that adding `1 penalty term could reveal the zero structure in the path matrix under

some assumptions. To examine the performance of exploring the zero structures in the estimated path

matrix, we define positives as nonzero entries and the negatives as zero entries of a matrix. Let Atrue

and Â be the true and estimated path matrices, respectively. The four measures: TP, TN, FP and FN

are described by

Measures Definitions

TP (true positives) number of nonzero entries in Â and in Atrue (correctly estimated nonzeros)

FP (false positives) number of nonzero entries in Â but not in Atrue (falsely estimated nonzeros)

TN (true negatives) number of zero entries in Â and in Atrue (correctly estimated zeros)

FN (false negatives) number of zero entries in Â but not in Atrue (falsely estimated zeros)

As previously mentioned, FP and FN are considered to be two types of error so the total error and

accuracy are defined as

total error = (FP + FN)/number of estimated parameters,

accuracy = 1− total error.

Another way to evaluate the performance of learning a zero pattern is to compute TP and FP rates

defined by

TPR (TP rate) = TP/(TP + FN),

FPR (FP rate) = TN/(FP + TN).

We can plot TP rate against FP rate and this plot is commonly known as a receiver operating charac-

teristic or ROC curve [29][§19.7]. From (4.1), ROC curve is obtained by varying the regularization

parameter, γ, from 0 to its critical value, γmax. When γ = 0, our Â is typically dense and we expect

to see a high TP rate and a high FP rate. As γ increases, our sparse SEM provides a sparser solution

and therefore we expect to see a decrease in FP rate. Finally a performance of our sparse SEM can

be concluded via a pattern of ROC curve, saying that, a good performance should be reflected as an

ROC curve above the diagonal line and lying towards the top left of the corner, meaning that, we can

have a value of regularization parameter that yields a high TP rate and a low FP rate simultaneously

at that point.

The first experiment of this section is to observe the effect of percentage of known number of

zeros (relative to number of zeros), called degree of freedom (df), df = the number of known parameters −

the number of estimated parameters . The number of known parameters is n(n−1)/2, and, the num-

ber of estimated parameters is the sum of the number of entries in A and the number of entries in Ψ.
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In this experiment, we use n = 20 and randomly generate a true path matrix Atrue with a sparse den-

sity of 10% and generate a sample covariance matrix S = (I − Atrue)
−1Ψ(I − Atrue)

−T by setting

the noise covariance Ψ = 0.1I . We then solve (4.1) by assuming that the location of zeros in Atrue is

known in the amount of 0%, 20%, 50%, 65% and 80% of all zeros. The result is the ROC curve shown

in Figure 7.5. One line of this plot is obtained by varying γ from 0 to γmax and it is averaged from 25

samples. This result illustrates that if we do not have any assumptions on zero structure in Atrue, i.e.,

the constraint P (A) = diag(A), our accuracy is still more than 50% as this ROC curve stays above

the diagonal line, and if we have more assumptions on zero structure in Atrue, the accuracy of our

learning method is improved. We note that if no known location of zeros is assumed (df is negative)

then the problem (4.1) may not have a unique solution for a given γ, then the estimated zero structure

of Â may not be the same as the true matrix. However, if we assume more location of zeros (df is

zero or positive), then the problem (4.1) could have a unique solution, and there exists a value of γ

that yield a satisfactorily accurate zero structure in Â.
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Figure 7.5: ROC curve as we vary regularization parameter γ. Knowing more correct zero structure
in Atrue provides the better accuracy of our learning causal structure method.

The second experiment is to observe the effect of the number of observations if the data gen-

erating process starts with Y = AY + e, where e denotes the noise from measurement. In this

experiment, we assume that the percentage of known number of zeros about 50% or df = 0. Firstly,

we use n = 20 and randomly generate Atrue with sparse density of 10% and generate the measure-

ments Y from Y = (I − Atrue)
−1e where e is normally distributed with variance of 0.1. We then

compute a sample covariance matrix from measurements Y . With the sameAtrue, we vary the number

of observation to 100, 1000 and 5000 respectively. The result is the ROC curve shown in Figure 7.6.

One line of this plot is obtained by varying γ from 0 to γmax and it is averaged from 25 samples of S.
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Figure 7.6: ROC curve as we vary regularization parameter γ. When the number of observation
increases, the performance of our exploratory SEM also significantly increases.

This result illustrates that when the number of observation increases, the performance of our sparse

SEM also significantly increases.

7.3 Results of exploratory SEM

In this section, we illustrate the effectiveness of exploring the relationships among variables

by applying the two proposed formulations in the scheme explained in Figure 5.1. The goal of this

experiment is to examine how accurate we can acheive in the estimated relation structure when a

true model is known. The performance evaluation is discussed based on the use of FP, FN and the

total error. In this section, we use n = 10 and generate Atrue with random sparsity patterns. Then

measurements Y are generated according to Y = (I − Atrue)
−1e where e is normally distributed

with variance of 0.1. We process the experiment as detail explained in Figure 5.1. Firstly, the sample

covariance matrix (S) of measurement Y is computed and we choose a set of regularization parame-

ters by γi ∈ [γ1, . . . , γmax] where γmax is the γ that penalizes all entries in A to become zero. For

each value of γ, Â is obtained from solving the sparse SEM and the estimated zero pattern of Â is

kept. In the next step, this zero pattern is used as the zero constraint, P (A) = 0 in the primal convex

SEM. The estimate of A from this step is further evaluated by a model selection score. We repeat this

process using all values of γ and obtain a set of candidate models. The model selection criterions,

e.g., BIC, AIC, AICc, KIC and KICc, are calculated on each model. The main results are explained

as follows.

Firstly, there are four main aspects that could influence the estimation results. These factors

are sparsity density of the true model (Atrue), the number of sample sizes (N), the number of known
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zero locations used in the estimation, and the choice of model selection scores. The experiments are

then designed to investigate the effects of these factors which can be explained below.

1. The sparsity density of Atrue. In this experiment, we generate Atrue with two sparsity levels,

50% and 80% and observe a relation between the sparsity pattern of Â that minimizes BIC

score and the error rate. A typical result is illustrated in Figures 7.8 when Atrue is dense and in

Figures 7.10 when Atrue is sparse. The result shows that when Atrue is sparse, our exploratory

SEM formulation provides less FP and FN than the case that Atrue is dense. Unavoidable

errors as FP and FN are commonly seen since these type of errors occur against the hypothesis

of the true model. Moreover, when Atrue is dense, Figure 7.11 shows that using AIC leads to

the minimum total error since this score is prone to use a dense model (which agree with the

assumption on the true model). Similarly, whenAtrue is sparse, Figure 7.12 confirms that using

the scores penalizing more on the model complexity such as BIC, AICc, KICc yields a lower

total error.

2. The number of samples. In the experiments, we use N = 100 (moderate size) and N =

100, 000 (large sample size) to examine the asymptotic properties of the estimates. When

N is large, Figures 7.7 and 7.9 confirm that the selected γ is closer to zero since the sparse

SEM (as a regularized problem) should yield the solution closer to that of non-regularized

problem. Moreover, Figures 7.8 and Figures 7.10 report that, with same sparsity level, FP does

not significantly change, but FN obviously decreases when N increases. This effect is also

shown in Figure 7.11 and Figure 7.12 that FP also increases, but FN decreases to zero, showing

that our regularized formulation is robust to false negative errors.

3. The percentage of known zero locations in the estimation. To examine this factor, the experi-

ments are performed with the percentage of known zeros of 0%, 20% and 50%. The first two

values correspond to the problem with negative df where the regularized solution could be not

unique implying that the estimated zero pattern may not be as accurate as when knowing more

zero locations. Figures 7.8, 7.10, 7.11 and 7.12 show that when we know more about the true

zero locations in Atrue, FP decreases, but FN seems to be indifferent.

4. The choice of model selection scores. We considered AIC (tend to choose dense models), AICc

(adjusted for finite sample size), BIC, KIC and KICc scores (tend to choose simpler models).

From Figures 7.11 and 7.12, it is verified that AIC tends to yield the minimum total error when

Atrue is dense, and conversely, the choices of BIC, AICc and KICc tends to provide the total

error lower than other criterions when Atrue is sparse.

Secondly, we summarize the behaviours of the performance measures, i.e., FP, FN and total

error obtained from the experiments from Figures 7.11 and 7.12. These two plots are averaged from

50 runs of sample covariance matrix S. The discussions are explained as follows.
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Figure 7.7: BIC scores as α varies when Atrue is dense. This plot illustrates BIC scores when the
sample of measurement (N ) is 100 and 100, 000 according to three cases, i.e., (top) no assumption
of true zero location in Atrue, (middle) knowing the true zero location in Atrue ∼ 20% and (bottom)
knowing the true zero location in Atrue ∼ 50%, in the estimation process.

Figure 7.8: The sparsity pattern of Â that minimizes BIC scores corresponding to Figure 7.7 when
Atrue is dense. This plot illustrates the sparsity pattern of Â chosen via BIC scores when the sample
of measurement (N ) is 100 and 100, 000 according to three cases, i.e., (top) no assumption of true
zero location inAtrue, (middle) knowing the true zero location inAtrue ∼ 20% and (bottom) knowing
the true zero location in Atrue ∼ 50%, in the estimation process.
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Figure 7.9: BIC scores as α varies when Atrue is sparse. This plot illustrates BIC scores when the
sample of measurement (N ) is 100 and 100, 000 according to three cases, i.e., (top) no assumption
of true zero location in Atrue, (middle) knowing the true zero location in Atrue ∼ 20% and (bottom)
knowing the true zero location in Atrue ∼ 50%, in the estimation process.

Figure 7.10: The sparsity pattern of Â that minimizes BIC scores corresponding to Figure 7.9 when
Atrue is sparse. This plot illustrates the sparsity pattern of Â chosen via BIC scores when the sample
of measurement (N ) is 100 and 100, 000 according to three cases, i.e., (top) no assumption of true
zero location inAtrue, (middle) knowing the true zero location inAtrue ∼ 20% and (bottom) knowing
the true zero location in Atrue ∼ 50%, in the estimation process.
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(a) False Positive (FP) error. When Atrue is dense, FP from all model selection criteri-
ons tends to decrease when we use more knowledge about zero location in Atrue into the
estimation process, but it increases when N grows as all model selection criterions tend
to select the denser Â. In the case of small N , AICc provides the minimum FP error.
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(b) False Negative (FN) error. Using more knowledge about zero location in Atrue into
the estimation process barely affects the change of FN, but it can be improved when N
grows.
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(c) Total error. Main portion of the total error comes from FP so it tends to decrease
when we have more assumption about true zero location in Atrue.

Figure 7.11: Averaged FP, FN and total error from 50 runs of sample covariance matrix S, whenAtrue

is dense. The results show that AIC provides the mimum error when N is small.
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(a) False Positive (FP) error. FP from all model selection criterions tends to decrease
when we use the knowledge about zero location in Atrue into the estimation process, but
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the case of small N , BIC, AICc and KICc provide the better accuracy as the true model
is sparse.
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(c) Total error. Main portion of the total error comes from FP so it tends to decrease
when we have more assumption about true zero location in Atrue.

Figure 7.12: Averaged FP, FN and total error from 50 runs of sample covariance matrix S, whenAtrue

is sparse. The results show that BIC, AICc and KICc provide the lower total error when N is small.
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1. False positive (FP). Regardless of the true sparsity level in Atrue, FP from all model selection

criterions tends to decrease when we know more true zero location in Atrue. For large N , all

model selection criterions tends to choose denser models so that FP highly increases. BIC,

AICc and KICc provide better accuracies when N is small.

2. False negative (FN). Using more knowledge about true zero location in Atrue hardly affects the

improvement of FN regardless of the sparsity in Atrue. But for large N , FN tends to decease to

zero. In the case that we have small N , AIC and KIC provide better accuracy.

3. Total error. Total error highly depends on FP since the value of FN is always small comparing

to FP so, this error from all model selection criterions tends to decrease when we use the

assumption about true zero location in the estimation process. WhenN is small, in the case that

Atrue is dense, AIC provides the minimum total error. In contrast, BIC, AICc and KICc provide

the better accuracies when Atrue is sparse as they penalize more on the model complexity.

Finally, we would like to compare the entry magnitudes of Â and Atrue. We select one typical

example in the experiment that Atrue is sparse; the percentage of known zero locations is 50%; N =

100, 000; and Â is chosen by the BIC score. All entries in Atrue are sorted from small to large and

all entries in Â are sorted following these indices. Figure 7.13 shows that when entries of Atrue are

nonzero, the estimated entries mostly have the same signs. When entries of Atrue are zero, the errors

in the estimated entries occur with mostly small magnitudes.
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Figure 7.13: Similarity pattern of entry magnitudes between sparse Atrue and Â that minimizes BIC
score. We use N = 100, 000 and assumption to known ∼ 50% zero locations in the estimation
process. The result shows that the magnitude of each entry in Â is quite equal to the magnitude of
corresponding entry in Atrue.

7.4 Algorithm performance

To see the algorithm performance for solving our both primal convex SEM and sparse SEM,

we generate data with n = 50, 100, . . . , 1000, using 50 samples of S for each n. We solve primal

convex SEM (6.3) and sparse SEM (6.9) using ADMM as the details explained in chapter 6. Then

we plot the averaged CPU time versus n. The computer’s specification used in this experiment is:
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CPU : Intel Core I5-6400 (2.7 GHz), RAM : 16GB DDR4 BUS2133, HDD : SATA III 7200 RPM

(1TBs), OS : WINDOWS10-64bit Education. Solving either primal convex SEM or sparse SEM with

dimension n involves total number of variables in X , (n(n+ 1)/2, plus the number of variables in Ψ

and the number of of paths in A.

Figure 7.14: Averaged CPU time used to solve primal convex SEM from 50 samples of S for each n.
With n = 1000, it takes around 11 minutes.
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Figure 7.15: Averaged CPU time used to solve sparse SEM with `1-regularization from 50 samples
of S for each n. With n = 1000, it takes around 40 minutes.

For solving both primal convex and sparse SEM, the main computational cost of ADMM

algorithm only depends on eigenvalue decomposition of symmetric matrix with size 2n, which is

O((2n))3, where n is a number of variables. The averaged CPU time used is shown in Figure 7.14 and

Figure 7.15. A trial problem with n = 1000 and a given pattern in A, resulting in totally 1, 000, 000

variables, it requires approximately about 11 minutes for solving the primal convex SEM and about

42 minutes for solving the sparse SEM, respectively. A large-scale setting like this may not be feasible

when implemented with an iterative method based on the use of Hessian matrix.
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7.5 Learning causal relation among brain regions from exploratory SEM

In this experiment, we apply our framework to explore the causal relations among brain regions

from fMRI data. This is an fMRI data set recorded with a fast sampling rate (sampling time 0.1 s) and

from 21 subjects reported in [30]. The subjects were instructed to press a button responded to right or

left visual hemi-field stimuli. For each time series of a subject, it contains signals from 1, 100 voxels

with 299 time points where voxels are divided to belong to each of the 10 regions of interest (ROIs):

left and right visual (V), left and right parietal (PCC), left and right premotor (PreM), left and right

somatosensory (S) and left and right motor (M).
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Figure 7.16: Scores of all model selection criterions: BIC, AIC, AICc, KIC and KICc. A square in
each line corresponds to the minimum score of each criterion.

Figure 7.17: The sparsity pattern of Â that is selected by each model selection criterion. The subscript
l or r denote the corresponding ROIs that locate on the left or right hemisphere, respectively. The red
squares represent a common pattern from all sparsity pattern in each Â. The first and second column
of Â are zero according to the assumption that motor area must be the end point of this brain network.

Firstly, the signals in each ROI are averaged in spatial domain resulting in 10 time series with

299 time points, corresponding to Y ∈ R10×299. The sample covariance matrix is computed from

Y and a set of regularization parameters are selected as γi ∈ {γ1, . . . , γmax} where γmax is the γ

that penalizes all entries in A to be zero. The experiment paradigm of this data [30] hypothetically

suggested that the flows in the brain network should end in the motor area. In other words, there
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Figure 7.18: Brain structure from the common path matrix. This result shows the relation among
visual (V), parietal (PCC), somatosensory (S), premotor (PreM) and motor (M) region of left and
right hemisphere. The magnitude of path coefficients affects to line width. Positive and negative path
coefficients are represented by red and blue color, respectively.

are no outgoing links from motor to the other areas. Therefore, we can model that the columns in

A corresponding to the Motor area should be entirely zero and this can be encoded as the constraint

P (A) = 0 in the sparse SEM problem. After solving sparse SEM with many γ, we obtain a set

of candidate model, each of which is labeled by model selection scores: BIC, AIC, AICc, KIC and

KICc. These scores are shown in Figure 7.16 as γ varies. Each line in this plot represents a score

of one model selection criterion and the squares indicate the minimum score of each criterion. The

common zero structure of Â’s (obtained by different model selection scores) shown in Figure 7.17

is used as the constraint P (A) = 0 and then the primal convex SEM subject to this constraint is

solved, providing a low rank solution and so Σ̂ is obtained by the inverse of the solution X . Finally,

we obtain the structure of path matrix with optimal coefficients and this represents the structure of

relation among brain ROIs as shown in Figure 7.18. The line widths in this plot are proportional to the

magnitude of path coefficients and the colors which is red or blue represent the positive and negative

of path coefficients, respectively.

Figure 7.18 shows an estimated brain network from one subject. It shows strong relations

among somatosensory (S), parietal (PCC), premotor (PreM) and motor for both left and right hemi-

sphere but for the relations in right hemisphere seem to be stronger. The strong connections also

appear between somatosensory and visual. The ROIs on both sides of hemisphere seem to be free

from each other as the relations between them are weak. Moreover, the pattern of connection in this

network seems to be symmetric between left and right hemisphere. From the same fMRI data set, [30]

has shown that improve the sampling rate can improve the sensitivity of Granger causality estimate.

The directional causal influences between 5 ROIs in each hemisphere have been inferred that there

are significant causal relations from visual to parietal, somatosensory, premotor and motor. For the

left hemisphere, parietal has strong relations to somatosensory, motor and premotor but for the right
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hemisphere, parietal only strongly affects to premotor. Similarly to [31], it has shown that the strong

causal relation appears during the first 100 ms and these connections also start from visual to motor

directly. The moderate relations also appear among visual, parietal, somatosensory and motor but the

connections between ROIs of left and right hemisphere seem to be weak. From the result, the brain

network from our findings is quite similar to those two works since the strong connection appears

in the ROIs related to the motor task, and those ROIs also receive the strong influences from visual.

However, this is a brain network concluded from one subject. An intensive experiment for brain net-

work verification of several subjects can be considered in the future study. Finally, we comment that

the casual relations of each brain ROI from our finding are considered to be only a contemporaneous

effect.



CHAPTER VIII

CONCLUSION

This thesis has proposed the two estimation formulations for solving problems of path analysis

in structural equation modeling (SEM). The first formulation, referred to as the primal convex SEM,

can be an alternative method for solving a confirmatory SEM under conditions that i) the noise co-

variance in the model is homoskedastic, or that the covariance is a multiple of identity matrix, and

ii) the estimated noise covariance is controlled by a problem parameter, α, chosen to be sufficiently

small. We have shown by some proofs and extensive experiments that, for solving a primal convex

SEM, the choice of α = λmin(S) is suggested to obtain a low rank solution which is useful as the

estimated covariance of the model that can be chosen to be X−1 (the (1, 1) block of our solution

matrix). The second formulation, denoted by the sparse SEM, is a regularized estimation proposed

for exploratory SEM by adding `1-type penalty of the path coefficient matrix. This formulation is in

the area of sparse estimation. We have derived the critical value of regularization parameters, γmax,

that can enforce all entries in estimated path matrix to be zero. The expression of this value allow

us to consider a model selection problem using a sufficient number of candidate models. We have

shown the performance of our sparse SEM by experiments which show that its performance depends

on i) the percentage of known zero locations of the true model in the estimation and ii) the number of

sample sizes.

We also provide a scheme for learning causal relation structures among variables by applying

both primal convex SEM and sparse SEM formulations which we refer to as exploratory SEM. The

performance of our exploratory SEM has been evaluated from the simulation process showing that

there are four factors, i.e., the density level of the true model, the percentage of known zero locations

of the true model in the estimation, the number of sample sizes and the choice of model selection

scores, can affect to this performance. Another important result from this experiment illustrates that

if the causal structure of true model is complex, AIC provides the minimum total error. In contrast,

if the causal structure of true model is simpler, BIC, AICc and KICc provide the better accuracy.

An application of this scheme was preliminarily illustrated by learning causal relations among brain

regions from fMRI data. The brain network illustrating the causal relations among ROIs says that

there are strong connections among somatosensory, parietal, premotor and motor for both left and

right hemisphere. In particular, the dominant pairs of strong connection are somatosensory→visual,

somatosensory→parietal and somatosensory→premotor. The brain network we found practically

agreed with the brain network from the original paper used this data set. Finally, we comment that

the relation structures from our scheme are only considered to be a contemporaneous effect.
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Another contribution of this thesis is the numerical method based on ADMM algorithm that

is suitable for solving the two formulations in a large-scale setting. The main computational cost in

each step highly depends on the cost of eigenvalue decomposition of a symmetric matrix with size 2n

where n is the problem dimension.

Throughout this thesis, we state that the solution from our estimation formulation is meaningful

when it has low rank and the occurrence of this solution has been shown from experiments. Therefore

an area of our future study is to provide the analytical result of conditions on problem parameters

that can guarantee to obtain this low rank solution. We observed that when α which is our input

parameter is small enough, the low rank solution holds and when this holds, rank of the dual variable,

Z ∈ S2n, is n at optimum. If we consider the dual problem under an assumption that Z has low

rank, its optimality condition turns out to be the nonlinear matrix equation. Hence we may find the

condition depending on the range of α that is necessary to have the low rank solution by examining

the existence of positive definite solution of the dual problem.
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In this chapter, we provide technical derivations of the results used in the thesis.

9.1 Dual problem of the primal convex SEM

In this section we show that the dual of (3.1) which is the problem

minimize − log detX + tr(SX),

subject to

 X (I −A)T

I −A Ψ

 � 0,

0 � Ψ � αI,

P (A) = 0,

(9.1)

with variables X ∈ Sn, A ∈ Rn×n and Ψ ∈ Sn, is the one given in (3.3)

minimize − log det(S − Z1)− 2 tr(Z2)− α tr(Z4) + n,

subject to Z =

Z1 ZT2

Z2 Z4

 � 0,

Q(Z) = 0,

(9.2)

with variable Z ∈ S2n.

Derivation of the dual problem. Let Z =

Z1 ZT2

Z2 Z4

 ∈ S2n, Ω ∈ Sn and U ∈ Rn×n be the

Lagrange multipliers of the constraints X (I −A)T

I −A Ψ

 � 0, Ψ � αI, P (A) = 0,

respectively. The Lagrangian of the problem (3.1) is

L(X,A,Ψ, Z,Ω, U) =− log detX + tr(SX)− tr(Z1X)− 2 tr(Z2) + 2 tr(ZT2 A)

− tr(Z4Ψ) + tr(ΩΨ)− α tr(Ω)− 2 tr(UTP (A)).
(9.3)

The infimum of L with respect to the primal variables can be determined as follows.

• The term in L that is a function of Ψ is tr(ΩΨ)− tr(Z4Ψ). This function is linear in Ψ, so the

infimum of L with respect to Ψ exists (and is zero) if

Ω = Z4. (9.4)
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• The term in L that is a function of X is given by− log detX + tr(SX)− tr(Z1X) which can

be minimized when its gradient with respect to X is zero. This gives

−X−1 + S − Z1 = 0 (9.5)

or that X = (S − Z1)
−1 and

inf
X
{− log detX + tr(SX)− tr(Z1X)} = log det(S − Z1) + n.

• Lastly, the infinum of the term in L that is a function of A (up to the scaling factor 2) is given

by

inf
A

{
tr(ZT2 A)− tr(UTP (A)

}
= inf

A

{
tr(ZT2 A)− tr(P (U)TA)

}
where we have used the fact that the operatorP defined in (2.3) is self-adjoint, i.e., tr(UTP (A)) =

tr(P (U)TA). Hence, the expression is linear in A, so the infimum is zero provided that

Z2 = P (U). This means the (i, j) entries of Z2 for (i, j) ∈ IA are free variables, and the

other entries of Z2 must be zero. This can be written in the matrix format as P c(Z2) = 0.

The minimized Lagrangian with respect to the primal variables provides us the dual function

g(Z) = log det(S − Z1) + n− 2 tr(Z2)− α tr(Z4)

with the domain constraints:

Z � 0, P c(Z2) = 0.

The last constraint on Z is equivalent to Q(Z) = 0 (recall the definition of Q in (2.5)). The dual is

the problem of maximizing the dual function which is obtained directly.

9.2 Subgradients and subgradient calculus

We have seen that the convex formulation for the sparse SEM (4.1) is a nondifferentiable prob-

lem. Its cost objective is nondifferentiable and hence the gradient does not exist at A = 0. In this

section, we present the generalized concept of gradient for nondifferentiable functions called subgra-

dients [32].

Let f : Rn → (−∞,∞) be a convex function and let z ∈ dom f . An element of g ∈ Rn is

called a subgradient of f at z if

〈g, x− z〉 ≤ f(x)− f(z)

for all x ∈ Rn. A subgradient of f at z might not be unique, so the set of all possible subgradients of

f at z is called the subdifferential of f at z denoted by ∂f(z).

Let us provide an example of subgradients of the 1− norm function which will be used often

in this thesis. Consider f(x) = ‖x‖1, x ∈ Rn. The subgradient of f and x = 0 is given by

∂f(0) = g ∈ Rn, where ‖g‖∞ ≤ 1.
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To verify this result, we check from the definition of the subgradient that g must satisfy 〈g, x− 0〉 ≤

f(x)− f(0) for all x ∈ Rn which can be rewritten as

gTx ≤ ‖x‖1, ∀x ∈ Rn. (9.6)

If (9.6) holds for all x then setting x = ±ei (the standard unit vector) gives |gi| ≤ 1. Therefore, a

subgradient of ‖x‖1 at x = 0 can be any vector g that ‖g‖∞ ≤ 1. We can conclude easily from a

special of this example that a subgradient of f(x) = |x| at x = 0 is ∂f(0) = g where g ∈ R is any

scalar that |g| ≤ 1.

Optimality condition for nonsmooth problems. Consider an optimization problem

minimize f0(x),

subject to fi(x) ≤ 0, i = 1, . . . ,m.

where fi is convex, defined on Rn and subdifferentiable for i = 0, 1, . . . ,m. Moreover the strict

feasibility (or Slater’s condition) is assumed. Then, x? is primal optimal (λ? is dual optimal) if and

only if

• primal feasibility: fi(x?) ≤ 0 for i = 1, . . . ,m

• dual feasibility: λ? ≥ 0

• zero is in the subdifferential of the Lagrangian

0 ∈ ∂f0(x?) +
m∑
i=1

λ?i ∂fi(x
?)

• complementary slackness condition: λ?i fi(x
?) = 0 for i = 1, 2, . . . ,m

The above conditions are known as KKT conditions for nondifferentiable fi for i = 0, 1, . . . ,m.

9.3 Dual problem of the sparse SEM

In Section 4, we have stated that the dual of the sparse SEM problem (4.1) which is given by

minimize − log detX + tr(SX) + 2γ
∑

(i,j)/∈IA
|Aij |,

subject to

 X (I −A)T

I −A Ψ

 � 0,

0 � Ψ � αI,

P (A) = 0,

(9.7)

with variables X ∈ Sn, A ∈ Rn×n and Ψ ∈ Sn, is the problem
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maximize log det(S − Z1)− 2 tr(Z2)− α tr(Z4) + n,

subject to

Z1 ZT2

Z2 Z4

 � 0,

|(Z2)ij | ≤ γ, ∀ (i, j) /∈ IA,

(9.8)

with variable Z ∈ S2n.

In this Appendix, we provide the details of the dual problem derivation and the KKT conditions.

Derivation of the dual problem. Let Z =

Z1 ZT2

Z2 Z4

 ∈ S2n, Ω ∈ Sn and U ∈ Rn×n be the

Lagrange multipliers of the constraints X (I −A)T

I −A Ψ

 � 0, Ψ � αI, P (A) = 0

respectively. With the notation

h(A) =
∑

(i,j)/∈IA

|Aij |, (9.9)

the Lagrangian of (9.7) is

L(X,A,Ψ, Z,Ω, U) =− log detX + tr(SX) + 2γh(A)− tr(Z1X)− 2 tr(Z2) + 2 tr(ZT2 A)

− tr(Z4Ψ) + tr(ΩΨ)− α tr(Ω)− 2 tr(UTP (A)).
(9.10)

The infimum of L with respect to the primal variables can be determined as follows.

• The term in L that is a function of Ψ is tr(ΩΨ)− tr(Z4Ψ). This function is linear in Ψ, so the

infimum of L with respect to Ψ exists (and is zero) if

Ω = Z4. (9.11)

• The term in L that is a function of X is given by− log detX + tr(SX)− tr(Z1X) which can

be minimized when its gradient with respect to X is zero. This gives

−X−1 + S − Z1 = 0 (9.12)

or that X = (S − Z1)
−1 and

inf
X
{− log detX + tr(SX)− tr(Z1X)} = log det(S − Z1) + n.

• Lastly, by using the concept of conjugate function in Appendix 9.5, the infinum of the term in
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L that is a function of A is given by

inf
A

{
2γh(A) + 2 tr(ZT2 A)− 2 tr(UTP (A)

}
= inf

A

{
2γh(A) + 2 tr(ZT2 A)− 2 tr(P (U)TA)

}
= −2γ sup

A

{
−h(A)− tr

((
Z2 − P (U)

γ

)T
A

)}

= −2γh∗
(
−Z2 − P (U)

γ

)
= 0

provide that

P (Z2 − P (U)) = 0, ‖P c(Z2 − P (U))‖∞ ≤ γ

(see Proposition 3 and (9.27)). Since the entries in U can be chosen arbitrarily, and we have

P (Z2 − P (U)) = P (Z2) − P (U) = 0, meaning that P (Z2) contains free entries. Moreover,

P c(Z2 − P (U)) = P c(Z2)− P c(P (U)) = P c(Z2). We then conclude that the infimum of L

with respect to A is zero when

‖P c(Z2)‖∞ ≤ γ, (9.13)

or equivalently that |(Z2)ij | ≤ γ for (i, j) /∈ IA.

The minimized Lagrangian with respect to the primal variables provides us the dual function

g(Z) = log det(S − Z1) + n− 2 tr(Z2)− α tr(Z4)

with the domain constraints:

Z � 0, |(Z2)ij | ≤ γ, for all (i, j) /∈ IA.

The dual problem is the problem of maximizing the dual function which is obtained directly.

Additionally, the conditions (9.12) and (9.11) are the condition of zero gradient of the La-

grangian with respect to X and Ψ (since L is differentiable with respect to these two). Moreover,

from subgradient calculus, the condition (9.13) can be viewed as the condition that zero must be the

one of subgradients of the Lagrangian, since L is nondifferentiable with respect to A. To show the

latter, consider the term in L that involves only A (up to the scaling factor 2) which is equal to

γ
∑

(i,j)/∈IA

|Aij |+ tr(ZT2 A)− tr(UTP (A)) = γ
∑

(i,j)/∈IA

|Aij |+ tr(ZT2 A)− tr(P (U)TA)

by the self-adjoint property of the projection operator P . This term can be further rearranged as

γ
∑

(i,j)/∈IA

(|Aij |+ (Z2)ijAij) +
∑

(i,j)∈IA

((Z2)ijAij − P (U)ijAij) (9.14)

by splitting the sum into two terms, and we can find subgradients of the above expression with respect

Aij separately. The gradient with respect to Aij for (i, j) ∈ IA is (Z2)ij − P (U)ij . Hence, zero



62

gradient condition gives (Z2)ij = P (U)ij for (i, j) ∈ IA. This means the entries in Z2 are free for

(i, j) ∈ IA. The subgradient of (9.14) with respect to Aij for (i, j) /∈ IA is given by

γgij + (Z2)ij

where gij denotes a subgradient of the function f(x) = |x| and gij is any number that |gij | ≤ 1. The

optimality condition that zero must be one of the subgradients gives 0 = γgij+(Z2)ij for (i, j) /∈ IA.

Since |gij | ≤ 1, we have

γ ≥ |(Z2)ij |, ∀(i, j) /∈ IA

which is equivalent to the matrix notation γ ≥ ‖P c(Z2)‖∞ in (9.13). In conclusion, the optimality

conditions can be presented in the following.

KKT conditions for exploratory SEM. If strong duality holds, then X,A,Ψ and Z are optimal if

and only if the following conditions hold.

• Primal feasibility:

(I −A)TΨ−1(I −A) � X, (9.15)

0 ≺ Ψ � αI, (9.16)

P (A) = 0. (9.17)

• Dual feasibility:

Z =

Z1 ZT2

Z2 Z4

 � 0, (9.18)

γ ≥ ‖P c(Z2)‖∞. (9.19)

• Zero gradient of the Lagrangian:

X = (S − Z1)
−1. (9.20)

• Complementary slackness condition:

tr

Z1 ZT2

Z2 Z4

 X (I −A)T

I −A Ψ

 = 0, (9.21)

tr (Z4(Ψ− αI)) = 0. (9.22)
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9.4 Derivation of γmax

The section 4 presents a convex formulation for estimating SEM model in (4.1) where the

sparsity of the optimal path coefficient A can be controlled via the value of the penalty parameter, γ.

In this section, we will show that there exists a critical value of γ, denoted by γmax such that if

γ ≥ γmax

then the optimal solution of A in 4.1 is the zero matrix. This means it is unreasonably recommended

to increase γ arbitrarily in the problem, and we can use γmax as an upperbound of the range of γ used

in order to vary the sparsity patterns of A.

The derivation of γmax is in fact derived from one of the optimality conditions of (4.1) in (9.19)

and it is derived under an assumption that the optimal primal solution is low rank.

If the optimal primal solution has low rank, i.e.,

rank

 X (I −A)T

I −A Ψ

 = n

then it follows from (9.21) that rank(Z) = n and rank(Z4) = n, so Z4 is invertible. This further

implies from (9.22) that Ψ = αI . Since we aim to characterize the condition (9.19) when we obtain

the sparsest solution of A, we set A = 0 in the optimal condition, then the matrix X (I −A)T

I −A Ψ

 =

X I

I αI


has rank n if and only if X = (1/α)I . From (9.20), Z1 = S −X−1 = S − αI . Substitute this in the

slackness condition (9.21) X I

I αI

S − αI ZT2

Z2 Z4

 = 0,

we can solve for Z2 as

Z2 =
1

α
(αI − S),

and (9.13) becomes

γ ≥ 1

α
‖P c(αI − S)‖∞. (9.23)

In conclusion, we have shown that if A = 0 is the optimal solution to (4.1) and the optimal primal

solution has rank n, then (9.23) must be fulfilled. As a result, we can set

γmax =
1

α
‖P c(αI − S)‖∞ (9.24)

as the critical value of γ, in the sense that for any γ ≥ γmax, the optimal solution A must be zero.
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9.5 Conjugate functions

In this part, we provide the derivation of the conjugate function for the functions considered in

this thesis. We recall the definition of the conjugate function as follows.

f∗(y) = sup
x∈dom f

(
yTx− f(x)

)
.

Proposition 3. LetX ∈ Rn×n and IA ⊆ {1, . . . , n}×{1, . . . , n} be an index set. Let f : Rn×n → R
be defined by f(X) =

∑
(i,j)/∈IA |Xij |. The conjugate function of f is

f∗(Y ) =


0, Yij = 0 for (i, j) ∈ IA and max

(i,j)/∈IA
|Yij | ≤ 1

∞, otherwise.

Proof. From the definition of the conjugate function

f∗(Y ) = sup
X

(tr(Y TX)− f(X)), (9.25)

we then characterize the term

tr(Y TX−f(X)) =
∑
ij

YijXij−
∑

(i,j)/∈IA

|Xij | =
∑

(i,j)/∈IA

(YijXij−|Xij |)+
∑

(i,j)∈IA

YijXij . (9.26)

We first note that if Yij 6= 0 for (i, j) ∈ IA then the supremum does not exist because we can set
Xij = 0 for (i, j) /∈ IA and choose Xij = tsign(Yij) for (i, j) ∈ IA and let t → ∞. Therefore, the
condition Yij = 0 for (i, j) ∈ IA must be in the domain of f∗(Y ). Setting this condition in (9.26)
gives

sup
X

(tr(Y TX)− f(X)) ≤ sup
X

∑
(i,j)/∈IA

|Yij ||Xij | − |Xij |

≤ sup
X

∑
(i,j)/∈IA

(
max
ij
|Yij | − 1

)
|Xij |.

If max(i,j)/∈IA |Yij | > 1 then the supremum does not exist again because we can choose X to be zero
in all entries except that Xij = tYij for (i, j)th entry that corresponds to the maximum |Yij | and let
t→∞. If max(i,j)/∈IA |Yij | = 1 then we have that

sup
X

(tr(Y TX)− f(X)) ≤ 0,

i.e., f∗(Y ) is bounded above by zero. Therefore, if max(i,j)/∈IA |Yij | < 1, we can achieve the upper
bound by choosingX = 0 and f∗(Y ) = 0 only when Yij = 0,∀(i, j) ∈ IA and max(i,j)/∈IA |Yij | ≤ 1.

If we apply the notation of projection P in (2.3) and the definitions of matrix norms: ‖X‖1 =∑
ij |Xij | and ‖X‖∞ = maxij |Xij | then the function f and its conjugate can be represented as

f(X) = ‖P (A)‖1, f∗(Y ) =

0, P (Y ) = 0, ‖P c(Y )‖∞ < 1

∞, otherwise.
(9.27)

We note that f is related to the 1-norm of a matrix whose conjugate function is the indicator function
associated with the set of the unit∞-norm ball. The condition in the domain of f∗ is almost like the
unit∞-norm ball with an additional condition on the entries of Y belonging to IA.
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9.6 Projections

In this section, we give the closed form solution to the problem of projecting a matrix A on the

a convex set, i.e., we find the matrix lying on C that is nearest to A measured by the Euclidean norm.

The mathematical formulation of this problem is given by

ΠC(A) = argmin
X∈C

1

2
‖X −A‖2F ,

where ΠC(A) denotes the projection of A on C. For some convex sets, the projection can be given in

an analytical form as follows [21, 33].

Positive definite cone

If C = Sn+ then

ΠC(A) =
∑
i

(λi)
+uiu

T
i (9.28)

where
∑n

i=1 λiuiu
T
i is the eigenvalue decomposition of A, i.e., we discard all the modes correspond-

ing to the negative eigenvalues.

Positive definite cone with an upper bound

For C = {X ∈ Sn | 0 � X � αI } where α > 0 is a parameter, we have

ΠC(A) =
∑
i

min(max(λi, 0), α) uiu
T
i (9.29)

where
∑n

i=1 λiuiu
T
i is the eigenvalue decomposition of A, i.e., we project each eigenvalue of A onto

the interval 0 ≤ λi ≤ α and recompose A with the corresponding eigenvectors.

Affine subspace

For C = {X ∈ Rn×n | Xij = bij for (i, j) ∈ I }, where the index set I and the values

bij ∈ R are given, obviously we have

ΠC(A) =

{
Aij , (i, j) /∈ I,
bij , (i, j) ∈ I.

(9.30)

9.7 MATLAB code of ADMM

For this part, we provide MATLAB codes of functions: my primal CVX() for solving the pri-

mal convex SEM formulation and my sparse SEM() for solving the sparse SEM formulation. These

functions were used in our simulation process in section 7.3 and, in section 7.4, the performance of

ADMM for solving our estimation formulations were also evaluated by the use of these functions.

Each of them contains subfunctions for solving the projection problem so that we would like to firstly

introduce these subfunctions which are described as follows.
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• calpdfA. This function is to find the optimal solution of the projection problem on positive def-

inite cone set which is a problem (6.8) or (6.12) and its solution can be computed as explained

in Appendix 9.6. In the detail, this function performs the eigenvalue decomposition of an input

matrix and discards all modes corresponding to its negative eigenvalues. Codes of this function

are explained below.

function[X] = calpdfA(A)

% example : X = calpdfA(A)

% calpdfA calculates the positive part of A

% A = UDU’ = [U1 U2]*diag(D1,D2)*[U1’; U2’]

% where D1 contains positive eigenvalues of A and

% D2 contains negative eigenvalues of A

%eigen decomp

[U,D] = eig(A);

d = diag(D);

I1 = find(d >= 0);

U1 = U(:,I1);

X = U1*D(I1,I1)*U1’;

• projupperbnd. This function is to find the optimal solution of the projection problem on positive

definite cone set with an upper bound, which is the problem (6.13). Practically, this function

requires an 2n × 2n input matrix and the block (2, 2) of this matrix is performed the eigen-

value decomposition as detail explained in Appendix 9.6. We provide MATLAB codes of this

function as follows.

function[X] = projupperbnd(A,alpha)

% example : X = projupperbnd(A,alpha)

%

% minimize || X - A ||_F

% subject to 0 <= X4 <= alpha*I

% where X = [X1 X2’ ; X2 X4]; alpha is a positive scalar

%

% A is 2n x 2n

% Suppose A(2,2) = UDU’ %% block (2,2) of A

% and D= diag(d1,d2,...,dn)

% We project the eigenvalues of block (2,2) of A into the

% interval (0,alpha) and X4 is obtained by UP(D)U’ where

% P(D) is the projection of eigenvalues

% on the interval (0,alpha)
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dim = size(A,1);

n = dim/2;

TMP = A(n+1:2*n,n+1:2*n);

[U,D] = eig(TMP);

d = diag(D);

PD = diag(min(max(d,0),alpha)); % threhold eigen of A in range

X4 = U*PD*U’;

X = [A(1:n,1:n) A(1:n,n+1:2*n) ; A(n+1:2*n,1:n) X4];

9.7.1 MATLAB code of ADMM for solving the primal convex SEM

This part provides MATLAB codes of a main function used for solving the primal convex

SEM formulation (6.3). The numerical method used in the function is based on ADMM algorithm

corresponding the detail described in section 6.1. These codes are explained step by step below.

function [myX,myval,IterUsed] = my_primal_CVX(S,indA,alpha,Ite)

% this function is to solve primal convex SEM based on ADMM algorithm

% it requires input as follows.

% 1) S : sample covariance matrix

% 2) indA : index (i,j) that A_ij is zero (index of I_A)

% 3) alpha : nomally we use alpha = min(eig(S))

% 4) Ite : the number of maximum iteration

%

% and it returns output as follows

% 1) myX : our solution X = [X1 X2 ; X2’ X4];

% 2) myval : the value of cost objective

% 3) IterUsed : the number of iteration used in the process

% example :

% [myX,myval,IterUsed] = my_primal_CVX(S,indA,alpha,Ite);

n = length(S(1,:)); %computing n (# observed variables)

k=1; %iteration count

E_abs = 1e-6; %absoluite tolerance

E_rel = 1e-6; %relative tolerance

inddiag = find(eye(n));

indoffA = setdiff(indA,inddiag);

%initial : setting U,V,W in its domain

roh = 1+0.1*randn(); %penalty parameter can be changed
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% U >= 0

U = eye(2*n);

U1 = U(1:n,1:n);

U2 = U(n+1:2*n,1:n);

U4 = U(n+1:2*n,n+1:2*n);

% P(V2) = I and V4 = alpha*eye(n)

V1 = zeros(n,n); V2 = eye(n); V4 = alpha*eye(n);

V = [V1 V2’; V2 V4];

%initial : setting the dual variables, Y1 and Y2

Y1 = eye(2*n);

Y1_11 = Y1(1:n,1:n); %block(1,1) of Y1

Y1_21 = Y1(n+1:2*n,1:n); %block(2,1) of Y1

Y1_22 = Y1(n+1:2*n,n+1:2*n); %block(2,2) of Y1

Y2 = eye(2*n);

Y2_11 = Y2(1:n,1:n);

Y2_21 = Y2(n+1:2*n,1:n);

Y2_22 = Y2(n+1:2*n,n+1:2*n);

%start algorithm

while k<=Ite

%update X

if k>1

Xold = X; %keep X before update

end

X2 = (1/2)*((U2+V2)-(1/roh)*(Y1_21+Y2_21));

X4 = (1/2)*((U4+V4)-(1/roh)*(Y1_22+Y2_22));

[eigen_vec eigen_val] = eig(roh*(U1+V1)-(S+Y1_11+Y2_11));

r = diag(eigen_val);

X1_ii = (r + sqrt(r.ˆ2+(8*roh)))/(4*roh);

X1 = eigen_vec*diag(X1_ii)*eigen_vec’;

X = [X1 X2’;X2 X4];

%update U

Uold = U; %keep U before update

U = X+(1/roh)*Y1;

U = calpdfA(U);

U1 = U(1:n,1:n);

U2 = U(n+1:2*n,1:n);

U4 = U(n+1:2*n,n+1:2*n);
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%update V

Vold = V; %keep V before update

TMP_V = X+(1/roh)*Y2;

V1 = TMP_V(1:n,1:n);

V2 = TMP_V(n+1:2*n,1:n); V2(inddiag) = 1; V2(indoffA) = 0;

V4 = alpha*eye(n);

V = [V1 V2’; V2 V4];

%update dual variables, Y1 and Y2

Y1 = Y1+roh*(X-U);

Y1_11 = Y1(1:n,1:n);

Y1_21 = Y1(n+1:2*n,1:n);

Y1_22 = Y1(n+1:2*n,n+1:2*n);

Y2 = Y2+roh*(X-V);

Y2_11 = Y2(1:n,1:n);

Y2_21 = Y2(n+1:2*n,1:n);

Y2_22 = Y2(n+1:2*n,n+1:2*n);

%stopping criterion

if k > 1

%M1 is used for calculating the stopping criterion

M1 = [norm(X,’fro’),norm(U,’fro’),norm(V,’fro’)];

%M2 is used for calculating the stopping criterion

M2 = [norm(Y1,’fro’),norm(Y2,’fro’)];

E_pri = sqrt(4*nˆ2)*E_abs + E_rel*max(M1);

E_dual = sqrt(4*nˆ2)*E_abs + E_rel*max(M2);

r = norm([X-U;X-V]);

s = roh*norm([X-Xold;U-Uold;V-Vold]);

%break function when stopping criterion satisfied

if (r <= E_pri) && (s <= E_dual )

myX = X;

myval = -log_det(X1)+trace(S*X1);

IterUsed = k;

break;

end

end

k=k+1;

end
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9.7.2 MATLAB code of ADMM for solving the sparse SEM

We provide MATLAB codes of a main function used for solving the sparse SEM formula-

tion (6.9) in this section. The numerical method used in the function is based on ADMM algorithm

corresponding the detail described in section 6.2. These codes are given below.

function [X,A,myval,IterUsed] = my_sparse_SEM(S,indA,alpha,gmma,Ite)

% this function is to solve the sparse SEM based on ADMM algorithm

% it requires input as follows.

% 1) S : sample covariance matrix

% 2) indA : index (i,j) that A_ij is zero (index of I_A)

% 3) alpha : we choose alpha small enough to get low rank sol

% 4) gmma or gamma : regularization parameters

% 5) Ite : the number of maximum iteration

%

% and it returns output as follows

% 1) X : our solution X = [X1 X2 ; X2 X4];

% 2) A : our estimated path matrix

% 2) myval : the value of cost objective

% 3) IterUsed : the number of iteration used in the process

% example :

% [X,A,myval,IterUsed] = my_sparse_SEM(S,indA,alpha,gmma,Ite);

n = length(S(1,:)); %computing n (# observed variables)

j=1; %iteration count

E_abs = 1e-6; %absolute tolerance

E_rel = 1e-6; %relative tolerance

R = ones(n,n);

R(indA) = 0;

indAc = find(R==1); %index where A_{ij} = 0

% initial : setting Z,U and V in its domain

roh = max(0.15*n,50); % roh : penalty parameter

%Z s.t. P(Z) = 0;

Z = zeros(n,n);

%U s.t. U >= 0

U = eye(2*n);

%V s.t. 0 <= V4 <= alpha*I

V1 = zeros(n,n); V2 = zeros(n,n); V4 = alpha*eye(n);

V = [V1 V2’; V2 V4];
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%initial : setting dual variables, Y1,Y2 and Y3

Y1 = eye(n);

Y2 = eye(2*n);

Y3 = eye(2*n);

%start algorithm

while j<Ite

%update X

if j > 1

Xold = X; %keep X before update

end

M = (1/2)*(U+V) - (1/(2*roh))*(Y2+Y3);

M1 = M(1:n,1:n); M2 = M(n+1:2*n,1:n); M4 = M(n+1:2*n,n+1:2*n);

H = eye(n) - Z - (1/roh)*Y1;

X2 = (1/5)*(H+4*M2);

X4 = M4;

[eigen_vec, eigen_val] = eig(2*roh*M1 - S);

r = diag(eigen_val);

X1_ii = (r + sqrt(r.ˆ2+(8*roh)))/(4*roh);

X1 = eigen_vec*diag(X1_ii)*eigen_vec’;

X = [X1 X2’; X2 X4];

%update Z

Zold = Z; %keep Z before update

%performing elementwise soft thresholding in Eq 6.11

k = (2*gmma)/roh;

TMP_A1 = (eye(n)-X2-(1/roh)*Y1)-k; TMP_IND = find(TMP_A1 <= 0);

TMP_A1(TMP_IND) = 0;

TMP_A2 = -(eye(n)-X2-(1/roh)*Y1)-k; TMP_IND = find(TMP_A2 <= 0);

TMP_A2(TMP_IND) = 0;

Z = TMP_A1 - TMP_A2; Z(indA) = 0;

%update U

Uold = U; %keep U before update

U = X+(1/roh)*Y2;

U = calpdfA(U);

%update V

Vold = V; %keep V before update

V = X+(1/roh)*Y3;

V = projupperbnd(V,alpha);
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%update dual variables, Y1, Y2 and Y3

Y1 = Y1+roh*(X2+Z-eye(n));

Y2 = Y2+roh*(X-U);

Y3 = Y3+roh*(X-V);

%stopping criterion

if j > 1

%M1 is used for calculating the stopping criterion

M1 = [norm(X,’fro’),norm(U,’fro’),norm(V,’fro’),norm(Z,’fro’)];

%M2 is used for calculating the stopping criterion

M2 = [norm(Y1,’fro’),norm(Y2,’fro’),norm(Y3,’fro’)];

E_pri = sqrt(4*nˆ2)*E_abs + E_rel*max(M1);

E_dual = sqrt(4*nˆ2)*E_abs + E_rel*max(M2);

r1 = norm([X-U;X-V]);

r2 = norm(X2 + Z - eye(n));

s1 = roh*norm([X-Xold;U-Uold;V-Vold]);

s2 = roh*norm(Z-Zold);

%break program

if (r1 <= E_pri && r2 <= E_pri) && ...

(s1 <= E_dual && s2 <= E_dual)

X = X;

A = Z;

myval = -log_det(X1)+trace(S*X1)...

+2*gmma*sum(abs(Z(indAc)));

IterUsed = j;

break;

end

end

j=j+1;

end
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