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A capital structure describes the proportions of debt and equity used by a firm as different
sources of funds. Financial leverage ratios are the measures of capital structure. The determinants of
capital structure are used to explain the measures of capital structure, for example, growth, volatility,
profitability, non-debt tax shields, collateral value of assets, and industry classification. These de-
terminants of capital structure are typically regarded as latent variables since they cannot be directly
observed, but can be explained by some observed variables which are the causes of determinants of
capital structure. Since the capital structure relates to a firm’s performance, studying a relationship
among these variables is significant for the capital structure management. The relation among vari-
ables in the capital structure can be explained by a Multiple Indicators Multiple Causes (MIMIC)
model which is simply a multivariate regression equation where latent variables are explained by
both effects and causes from observed variables, i.e., the measures and causes of determinants of
capital structure. In general, one can preliminarily include all possible latent variables in the model
but they may contain both relevant and irrelevant latent variables. Consequently, a reduction of those
ineffective latent variables can reduce the variance of estimated model parameters for an exploration
of a true relationship between the measures of capital structure and their determinants. This thesis
proposes two estimation formulations: a latent variable selection and an estimation of the reduced
MIMIC model after eliminating ineffective latent variables. The problem of latent variable selection
is a least-squares problem with a 1-norm penalty to induce a zero structure in the model which fur-
ther describes ineffective latent variables. The second formulation is a least-squares problem with
linear constraints. The proposed problems are biconvex and we apply the alternating minimization
to solve for numerical solutions. In each step of alternating minimization, the optimization problems
are convex having a form of group lasso and linear least-squares problems which can be solved by
many existing efficient numerical algorithms. Since our formulations provide a set of models whose
relationship structures vary upon the regularization parameter, we apply model selection criterions to
select an appropriate model based on preferences and objectives of users. The performance of the pro-
posed formulations is demonstrated via simulation experiments. The results show that our proposed
method can remove ineffective latent variables more correctly than methods based on least-squares
when true model is sparse. We apply our estimation formulations to applications of the capital struc-
ture from seven industries in the North America. All model selection criterions totally agree that
growth is the most important determinant of capital structure; in contrast, volatility is an insignificant
factor. The results from our work are compared to two main capital structure theories: the trade-off
theory and pecking-order theory. The directions of relationships between debt ratios and i) growth ii)
uniqueness, and iii) non-debt tax shields are consistent with the trade-off theory while the direction
between the debt ratios and profitability is consistent with the pecking-order theory.
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CHAPTER I

INTRODUCTION

1.1 Introduction

A capital structure tells us how a firm operates its capital for running the business based on

debt and equity by using different sources of funds, e.g., loans from financial institutions, bonds,

shares, etc. Management of the capital structure of a company is very significant since it relates to

the performance of corporation; moreover, it also affects to the main objective of the company that

is to maximize the profit. The fund of the company comes from debt and equity. The corporation

tries to find a right balance between the two to minimize bankruptcy with the optimal capital struc-

ture [Modigliani and Miller, 1958]. The company can be in trouble and may go bankrupt if the firm

chooses capital structure inappropriately. On the other hand, the company can enlarge its firm market

value if the cost of capital is reduced. Consequently, studying the determinants of capital structure is

extremely significant in the sense that it has an influence to a proportion of debt and equity on capi-

tal structure and promotes a firm’s administrator to make an optimal decision about capital structure

based on characteristics which are related to debt and equity financing. However, the theoretical de-

terminants of capital structure are sometimes determined by unobserved factors that illustrate abstract

concepts in each attribute. Unobserved factors cannot be directly observed but they are explained by

some observed factors which have characteristics as same as in the unobserved factors.

In order to manage the capital structure, a relationship between measures and determinants of

capital structure is needed. The measures of capital structure are related to financial leverage ratios,

e.g., long-term debt, short-term debt, and convertible debt divided by market or by book values of

equity. Growth, volatility, profitability, non-debt tax shields, collateral value of assets, industry clas-

sification which are abstract concepts and cannot directly be observed are considered to be examples

of the determinants of capital structure. These abstract concepts are explained by some observed

factors; for example, profitability (unobserved variable) is explained by operating income-to-total as-

sets ratio and operating income-to-total sales ratio (observed variables). Since unobserved variables

are induced to the model and under an assumption that variables in the model are explained in the

multiple linear regression, Structural Equation Modeling (SEM) is a popular method to estimate the

relationship among variables.

Structural Equation Modeling (SEM) is a statistical modeling procedure that is widely used

to find a causal relationship among variables. This method is divided into two types: exploratory

and confirmatory modeling. To search for a structure of a statistical causal model, the exploratory

modeling is applied and the confirmatory modeling is used to verify whether a model is promoted by
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a sample of data or not. When there is no significant theoretical information to support the model,

one can start applying exploratory factor analysis (EFA) to a model for seeking the number and the

feature of unobserved variables, i.e., exogenous and endogenous variables by using given observa-

tions. After the model is proposed, confirmatory factor analysis (CFA) is applied for testifying the

model constructed by EFA with another set of observations. There are two types of random vari-

ables in this model that are observed variables and latent variables. The variables which are directly

measured and can extrapolate the unobserved variables are defined as observed variables. On the

other hand, latent variables are indirectly measured but they are extrapolated from observed variables

[Lomax and Schumacker, 2012, §5]. In measurement models, the latent variables that demonstrate

highly abstract concepts, e.g., anxiety, intelligence, happiness, merge physical realities which can be

observed, e.g., age, weight, pressure, to a single term [Bollen, 2014, §6]. One constructs the latent

variables based on the idea of the similarity of physical variables since each latent variable combines

common characteristics of their observed variables. For example, operating income-to-total assets

ratio and operating income-to-sales ratio are the ratios (observed variables) that represent the concept

of profitability of a firm (latent variable).

Since latent variables may be constructed in the model, their signification should be explained

by the relationship among observed variables that may present as both effects and causes of latent vari-

ables or either one of the two [Jöreskog and Goldberge, 1975]. Multiple Indicators Multiple Causes

model or MIMIC model, a special type of SEM model, is suggested to explain this type of causal

model. In MIMIC model, the multiple indicators are the observed outcome variables determining the

latent variables in the multiple linear regression. Besides, the multiple causes are mentioned to the

multiple predictors of latent variables that are also explained in the multiple linear regression (see the

path diagram of MIMIC model in Figure 1.1. MIMIC model was first proposed in 1975 by [Jöreskog

and Goldberge, 1975] and they apply the maximum-likelihood in order to estimate the parameters in

MIMIC model with a single latent variable and this model is improved with multiple latent variables

by [Stapleton, 1978].

The mathematical representation of a MIMIC model is given by

η = BTx+ εη (1.1)

y = Aη + εy (1.2)

where observed variables x ∈ Rp and y ∈ Rq are causes and indicators of latent variable η ∈ Rr,

respectively. A =
[
A1 · · · Ar

]
∈ Rq×r and B =

[
B1 · · · Br

]
∈ Rp×r are the coefficient

matrices that show the relation of y to η and η to x, respectively. εη ∈ Rr is the disturbance of η

and εy ∈ Rq is the measurement error of y. Note that x, εη, and εy are assumed to have a normal

distribution and x is independent of εη and εy.
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Figure 1.1: Path diagram of a MIMIC model.

An example of MIMIC model applied to a capital structure research can be found in [Titman

and Wessels, 1988]. In their research, y, the firm’s debt-equity choices, is explained by η, the deter-

minants of capital structure which is measured by x. They denote latent attribute η to be non-debt tax

shields, growth, uniqueness, industry classification, size, earning volatility, and profitability; further-

more, the measure of capital structure, y, is given by short-term debt, long-term debt, and convertible

debt divided by market and by book value of equity.

[Titman and Wessels, 1988] use SEM to explore the relationship among observed and latent

variables, A and B. Since there are too many latent variables compared to observed variables, they

have to add more constraints to get an identifiable model. An effect from adding more constraints

to the model leads to an estimated solution that misses the relevant relations to its true value, i.e.,

the estimator from constrained problem is more biased than the estimator from an unconstrained

problem. They suggest that the results can be developed by finding variables which have a stronger

linkage between observed and latent variables.

To solve the problem in [Titman and Wessels, 1988], [Chang et al., 2009] apply the reduced

form of MIMIC model that comes from substituting (1.1) into (1.2). The reduced form of MIMIC

model is given by

y = A(BTx+ εη) + εy = ABTx+Aεη + εy = Fx+ ε (1.3)

where F = ABT and ε = Aεη + εy. Instead of using model (1.1) and (1.2) to find A and B,

[Chang et al., 2009] use the reduced form of MIMIC model (1.3) to find F which is defined as

the indirect effect between x and y while neglecting the effect from latent variables. To interpret a

relation between η and y, they first read off the relationship between x and y represented by F . Then,

they calculate the relative impact, i.e., a standardized total effect of y for each x (the calculation is

provided in the section 5.2.2). After that, they sort such relative impact in descending order. Under

the assumption of knowing that each η is explained by some x’s, they consider that the most effective

relative impact of x (in each η) to y can be interpreted as the relative impact of such η to y. For

example, η1 is explained by x1 and x2, and η2 is explained by x3, x4 and x5. Suppose the relative

impact of x in descending order is sorted by x1, x3, x4, x5 and x2, respectively. According to [Chang

et al., 2009] ’s interpretation, η1 (effect form x1) is more effective than η2 (effect form x3). However,
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in fact, η2 may have more influence than η1 if effects from x4 and x5 are considered. Consequently,

this scheme may not work in the sense of neglecting effect from other x’s in each η. Considering the

most effective relative impact of x (in each η) to y, then assuming that it is the relative impact of such

η to y may lead to wrong interpretation since it lacks information of other x’s in each η.

In general, estimation of MIMIC model is to search for A and B of model (1.1) and (1.2).

However, a limitation of estimation A and B is that typical methods lead to non-uniqueness solu-

tions; therefore, more constraints are added in the model in order to get an identifiable model. As a

result, many estimated coefficients are biased from their true value [Stapleton, 1978,Dell’Anno et al.,

2007, Gallo et al., 1994]. Consequently, estimation of F in the reduced form of MIMIC model (1.3)

is considered because the number of parameters in the model is less and it is possible to get an iden-

tifiable model. Nevertheless, F which represents the indirect effect between x and y is unclear to

interpret the relation between latent and observed variables. Accordingly, interpretation of results

from A and B are preferred to F because they provide the direct relationship among latent and ob-

served variables.

Since many possible latent variables can be added to the model from a viewpoint of investigator,

in other words, the capital structure can be explained by many determinants or latent factors which

may contain some irrelevant latent variables, a latent variable reduction is very useful for estimating

the true relationship between capital structure and its determinants. There are many techniques for

latent variable reduction, e.g., regularization techniques, sequential selection; moreover, each method

provides different benefits and drawbacks that are discussed in section 3.4. Therefore, we propose

a scheme to select significant latent variables. We apply a regularized least-squares for removing

insignificant latent variables (η) which affect all components of y based on the model (1.2). In other

words, we ignore eliminating latent variables which affect each yj individually but we are focusing

on removing latent variables that simultaneously hardly influence overall y , i.e., we do not consider

η and y as scalar but we consider them as vectors. Then we estimate A and B based on remaining

highly efficient latent variables. Knowing coefficient matrices A and B provides us some ideas about

the relative importance among the determinants. After A and B are estimated we rank the relative

impact of the determinants of capital structure, then we can notice how much each determinant affects

debt-to-equity ratios which are measures of the capital structure. Note that we do not directly use

coefficient matrices A and B for quantitative analysis. In other words, we do not try to estimate debt-

to-equity ratios estimation nor do we try to estimate how much we finance according to each observed

predictor ratio since there are other factors that affect capital structure management, but knowing a

relative impact of the determinants of capital structure is very beneficial for a future capital structure

management. Two main theories that attempt to explain capital structure decision are the trade-off

theory and the pecking order theory that are discussed in section 2.1.
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1.1.1 Assumptions

Under our conditions that the zero structure of A and B is given by Figure 1.2, each of latent

variable, ηk, k = 1, . . . , r affects all yj , j = 1, . . . , q and each ηk is explained by some xi, i =

1, . . . , q. A relationship between each η and X is expressed by ηk = bTk x + εηk , i.e., row vector in

BT provides the relationship from X to η. According to zero structure of B, each η is not influenced

from all x’s so row vectors in BT are not dense vectors. For example, according to the Figure 1.2, for

zero structure of B, x1 to x6 have an influence to η1 so only coefficient elements b11 to b61 in B are

nonzero. On the contrary, there is no zero structure in A, i.e., A is dense since all η’s explain all y’s.

In this work, there are three assumptions as follows:

• MIMIC model (1.1) and (1.2) are static models, i.e., the model states at specific time instance.

• A relation among observed and latent variables is constructed as a linear model.

• The structure of A and B is given by Figure 1.2 based on researchers’ prior knowledge about

capital structure.

1.1.2 Objectives

• To estimate A and B that are the direct effect between observed and latent variables in MIMIC

model (1.1) and (1.2).

• To present a scheme to select significant latent variables.

To reach our objectives, we need to achieve two main processes:

1. To select significant latent variables: a number of columns of A and B are a number of latent

variables involved in the model suggested by researchers. Such latent variables may contain

irrelevant latent variables leading to more variance of solutions. Consequently, we aim to de-

crease the number of latent variables (r) to m remaining highly significant latent variables,

in other words, we reduce columns of A and B from r to m. Obviously, when some latent

variables are removed, x related to such removed latent variables are also deleted, saying that

variables in x and rows of B are reduced from p to p̃.

2. To estimate A and B based on remaining latent variables: we will find the coefficient matrices

A ∈ Rq×m and B ∈ Rp̃×m representing directly the relationship between observed and latent

variables instead of using F ∈ Rq×p in order to obtain the stronger interpretation of solutions.
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Figure 1.2: Path diagram of MIMIC model illustrates the relationship among variables in capital
structure and shows structure of A and B in our work.

1.1.3 Scope of thesis

• Provide a scheme to identify effective determinants of capital structure.

• Provide a formulation that selects highly effective latent variables and a formulation for esti-

mating the reduced MIMIC model.

• Provide numerical methods for solving the two proposed formulations.

• Apply our formulations to real application data and interpret the results.

1.1.4 Expected results

• Estimation formulations of MIMIC model to identify effective determinants of capital structure.

• Numerical methods for solving the two proposed formulations.
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1.1.5 Thesis Outline

Our thesis is organized as follows. Chapter 2 explains the background on capital structure, in-

cluding, capital structure decision, explanation about measures and determinants of capital structure

and also a relationship of variables in capital structure. A background on MIMIC model is described

in chapter 3. Section 3.2 provides the background of MIMIC model estimation techniques, especially

for regularization least-squares estimation which is a fundamental of reducing variables in a model

and applied in our work. Section 3.3 explains other alternative methods for MIMIC model estimation

via the matrix factorization which could be omitted if readers are familiar with this approach. The

methodologies consisting of latent variable selection and least-squares estimation for reduced MIMIC

model are stated in chapter 4. Moreover, model selection and numerical methods are provided. Chap-

ter 5 presents experimental results from simulation process including illustration of latent variable

selection and performance evaluation. Moreover, we apply our formulation to real data from seven

industries in the North America and provide results interpretation. Lastly, the conclusion of this work

is shown in chapter 6.



CHAPTER II

BACKGROUND ON CAPITAL STRUCTURE

This chapter demonstrates background on capital structure including capital structure decision,

measures and determinants of capital structure, and relationships of variables in capital structure. In

this work, we use seven debt-to-equity ratios to be the measures of capital structure consisting of debt-

to-equity ratios which are total debt divided by total equity, long-term, short-term, and convertible

debt divided by market and by book value of equity as provided in [Titman and Wessels, 1988].

Besides, the determinants of capital structure provided in [Chang et al., 2009] consist of seven latent

variables, including, growth, uniqueness, non-debt tax shields, collateral value of assets, profitability,

volatility, and industry classification and each of the latent variable can be approximated by some

observed variables. First of all, in order to understand materials easier, we have to know the basic

accounting equation:

Assets = Liability + Owner’s Equity (2.1)

where assets are resources of a firm or things that the firm owns, e.g., cash, land, buildings, inventory,

etc. Liability is an arrangement between a firm and debt holders to borrow money under the condi-

tion that the firm will repay the principal with interest at the certain maturity. Equity that expresses

ownership of the firm is the value of assets minus the cost of the liabilities.

2.1 Capital structure decision

Capital structure describes how a firm finances its assets through equities and long term debts.

Sources of capital structure funds consist of internal funds, e.g., profitability, depreciation, and ex-

ternal funds, e.g., loans from financial institutions, bonds. Since capital structure affects overall

operations of a firm, managers select capital structure which generates the highest firm value since

firm’s shareholders will gain the most profit from such capital structure [Hillier et al., 2010].

[Modigliani and Miller, 1958] convince that changing a firm’s capital structure does not have

an influence on the firm value in a perfect capital market. In other words, in the world without taxes,

the value of the levered and unlevered firm are not different. However, when taxes are induced,

[Modigliani and Miller, 1963] dispute that capital structure becomes relevant to firm value due to

tax savings from debt. When debt financing is used, bankruptcy costs, transactions costs, and taxes

are created and always interpreted by the two main theories of capital structure, i.e., the trade-off

theory and the pecking order theory. These two theories attempt to describe a financial decision of

a firm. The trade-off theory chooses an optimal capital structure based on a balance between debts

and equities by trading off the benefits of debt (taxes reduction) against the costs of debt (bankruptcy
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costs) [Frank and Goyal, 2011]. As debt increases, risk of a firm raises; however, the expected return

grows up as well. On the other hand, the pecking order theory claims that because of the costs of

information asymmetry, insiders have more information about investment opportunities, return, risk,

and value of the firm than outsiders. Accordingly, financing of a firm will come from internal funds

as the first priority, then debt and followed by an issue of new equity [Myers, 1984].

The two well-known optimal capital structure theories, the trade-off theory and pecking order

theory, hypothesize that capital structure which is expressed by leverage level is affected by some

unobserved determinants. The quantity of funds that a firm aims to borrow from financial institutions

or investors depends on changes of determinants of capital structure. In order to determine the firm’s

capital structure, determinants of capital structure should be recognized since they have an influence

on an appropriate proportion of debt and equity on capital structure. Table 2.1 shows the theoretical

prediction of direction-relation between debt ratio and determinants of capital structure from the

trade-off theory and the pecking-order theory [Mazur, 2007].

Table 2.1: Predicted relationship between debt ratio and latent variable. Note that + shows a positive
relationship, - shows a negative relationship, and blank space shows that relation is not provided in
the theory.

Determinants of capital
structure

The trade-off theory The pecking order theory

Assets structure + -

Profitability + -

Growth - +

Liquidity + -

Size + +/-

Uniqueness -

Business risk -

Non-debt tax shields -

Business risk -

Dividend policy +
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The comparison of the direction-relation between empirical results and the theoretical results

provides an explanation of firms’ financing behavior. It is beneficial to policy makers in the sense

that they obtain a policy guide to determine a suitable policy to decrease bankruptcy and information

asymmetry problems [Bany-Ariffin and Jr, 2012]. In this work, we provide an empirical relationship

between debt ratios and determinants of capital structure from our formulation applied to real data in

section 5.4.

2.2 Measures of capital structure

Since the capital structure expresses debt and equity trade-off of the firm that is described by

debt-to-equity ratios [Swanson et al., 2003], in this work, we apply debt-to-equity ratios to be the

measures of capital structure. The debt-to-equity ratios we consider here are total debt divided by

total equity, long-term, short-term, and convertible debt divided by market and by book value of

equity as summarized by [Titman and Wessels, 1988].

Short term debts, e.g., short-term bank loans, accounts payable, and long term debts, e.g., notes

payable, bonds payable, are debts that their maturity for repaying principal with interest dues within

one year and more than one year or beyond the current business year, respectively. Convertible debt

is a bond that can be converted to stock. Firms issue this bond to avoid the situation where the

market comprehends an overvalued perspective of the firm’s stock price when the firm decides to

issue stock [Whitehurst, 2003].

The market value of equity can be measured by market capitalization which is a product of the

number of outstanding shares of the firm and a current share price. The book value of equity is the

value of business based on equity of stockholders in a financial statement. It is equal to a difference

between assets and liabilities of a firm. In general, since the market value of equity does not express

capital resources of the firm, financial institutions do not lend money based on market value of equity;

however, it is beneficial for investors to notice the development and size of the firm.

The performance of the firm is indicated by debt-to-equity ratios in the sense of evaluating a

firm’s potentiality for repaying a commitment. Low debt-to-equity ratios (less than one) are preferred

for investors since this means equity is greater than debt, i.e., greater protection to their business.

Conversely, investors do not prefer high debt-to-equity ratios (greater than one) because equity is less

than debt. Knowing what causes affect debt-to-equity ratios is beneficial for a firm to manage the

capital.
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2.3 Determinants of capital structure

In order to determine a decision for capital structure, firms need to recognize the determinants

of capital structure. The theoretical determinants of capital structure are sometimes determined by

unobserved factors that illustrate abstract concepts in each attribute. Latent variables cannot be di-

rectly observed but they are explained by some observed variables which have characteristics as same

as in the latent variables. The capital structure choice is influenced by determinants of capital struc-

ture that are derived from various theories such as the trade-off theory and the pecking order theory.

In this work, we apply seven determinants of capital structure that are growth, uniqueness, non-debt

tax shields, collateral value of assets, profitability, volatility, and industry classification following the

summary in [Chang et al., 2009]. The following section will concisely explain the definition of each

determinant and its effect on the capital structure choice.

Growth

Growth is really a meaningful factor to determine the capital structure since to reach the pro-

poses of firms, firms have to grow up which is related to capital decision-making. Because of more

investment opportunities, growth firms tend to demand higher fund and external financing, leverage,

is always used. Because high growth firms have high cash flow volatility, leverage ratios from their

business should be reduce over a period of time leading have a negative relation between growth and

debt-ratios. Since MBA, MBE are commonly used to illustrate growth of firms; moreover, cash flow

is represented by capital expenditures and research and development, RD/S, CE/TA, GTA, MBA,

MBE, and RD/TA are applied to measure the growth of a firm.

• Research and development/sales (RD/S)

Research and development is a fund provided by a firm in order to improve existing products

and systems of the firm for obtaining new and better products. RD/S that is the proportion of

research and development to sales illustrates the percentage of the fund which the firm uses in

developed activities to total sales.

• Capital expenditure/total assets (CE/TA)

Capital expenditure is a budget which is used to do new projects for improving the performance

of a firm, for example, developing the physical assets, e.g., equipment, buildings, properties.

CE/TA indicates how much capital expenditure the firm uses compared with the firm’s the total

assets.

• Percentage change in total assets (GTA)

GTA demonstrates a change of a firm’s assets over period of time we considered since the

assets of a firm are sold and bought overtime. The higher GTA shows the more profits a firm

can generate.



12

• Market-to-book assets (MBA)

MBA is the ratio of market value of assets and book value of assets. The interpretation of this

ratio is that i) MBA is less than one: the current value is less than the started value of a firm, i.e.,

the worth of a firm is considered to be undervalued, ii) MBA is greater than one: the current

value is greater than the started value of a firm, i.e., the worth of a firm is considered to be

overvalued, and iii) MBA is equal than one: the worth of a firm cannot be interpreted that it is

better or worse than the started value.

• Market-to-book equity (MBE)

MBE is the ratio of market value of equity and book value of equity. The interpretation of this

ratio is the same as MBA.

• Research and development-to-assets ratio (RD/TA)

RD/TA that is the proportion of research and development to total assets illustrates the percent-

age of funds which a firm uses in developed activities to total assets.

Uniqueness

[Titman and Wessels, 1988] state that firms’ liquidation decision and its bankruptcy status are

correlated, therefore, liquidation costs is meaningful to capital structure of the firm. When firms with

high level of uniqueness liquidate, customers, workers, and suppliers, respectively, will be difficult to

find other alternative products, jobs, and buyer, respectively. This is the reason why debt ratios and

uniqueness are expected to have negatively related. To measure the uniqueness of products, RD/S is

considered.

• Research and development/sales (RD/S)

Research and development is a fund provided by a firm in order to improve existing products

and systems of the firm for obtaining new and better products. It can measure the uniqueness in

the sense that firm RD/S that is the proportion of research and development to sales illustrates

the percentage of the fund which the firm uses in developed activities to total sales. It can

measure the uniqueness in the sense that the firm with high research and development can

always provides new and unique products.
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Non-debt tax shields

Non-debt tax shields are a reduction in income taxes due to non-debt quantity, e.g., depreciation

expenses, investment tax credits. If non-debt tax shields are large, a firm will have the less debt in

capital structure due to the tax benefits of debt financing [DeAngelo and Masulis, 1980]. Besides,

[Fama and French, 2002] and [Berger et al., 1997] apply depreciation and investment tax credits,

respectively, to represent non-debt tax shields. Consequently, NDT/TA, ITC/TA, and DEP/TA are

applied to be indicators of non-debt tax shields.

• Non-debt tax shields/total assets (NDT/TA)

NDT/TA illustrates the percentage of non-debt tax shields to the total assets of a firm.

• Investment tax credit/total assets (ITC/TA)

Investment tax credit is an amount of money that is approved by the government to reduce taxes

from investment of a firm so that the firm can use such amount of money to reinvest. ITC/TA

expresses the percentage of investment tax credit to the total assets of the firm.

• Depreciation/total assets (DEP/TA)

Depreciation is the decrease in value of tangible assets that has been run out over time, it does

not indicate a cash transaction. DEP/TA shows the percentage of depreciation to the total assets

of a firm.

Collateral value of assets

Collateral value of assets expresses the estimation of loan collateral that affects capital struc-

ture. The more collateral value of assets, the more debt that the firm wants to issue in order to take

advantage of the low cost [Myers and Majluf, 1984]. Since inventory, gross plant, and equipment are

consider to be collateral value of assets of the firm, IGP/TA is applied to be the indicator of collateral

value of assets.

• (Inventory + gross plant and equipment)/total assets (IGP/TA)

IGP/TA illustrates the proportion of uneasily liquidated properties, e.g., inventory, gross plant,

and equipment, to total assets.
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Profitability

Profitability is a potentiality of a firm to generate profit which is an important factor to deter-

mine capital structure. [Booth et al., 2001] argue that growth of a firm is financed by its profitability

which comes from maintaining income as fixing debt ratios to be constant. Consequently, a firm with

less profitability will be forced to use debt financing. According to their work, ten developing coun-

ties with low debt can generate high profitability. OI/TA and OI/S are considered to be the indicators

of profitability.

• Operating income/total assets (OI/TA)

OI/TA demonstrates how operating income from business operation that a firm can create based

on total assets investment.

• Operating income/sales (OI/S)

OI/S shows return on sales, i.e., the percentage of operating income that a firm can generate

based on the total value of sales.

Volatility

Volatility expresses earning variability of firms. An optimal debt level of a firm and its volatil-

ity of earning are negatively related since firms with high volatility are always revealed agency and

bankruptcy costs leading to not completely use benefits of debt in the capital structure [Bradley

et al., 1984]. Four observed factors illustrating volatility are STDGOI, CV(ROA), CV(ROE), and

CV(OITA).

• Standard deviation of the percentage change in operating income (STDGOI)

STDGOI indicates variability from operating income that is realized profit from an operation

that is eliminated by operating expenses.

• Coefficient of variation of return on asset (CV(ROA))

CV(ROA) illustrates the dispersion of ROA which is the proportion of net income to total asset.

It shows how much profit firms can generate from their total asset.

• Coefficient of variation of return on equity (CV(ROE))

CV(ROE) shows the dispersion of ROE which is the proportion of net income to shareholder’s

equity. It represents how much profit firms can generate from shareholder’s equity of such

firms.

• Coefficient of variation of operating income divided by total assets (CV(OITA))

CV(OITA) represents the dispersion of operating income divided by total assets. It illustrates

how much operating income firms can generate from their total asset.
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Industry

Industry of firms influences how the firms manage their capital structure. [Titman, 1984] state

that high cost of liquidation is found in firms that produce equipment and machine, therefore, these

firms are less to finance with debt. two-category dummy variable (IND) is used to separate industry

classification. IND is equal to one for firms that produce equipment and machine, and equal to zero

otherwise.

• Two-category dummy variable (IND)

In this research, the dummy variable IND is equal to one for firms that produce equipment and

machine, and equal to zero otherwise.

2.4 Relationships of variables in capital structure

As we mentioned, determinants of capital structure affect a proportion of debt and equity on

capital structure; thereby, studying the relationship between measures and determinants of capital

structure is significant in the sense that it helps managers to perform an appropriate capital struc-

ture decision. This section provides literature reviews about techniques for finding the relationship

between measures and determinants of capital structure.

Ordinary least squares (OLS) method is generally applied to search for the relationship bet-

ween measures and determinants of capital structure under the assumption that each determinant of

capital structure (latent variable) is explained by a single observed variable. For example, [Dee-

somsak et al., 2004] investigate the determinants of capital structure of firms operating in the Asia

Pacific region, in four countries, including, Thailand, Malaysia, Singapore and Australia. They ap-

ply firm leverage to be the dependent variable and predictors consist of the tangibility, profitability,

firm size, growth opportunity, non-debt tax shield, the liquidity, earnings volatility/risk, share price

performance. [Matemilola et al., 2013] examine the significance of latent variables in firm-specific

effects. They apply total debt and long term debt to be measures and fixed assets, profit, size, growth

opportunity, and non-debt tax shield to be determinants of capital structure. [Hardiyanto et al., 2015]

investigate determinants of capital structure and ownership in public listed companies in Indonesia

by using debt/asset ratio as a measure of capital structure and its determinants are total assets, fixed

assets, tax shield from interest expenses, net cash flow volatility, interest expenses, and intangible

assets. [Serghiescu and Văidean, 2014] also examine the determinants of the capital structure de-

cisions for Romanian firms listed by applying debt/asset ratio as measures of capital structure and

profitability, size, tangibility of the assets, liquidity of the assets, and asset turnover as determinants.
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However, using OLS method faces many problems such as multicollinearity in predictor vari-

ables and violation of error assumptions, e.g., error of variables may be correlated. [Titman and

Wessels, 1988] specify issues for applying OLS as follows: i) sets of latent variables induced by re-

searchers are not unique so they select variables based on statistical goodness-of-fit criterions leading

to bias explanation, ii) the representation of a single observed variable to each latent variable is im-

perfect since, in fact, there are many observed variables which fulfill a latent variable representation,

and iii) the disturbance of dependent and independent variables may be correlated.

Consequently, they apply SEM approach to find a relationship between measures and deter-

minants of capital structure since SEM allows theoretical determinants to have several observable

variables as indicators without multicollinearity problems; moreover, this technique can control mea-

surement error. However, there are too many latent variables compared to observed variables; as a

result, they have to add more constraints to get an identifiable model leading to an estimated solution

that misses the relevant relations to its true value and many coefficients that indicates the relationship

among observed and latent variables are statistically insignificant. They suggest that the results can

be improved by finding variables which have stronger linkage between observed and latent variables.

To solve the problem in [Titman and Wessels, 1988], [Chang et al., 2009] apply the reduced

form of MIMIC model (1.3) to find the relationship between indicators and causes of determinants of

capital structure but this scheme may not work in because it neglects the effect from latent variables.

They rank a relative impact between x and y and assume that the most effective x in each η shows the

relationship between such η and y. Consequently, we propose two formulations to estimate A and B

from reduced MIMIC model and remove some ineffective latent variables. The detail is provided in

section 4.



CHAPTER III

BACKGOUND ON MIMIC MODEL

This chapter provides background on MIMIC model including MIMIC model identifiability

that explains uniqueness of model parameters, MIMIC model estimation that shows various ways

of parameters estimation in the MIMIC model, and latent variable reduction which provides some

methods to remove ineffective latent variables in the model.

3.1 MIMIC model identifiability

When a MIMIC model is proposed, the uniqueness of model parameters in implied covariance

matrix of x and y of the model based on sample covariance matrix should be identified. This section

explains the identifiability of MIMIC model about how to conclude the uniqueness of model parame-

ters and some restrictions for model identification which can be added when the model is not unique.

Firstly, we describe implied covariance matrix to investigate the structure of model parameters.

Implied covariance matrix

The model implied covariance matrix, Σ, for x and y written as a function of free model

parameters in θ is derived form (1.3) as

Σ =

Σxx Σxy

Σyx Σyy

 =

 E[xxT ] E[x(Fx+ ε)T ]

E[(Fx+ ε)xT ] E[(Fx+ ε)(Fx+ ε)T ]


=

 Φ ΦF T

FΦ FΦF T + Ψ

 =

 Φ ΦBAT

ABTΦ ABTΦBAT +AΨηA
T + Ψy

 (3.1)

where Φ is the covariance matrix of x and Ψ is the covariance matrix of ε. Additionally, Ψη and Ψy

are covariance matrices of εη and εY , respectively [Bollen, 2014, §4].

Given the sample covariance matrix of (x,y) which can be calculated from observations, sample

covariance (S) is partitioned as

S =

Sxx Sxy

Syx Syy


When we match the sample covariance, S, to the implied covariance matrix, Σ, that we get

from MIMIC model, the sample covariance matrix which can be observed is the function of the para-

meters and perfectly estimated since the best estimator of Σ is S. In this case, we obtain
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S = ΣSxx Sxy

Syx Syy

 =

 Φ ΦF T

FΦ FΦF T + Ψ

 =

 Φ ΦBAT

ABTΦ ABTΦBAT +AΨηA
T + Ψy

 (3.2)

According to (3.2), if Φ, F,Ψ are the model parameters with condition S = Σ(F,Φ,Ψ), the

unique explicit solutions are obtained as below:

Φ = Sxx

F = SyxSxx
−1

Ψ = Syy − Sxx−1SxySyx.

(3.3)

To examine the model identification when Σ = S is to consider two vectors of unknown parame-

ters, θ1 and θ2, then construct the implied covariance matrices, Σ1 and Σ2. If the model is identified,

then for Σ1 = Σ2, θ1 = θ2. If Σ1 = Σ2 and θ1 6= θ2, then the model is unidentified [Bollen,

2014, §4].

In order to be easy to understand, we utilize the value of degree of freedom (df ) that is denoted

as below [Raykov and Marcoulides, 2012, §1]:

df = the number of equations relating the elements of the sample covariance matrix, S

- the number of parameters in implied covariance matrix, Σ
(3.4)

The necessary condition for model identification is nonnegative df , i.e., when the model is

identified, df is nonnegative because the sample covariance matrix, S, provides enough information

to solve for the parameters. In contrast, if the model is unidentified, then df is negative since Σ

contains more parameters than equations that leads to a lack of information in the sample covariance

matrix, S [Raykov and Marcoulides, 2012, §1].

According to (3.2), for θ = (F,Φ,Ψ), the positive df is provided, i.e., the number of equations

are not less than the number of parameters. In sum, F is obtained as (3.3). On the other hand, for θ =

(A,B,Φ,Ψη,Ψy), there is extremely high chance which the number of equations that is (p+q)(p+q+1)
2

are less than the number of unknown parameters, Ψ, A,B, εη and εy, that leads to negative df , so this

situation provides the non-uniqe solution of the unknown parameters.

When the unidentified model happens, we cannot interpret the value of parameters; conse-

quently, two common ways to restrict necessary for providing nononegative df are i) setting some

parameters to zero or some constant in order to reduce the unknown parameters, in other words, to

change the model to have positive df and ii) setting coefficient matrix of ε or error in MIMIC model

to identity matrix that means each ε shows in only one equation with a coefficient of one. Moreover,

we have to scale the latent variables for interpretability by determining the variance of latent variables

to constant or scaling it to one of the observed variables [Bollen, 2014, §4]. As a result, two restric-

tions will turn the unidentification model to identification model [Stapleton, 1978, Dell’Anno et al.,

2007, Gallo et al., 1994].
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3.2 MIMIC model estimation

There are various ways of parameters estimation in MIMIC model. One way is to apply SEM

formulation since the goal of this optimization problem is to minimize Kullback-Liebler (KL) diver-

gence function which represents the distance between the sample covariance matrix, S, and the model

implied covariance matrix Σ with a special structure defined in (3.2). Another way to estimate the

parameters of the model is called maximum likelihood estimation that is considered to be the popular

way to search for parameters of a statistical model such that the statistical likelihood function is maxi-

mized. The least squares method is also considered in the sense that minimizes the difference between

the predictors and the dependent observed variables, i.e., residues of the model [Jamesh et al., 2013].

Last but not least, regularized least-squares estimation is the method that applies the regularization

and the least squares method, i.e., the solution from this procedure is estimated like the least square

method but some elements are zero due to the regularization term. In this section, we will explain

the typical interesting estimation methods which we mentioned above to search for the parameter F

in (1.3).

3.2.1 SEM formulation

Let θ = (F,Φ,Ψ) be parameters of model. The Structural Equation Modeling fitting function

is presented by [Jöreskog, 1970] under multivariate normal distribution variables with covariance-

based. The principle of this method is that the implied covariance matrix, Σ(θ) should be closed to

the actual sample covariance matrix, S with regard to the Kullback-Leiber divergence which finds the

divergence measures between the probability density of the samples and the probability density of the

model [Penny et al., 2004] that is equivalent to minimize the objective function of the optimization

problem (3.5). Moreover, such function is improved by [Jöreskog and Goldberge, 1975] for a single

latent variable and by [Stapleton, 1978] for more latent variables. The optimization problem for the

model estimation approach is defined as

minimize log detΣ + tr(SΣ−1)−log det(S)− (p+ q)

subject to Σ =

 Φ ΦF T

FΦ FΦF T + Ψ

 (3.5)

with variables Σ ∈ R(p+q)×(p+q), F ∈ Rq×p, Φ ∈ Rp×p, Ψ ∈ Rq×q.

3.2.2 Maximum likelihood estimation

Maximum likelihood estimation (MLE) will search for the unknown parameters in the sense

that joint density (probability), namely, likelihood function of the data is maximized. When the

sample size increase to infinity, maximum likelihood estimators have three main good properties

that are i) consistency: the estimators converge in probability to its true unknown parameter (θ0), ii)
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asymptotic normality: the maximum likelihood estimators (θ) tend to have normal distribution with

mean = θ0 and covariance matrix is equal to the inverse of the Fisher information called asymptotic

variance, and the last property is iii) efficiency: the maximum likelihood estimators have the smallest

asymptotic variance among
√
N consistent estimators or the lower bounded of all possible variance

[Cameron and Trivedi, 2005].

Denote the vectors of independent random variables, x ∈ Rp and y ∈ Rq, have N observations

as ordered pairs {(x(i), y(i))}Ni=1 where x and y are jointly (p + q)-dimensional Gaussian vector asx
y

 ∼ N(
µx
µy

 ,
Σxx Σxy

Σyx Σyy

).
The sample covariance matrix of (x, y) which can be calculated from sample measurement is

defined as

S =
1

N

N∑
i=1

x(i) − µx

y(i) − µy

T x(i) − µx

y(i) − µy

 .
The joint probability density function of N independent observations of (x, y) is

f(y, x|θ) = f(y(1), x(1)|θ)f(y(2), x(2)|θ) . . . f(y(N), x(N)|θ)

=
1

(2π)N(p+q)/2(detΣ)N/2
exp

(
− 1

2

N∑
i=1

x(i) − µx

y(i) − µy

TΣ−1

x(i) − µx

y(i) − µy

).(3.6)

Since a log function is a monotonic function, to maximize likelihood function is equable to

maximize log-likelihood function that is

log f(y, x|θ) = −1

2

N∑
i=1

x(i) − µx

y(i) − µy

TΣ−1

xi − µx
yi − µy

− N

2
log detΣ− N(p+ q)

2
log 2π

= −N
2

(
trSΣ−1 + log detΣ

)
− N(p+ q)

2
log 2π. (3.7)

Knowing that constant term does not affect to optimization problem and the (N/2) term has no

influence on the choice of θ, we can consider maximizing log-likelihood function (3.7) as minimizing

the fitted function (3.8) [Bollen, 2014, §4]:

minimize trSΣ−1 + log detΣ

subject to Σ =

 Φ ΦF T

FΦ FΦF T + Ψ

 (3.8)

with variables Σ ∈ R(p+q)×(p+q), F ∈ Rq×p, Φ ∈ Rp×p, Ψ ∈ Rq×q.

We can notice that the optimization problem (3.8) is equivalent to (3.5). The solutions of the

problem (3.5) and (3.8) are provided when the objective function is zero, i.e., Σ = S. As a result, if

Σ = S has solutions, such solutions given by (3.3) are the solutions of the problems (3.5) and (3.8).
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3.2.3 Least-squares estimation

Let x ∈ Rp, and y ∈ Rq be independent random variables and (x(i), y(i)) be ith sample data

where i = 1, . . . , N . DenoteX =
[
x(1) · · · x(N)

]
∈ Rp×N and Y =

[
y(1) · · · y(N)

]
∈ Rq×N

be matrices with x(i) and y(i), respectively, as their ith column. The reduced MIMIC model (1.3) is

written as

Y = FX + E (3.9)

For least square error method, in order to estimate the coefficient F representing the relationship bet-

ween observed variables (X,Y ) from MIMIC model (3.9) with N observations, we can think that

FX based on the value of X be the prediction of dependent variable Y , then the residue (E) is the

difference between Y and FX that is E = Y − FX . Since we want FX to be closed to Y , in other

words, to minimize the squares of the Frobenius norm (‖.‖2F ) of errors. Sum square errors which are

the sum of the squares of the deviations of the actual values from the predicted values for regression

problem is needed to minimize so we have the objective function as follows:

minimize ‖Y − FX‖2F (3.10)

with variable F ∈ Rq×p.

F =

(
Y XT

N

)(
XXT

N

)−1

= SY XSXX
−1 (3.11)

Consequently, F which is predicted by maximum likelihood function (3.8) and by least square

error (3.11) is the same when we assume that the observed variables (x, y) are normally distributed.

3.2.4 Regularized least-squares estimation

In case of high correlation of the two variables x and y, for the value of coefficient Fij ∈ F for

i ∈ 1, 2, ..., q and j ∈ 1, 2, ..., p representing the relationship between two variables (x, y), the high

variance model is constructed because the coefficient of one variable that has wildly positive value can

compensate with the highly negative coefficient on the other variable [Friedman et al., 2001]. Regu-

larization or shrinkage method that shrinks the coefficient towards zero using least-squares to fit are

the alternative method to reduce the mentioned problem. `2-regularization and `1-regularization that

are the well-known techniques of regularization method [Jamesh et al., 2013, §10]. They resemble to

least-squares problem (3.9), excepting adding the `2-norm and `1-norm penalty terms, respectively,

for promoting the entries in F toward zero denoting by the problems (3.12) and (3.14) where γ ≥

0. When γ = 0, the penalty term has no impact to F but when γ goes to infinity, the coefficient

estimated F will approach to zero. In this paper, we define the notation of (a, b)-norm of matrix as

‖F‖a,b =

(∑p
j=1

(∑q
i=1 ‖Fij‖b

)a/b)1/a

.
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`2-Regularization

The `2-regularization or ridge regression estimates F by the following objective function:

minimize ‖Y − FX‖2F + γ‖F‖21,2 (3.12)

with variable F ∈ Rq×p.

The advantage of `2-regularization over least-squares is based on the bias-variance trade-

off [Jamesh et al., 2013, §6]. When γ is high, the relaxibility of model is low, leading to decreased

variance but increased bias; accordingly, we will search for γ that provides the minimum Mean Square

Error (MSE) of the model. However, the interpretation may have problems if we want the zero struc-

ture in F since the main drawback of `2-regularization is that its penalty will shrink F towards zero

but not exactly zero; therefore, `1-regularization is chosen to solve such problem. For unconstrained

convex optimization (3.12), the closed form solution of this problem is calculated by differentiation

with respect to F and set those to zero [Boyd and Vandenberghe, 2004, §6]that is

F = Y XT (XXT + γI)−1 = SY X

(
SXX

−1 +
NI

γ

)
(3.13)

`1-Regularization

The `1-regularization often called lasso estimates F by the following objective function:

minimize ‖Y − FX‖2F + γ‖F‖1,1 (3.14)

with variable F ∈ Rq×p.

If we choose sufficiently large γ, the influence of `1-penalty will force some elements of F

to be exactly zero that simpler and easier to interpret than `2-regularization. However, because the

convex optimization problem (3.14) is non-differentiable when Fij equal zero, the closed form so-

lution cannot be attained like the way we do with `2-regularization. Consequently, the constrained

formulation (3.15), most conscientious problem to demonstrate the problem (3.14), is considered.

minimize ‖Y − FX‖2F
subject to ‖F‖1,1 ≤ t

(3.15)

with variable F ∈ Rq×p.

Various techniques are used to solve the convex optimization problem (3.15) since 1996 [Schmidt,

2005]; for example, converting the constrain in the problem (3.15) into a set of linear constrains [Tib-

shirani, 1996], Interior point method and non-negative variables with log barrier [Chen et al., 2001] [Sardy

et al., 2000], Active set method and Local linearization [Osborne et al., 2000b] [Osborne et al., 2000a],

Iterated Ridge Regression [Fan and Li, 2001], Grafting [Perkins et al., 2003], Gauss-Seidel [Shevade

and Keerthi, 2003], and also Shooting method [Fu, 1998].
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3.3 Matrix factorization in MIMIC model

According to the section 3.2, the solution of MIMIC model, F , which is the coefficient ma-

trix representing the indirect effect relationship between x and y can be found by several techniques,

including, SEM formulation, maximum likelihood estimation, least-squares estimation, and regular-

ized least-squares estimation. However, in many applications, finding A and B that expresses the

coefficient matrices of direct effect of x to η and η to y, respectively, is more significant than finding

F since beneficial interpretation from A and B will be presented. Therefore, in this section, as we

know that F = ABT , we will search for the decomposed matrices A and B from F which is known

from the section 3.2 by applying interesting methods that provide the different advantages for the ex-

planation of the solutions, including, i) adding linear constraints in coefficient matrices representing

the relationship between observed and latent variables which is common approach in MIMIC model,

ii) sparse factorization, and iii) nuclear norm regularization in rank minimization problem that are

available methods for matrix factorization.

3.3.1 Adding linear constraints on matrix factors

According to the model identification, in case that perfect model fit to the data, if S = Σ(F,Φ,Ψ)

is regarded, the explicit uniquely solution is provided as shown in (3.3). On the contrary, when we

consider S = Σ(A,B,Φ,Ψη,Ψy), non-unique solutions may be provided because of negative df .

Thereby, some parameters should be set to be constant, saying zero, e.g., adding linear constraints in

A and B, in order to remove indeterminacy leading to having nonnegative df .

Focusing on findingA andB from S = Σ(A,B,Φ,Ψη,Ψy), to get nonnegative df , the number

of equations relating the elements of S must be greater than or equal to the number of unknown

parameters in Σ, in other words, (p+q)(p+q+1)
2 ≥ qm + pm + p2 + m2 + q2 so some elements

have to be set to constant based on suitability of data, then the unknown parameters can be found by

solving (3.2). For example, [Stapleton, 1978] assume that B is dense and set some parameters of A

to zero, e.g., for the first column of A that relates to the first latent variable (η1), there are A1,1 to

A5,1 that have the relationship with η1 so they set other entries in this column to zero and do the same

method with the other columns.

3.3.2 Sparse factorization

According to the problem (3.15), since we want F ∈ Rq×p to sparse and can be factorized

into ABT where A ∈ Rq×r =
[
A1 A2 · · ·Ar

]
and B ∈ Rp×r =

[
B1 B2 · · · Br

]
, our

procedures are to find Z = ABT ∈ Rq×p which has zero structure by applying `1-regularization

and is close to observed variable F from the first process. [Bach et al., 2008] suggest the sparse

composition norms by using sparse factorization. Given an observed matrix F ∈ Rq×p and we search

for factorization form Z = ABT that is close to F where A or B is sparse, i.e., penalizing each
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column of A and B by the following objective function:

minimize

q∑
i=1

p∑
j=1

(Fij − (ABT )ij)
2 + γ

r∑
k=1

(‖Ak‖2C + ‖Bk‖2R) (3.16)

with variables A ∈ Rq×r, B ∈ Rp×r where ‖·‖C and ‖·‖R are any norms on Rq and Rp (on the

column space and row space of original matrix Z).

Let m or number of latent variables grow to infinity and ‖Z‖D = ‖Ak‖2C + ‖Bk‖2R we can

consider the below problem (3.17) as a convex optimization problem which is equivalent to the prob-

lem (3.16)

minimize
1

2

q∑
i=1

p∑
j=1

(Fij − Zij)2 + γ‖Z‖D (3.17)

with variables Z ∈ Rq×p.

[Bach et al., 2008] provide the closed form solution of Z in (3.17) as

Z(i, :) = max{‖F (i, :)T ‖2−γ, 0}
F (i, :)

‖F (i, :)T ‖2

when ‖·‖C= ‖·‖1 and ‖·‖R= ‖·‖2 for i ∈ {1, ..., q} and

Z(i, j) = max{|F (i, j)| − γ, 0} F (i, j)

|F (i, :)|

when ‖·‖C= ‖·‖1 and ‖·‖R= ‖·‖1 for i ∈ {1, ..., q} and j ∈ {1, ..., p}.

Sparse factorization has been proposed in a variety of the approaches that have been discussed

for factorizing a matrix into a product of two matrices. For example, [Mairal et al., 2010] provide an

online stochastic optimization algorithm based on a stochastic approximation for dictionary learning

that applies to sparse coding. Besides, by inviting this process to non negative matrix factorization

and sparse principal component analysis formulation, the results are practically answered. The main

advantages of this work are that the process of the algorithm is fast and large data set can be con-

sidered. [Zhang et al., 2012] propose sparse principal component analysis that seeks for a principal

component which is fixed the number of nonzero coefficients by applying orthogonal transformation

and maximizing variance in the data. However, this problem is difficult to solve; therefore, they gen-

erate the better estimated version by using the convex relaxation method, including, relaxation with

`0 and `1 penalization. [Gillis, 2012] discuss about nonnegative matrix factorization (NMF) based on

nonnegative data matrix procedure since it has properties to extract significant characteristics that are

very useful in machine learning field. In this work, they provide the sparser solution of the better as-

pect of NMF problems. Moreover, the algorithm of sparse matrix factorization for linear version and

investigate its relationship under randomness and sparsity assumptions is examined by [Neyshabur

and Panigrahy, 2013]. In deep learning network’s perspective, searching for values of hidden units
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and edges in different layers coincide with seeking for matrix factorization. [Richard et al., 2014]

illustrate tight convex relaxations of sparse factorization for low-rank matrices estimation by assum-

ing we know the non-zero entries in the matrix we want to factorize. They suppose that the matrix

which they want to factorize is a product of k non-zero entries column vector and q non-zero entries

row vector. Then, they define the (k, q)-rank of a matrix and relax such matrix producing convex

relaxation of (k, q)-trace norm in order to be easier to manage.

3.4 Latent variable reduction

Researchers often introduce plenty of latent variables to the model. However, such latent vari-

ables may contain hardly important latent variables leading to non-significant results. Consequently,

we aim to decrease the number of latent variables (r) until remaining highly significant latent vari-

ables (m), in other words, we reduce columns of A and B from r to m. This section provides the

common techniques to select highly effective latent variables based on rank minimization, i.e., nuclear

norm regularization, sparse latent semantic analysis, and based on a sequential selection.

Rank minimization

As previously mentioned, we require to find A and B from F = ABT that explains the di-

rect effect between observed and latent variables, sometimes, we need the highly significant latent

variables from all latent variables we investigate.

Suppose we want the most m important latent variables, i.e., A and B have m columns, there

are six cases that matrices A and B are possible to be (see Figure 3.1). There are only cases 1.) and

4.) that q > m and p > m, i.e., the number of latent variables are less than the number of observed

variables for both A and B; however, for the others, the number of latent variables is greater than the

number of observed variables for A or B.

In the case that m < rank(F ), this cannot be occurred since rank(F ) = rank(ABT ) ≤

min{rank(A), rank(B)}, rank(A) ≤ min{q,m} and rank(B) ≤ min{p,m}; therefore, rank(F )

≤ min{q, p,m}.Because we want only a few essentially important latent variables, we need the struc-

ture of A and B like items 1.) and 4.), i.e., A and B are skinny matrices. However, at the beginning,

the rank of F may be equal min{q, p} (full rank) that leads to the cases of 2.), 3.), 5.), and 6.) so we

have to reduce the rank of F from finding the low rank matrix Z that is close to F by applying the

rank minimization problem.
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Figure 3.1: Possible A and B from matrix factorization.

Singular Value Decomposition (SVD)

When we want to approximate the low rank matrix Z that is close to the known matrix F , the

singular value decomposition is a good application for estimation since this choice can be applied for

square matrix and rectangular matrix; moreover, we can determine for every rank of Z. The singular

value decomposition (SVD) is a factorization of matrix F ∈ Rq×p that has rank r as

F = UDV T =

r∑
i=1

diuiv
T
i

where D ∈ Rr×r is a diagonal matrix with diagonal entries d1 ≥ d2 ≥ · · · ≥ dr > 0 that are the

singular values of F , corresponded to the rank of F , i.e., the number of positive singular values that

are calculated by di =
√
λi(FF T ), e.g., the eigenvalues of FF T . U =

[
u1 u2 · · · ur

]
∈ Rq×r

and V =
[
v1 v2 · · · vr

]
∈ Rp×r are unitary matrices, called a left and a right singular vector

matrices, respectively. Besides, the columns of U and V are the eigenvectors of FF T and F TF ,

respectively [Horn and Johnson, 2012, §7].

The singular values of F are unique but the singular vector matrices, U and V , are not unique.

However, U and V are unique in the case that the singular values are all different. If there are some

identical singular values, the singular vector matrices are not unique since the subspace from spanning

of coincident singular vectors can be applied as the singular vectors.

In this part, we are talking about rank minimization problem that the objective is to find the

low rank matrix Z ∈ Rq×p that represents the observed data matrix F ∈ Rq×p and has generalization

training error bound, δ ≥ 0 as follows:

minimize rank(Z)

subject to
∑
i,j

(Zij − Fij)2 ≤ δ (3.18)
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with variable Z ∈ Rq×p. However, it is difficult to solve the problem (3.18) due to the non-convexity

of the cost objective function. A convex relaxation of the low rank optimization (3.18) is represented

by [Fazel, 2002] who provide the nuclear norm optimization problem, i.e., the nuclear norm, ‖Z‖∗,

is the sum of the singular values of Z as follow:

minimize ‖Z‖∗

subject to
∑
i,j

(Zij − Fij)2 ≤ δ (3.19)

with variable Z ∈ Rq×p. We notice that the left side of a constraint of the problem (3.19) is bounded

by some positive constant, in other words, we want to regularize its value to be less than or equal to

δ.

3.4.1 Nuclear norm regularization

A nuclear norm regularization which is convex relaxation for the rank minimization problem is

widely used for low rank matrix approximation, i.e., we want to find low rank matrix Z that closely

estimates the data matrix F . Moreover, nuclear norm regularization is the Lagrange version of the

problem (3.19) as

minimize
1

2
‖Zij − Fij‖2F + γ‖Z‖∗ (3.20)

with variable Z ∈ Rq×p and γ ≥ 0 is a regularization parameter.

A more general form for the problem (3.20) is suggested by [Mazumder et al., 2010] who find

Z from the problem (3.20) for (i, j) ⊂ Ω where Ω ⊂ {1, ..., q} × {1, ..., p} expresses the indices of

observed entries in F by the following problem:

minimize
1

2
‖PΩ(Z)− PΩ(F )‖2F + γ‖Z‖∗ (3.21)

with variable Z ∈ Rq×p and γ ≥ 0 is a regularization parameter and the orthogonal projector

P onto the span of matrices missing outside of Ω has the (i, j)th-component of PΩ(W ) equals

Wij when (i, j) ∈ Ω and zero otherwise. The solution of nuclear norm regularization is given by

lemma 1 [Mazumder et al., 2010].

Lemma 1. [Nuclear norm regularization] Suppose the matrix F ∈ Rq×p has rank r, SVD of F is

F = UDV T and D = diag

[
d1, ..., dr

]
. The solution to the optimization problem

minimize
Z

1

2
‖Z − F‖2F + γ‖Z‖∗ (3.22)

is given by Z = UDγV
T with Dγ = diag

[
max{d1 − γ, 0}, ...,max{dr − γ, 0}

]
.
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Saying that the solution of nuclear norm minimization problem is the closed form which is

similar to the SVD of F excepting the D, i.e., applying Dγ instead where Dγ is a diagonal matrix

with the soft-threshold function diagonal elements that are the maximum of di − γ and zero for

i = 1, . . . , r.

Now, the low rank matrix Z is provided by lemma 1, we sometimes want to factorize Z into

the product of two matrices, e.g., Z = ABT in order to interpret each composition, A and B where

the number of columns in A and B or the number of the factors equals to the rank of F . This idea is

suggested by lemma 2 [Srebro et al., 2005] [Mazumder et al., 2010].

Lemma 2. [Low rank factorization] For any matrix Z the following holds:

‖Z‖∗ = minimize(1/2)(‖A‖2F + ‖B‖2F )

subjectto Z = ABT

(3.23)

with variable Z ∈ Rq×p, A ∈ Rq×m, B ∈ Rp×m. If rank(Z) = m ≤ min{q, p}, then the minimum
above is attained at a factor decomposition Z = ABT .

When the factorization from lemma 2 is occurred, the rank of Z corresponds to the number of

latent variables, m; consequently, we can reduce the number of all considered latent variables until it

reaches our desired number of latent variables, m, by specifying the rank of Z to be m. According

to lemma 2, we can consider (3.22) as below optimization problem called “Maximum Margin Matrix

Factorization (MMMF)” :

minimize ‖F −ABT ‖2F + γ(‖A‖2F + ‖B‖2F ) (3.24)

with variables A ∈ Rq×m and B ∈ Rp×m.

Generally, the restriction of rank minimization problem is the number of allowed factor or the

size of A and B. Instead of dimensional limitation, constraining on the norms of A and B covers the

overall strength of the factors rather than their dimension. This restriction is introduced by the method

of Maximum Margin Matrix Factorization (MMMF) [Srebro et al., 2005]. In many circumstances,

there are a large number of latent variables effecting the observed variables but there are only a few

very important factors, saying latent variables. MMMF is the good choice to factorize Z that is close

to F to get A and B with low rank constraint of Z since this method can reduce the number of latent

variables based on the rank minimization [Rennie and Srebro, 2005].

However, the solutionsA andB from this technique need not be unique and we can not identify

remaining latent variables since removed latent variables are not specified. Consequently, nuclear

norm minimization is not suitable to apply to reduce the number of latent variables for the MIMIC

model.
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3.4.2 Sparse principal component analysis

Principal component analysis or PCA which was first proposed by [Pearson, 1901] is a com-

mon technique for variable reduction. The principle of this method is to reduce the number of vari-

ables to lower dimension of new variables by vector space transform (v ∈ Rr) called principal com-

ponents correspond to maximum sample variance directions where new variables are a linear combi-

nation of initial variables [Friedman et al., 2001, §14]. When the number of variables is high, sparse

principal component analysis or sparse PCA is applied to set some elements in principal components

to be zero in order to remove some variables [Hastie et al., 2015, §8].

In other words, new lower dimension η̃ is a linear combination of latent variables η as

η̃1 = a11η1 + a12η2 + · · ·+ a1rηr

η̃2 = a21η1 + a22η2 + · · ·+ a2rηr
...

...

η̃m = am1η1 + am2η2 + · · ·+ amrηr.

If sparse PCA is applied to latent variable reduction, i.e., we reduce the number of latent vari-

ables from r to m by applying sparse PCA that is also explained by maximizing variance of latent

variables along a direction of v. For the first principal component the optimization problem is defined

as:

maximize vT cov(η)v

subject to ‖v‖2 = 1

‖v‖0 ≤ t

(3.25)

with variables v ∈ Rr where `0-norm constraint indicates nonzero components limitation in v that is

dependent of a nonnegative constant t, saying that there are nonzero entries in v which less than or

equal to t.

For finding further ith principal component, optimization problem (3.25) is continuously solved

for i = 1, . . . ,m but cov(η) is replaced by

cov(η)i+1 = cov(η)i − (vTi cov(η)ivi)viv
T
i .

The concept of sparse PCA can be applied to reduce latent variables as we propose; however,

we cannot explain the physical meaning of new latent variables which come from a linear combi-

nation of initial latent variables. Moreover, according to the problem (3.25), sparse PCA for latent

variable reduction requires to calculate cov(η) which is dependent of B and covariance of εη (from

model (1.1)) that are unknown variables. Consequently, performing sparse PCA for latent variable

reduction on the MIMIC model may need further analysis. Therefore, we do not explore nor apply

this technique to our work.



30

3.4.3 Sparse latent semantic analysis

Latent semantic analysis (LSA) proposed by [Deerwester et al., 1990] is one of the regular

techniques for a matrix dimension reduction. The concept of LSA is to project a high dimensional

vector space represented in Y ∈ Rq×N to a lower dimensional latent space represented in latent

variables U ∈ Rr×N where N is a number of observations, q is a number of variables of Y , and r is a

number of variables of U . Singular value decomposition (SVD) is applied in LSA to construct a rank

r estimation of Y . In other words, Y ≈ V TDU where U ∈ Rr×N and V ∈ Rr×q are orthogonal

matrices and D ∈ Rr×r is diagonal matrix. Given that A = V TD is a projection matrix that maps

input feature space to latent space and εY ∈ Rq×N be the noise of Y , AU is rank r estimation of Y .

The linear relationship between observed variables Y and latent variables U is represented as:

Y = AU + εY

To obtain a projection matrix (A) and latent variables (U), minimizing error from rank r es-

timation of Y is considered with the orthogonality constraint on U for independent latent variables.

LSA is proposed as following optimization problem:

minimize ‖Y −AU‖2F
subject to UUT = I

(3.26)

with variables A ∈ Rq×r and U ∈ Rr×N .

However, when a small number of latent variables is required for a better interpretation among

variables, i.e., highly effective latent variables are needed, [Chen et al., 2011] present sparse LSA

that extends the method of LSA by adding `1- regularization term on A in order to restrict a number

of latent variables as following optimization problem:

minimize ‖Y −AU‖2F + γ‖A‖1,1

subject to UUT = I
(3.27)

with variables A ∈ Rq×r and U ∈ Rr×N where γ ≥ 0 is a regularization parameter to control a

sparsity of A.

The results from [Chen et al., 2011] show that when an initial number of latent variables is high,

sparse LSA works effectively since it reconstructs model by lowering the number of latent variables.

On the contrary, when an initial number of latent variables is low, LSA is better than sparse LSA

because sparse model may miss important information.

Note that `1- regularization term onAwhich shrinks some entriesAij to zero which means that

latent variable ηj does not affect to yi and will be removed. The regularization term which limits a

number of latent variables may remove different latent variables for each yi individually leading that

latent variables which affect to all of y do not decrease. In other words, a pattern of influence from
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ηj to is dissimilar for all i; consequently, it is difficult to interpret an implication of such remaining

latent variables. However, our objectives are to remove some insignificant latent variables which

simultaneously hardly influence overall y and also to identify the meaning of each remaining latent

variable. Consequently, we do not focus on reducing latent variables by this technique since it does

not achieve our two purposes.

3.4.4 Sequential selection

The process of variable selection is to select an optimal subset from a set of relevant variables

for more efficient model construction. In this section, examples of fundamental sequential search

algorithms, i.e., sequential backward selection (SBS) and sequential forward selection (SFS) are dis-

cussed.

SBS algorithm instructed by [Marill and Green, 1963] is a top-down search starting with the full

set of variables, then removing a variable that least reduces model fit criterion, e.g., maximum likeli-

hood and minimum error of a model, and repeating this step until no improvement of a goodness-of-fit

of a model. SBS has a good performance when the optimal subset is large; however, a disadvantage

of this method is that SBS cannot reevaluate a benefit from removed variables.

[Whitney, 1971] suggest SFS algorithm that is a bottom-up search starting with no variables

and gradually adds the most important variable by model fit criterion until no improvement of model

fit. SFS has a good performance when the optimal subset is small; however, this algorithm has a

drawback in the sense that SFS only adds variables into the model but does note remove variables

from feature set and a redundancy between variables is not analyzed.

Some algorithms in this approach are time-consuming since they add or delete only one vari-

able in each step. In other words, if a number of optimal variables is high for SFS or is low for SBS,

the process for variable reduction spend a long time to find the optimal variables.

Overall, according to the method of nuclear norm regularization, sparse PCA and sparse LSA,

those procedures can reduce latent variables based on parameter regularization. However, they cannot

specify each latent variable leading that such latent variables have no meaning in the sense of capital

structure and interpretation of results from those latent variables is not reliable. For sequential selec-

tion method, nesting problem is occurred and calculation of goodness of fit of the model for several

numerously sets of latent variables has to be found which consumes very long time and memories.

If the mentioned weakness can be remedied, searching for determinants of capital structure

will be more effective; moreover, the better explication and interpretation from results are provided.

In order to specify remaining latent variables after reduction, in the next chapter, we provide the

formulation for latent variable selection which applies the least-squares problem with sparsity term

that forces some columns of matrix A to be zero in order to remove latent variables.



CHAPTER IV

METHODOLOGIES

Remind that MIMIC model is represented by

η = BTx+ εη (4.1)

y = Aη + εy (4.2)

where observed variables x ∈ Rp and y ∈ Rq are causes and indicators of latent variable η ∈ Rr,

respectively. εη ∈ Rr and εy ∈ Rq are the disturbance of η and y, respectively.

Besides, the reduced MIMIC model becomes

y = Fx+ ε (4.3)

where F = ABT ∈ Rq×p and ε = Aεη + εy ∈ Rq.

Since MIMIC model may consist of a mix of relevant and irrelevant latent variables, we would

like to reduce the number of latent variables until highly effective remaining latent variables are

provided. Beginning with selecting m significant latent variables in the section 4.1, we provide an

optimization problem which shrinks some columns of A to zero and the latent variables associated

with the zero columns of A will be removed. Moreover, the columns of B which have relationships

with such removed latent variables will also be zero automatically. Since we decrease the number

of latent variables (r) to m remaining effective latent variables, columns of A and B are reduced

from r to m. Obviously, when some latent variables are removed, x that related to such removed

latent variables are also deleted, saying that variables in x and rows of B are reduced from p to p̃.

The next step shown in the section 4.2 is to estimate A ∈ Rq×m and B ∈ Rp̃×m which are the

coefficient matrices illustrated the relation of y to η and η to x, respectively, when the unimportant

latent variables are removed. A and B from this step are estimated by the least-squares problem with

linear constraints. Since our formulation provides a set of models that vary upon a number of selected

latent variables, a model selection is performed in the section 4.3. Moreover, numerical methods to

solve the proposed formulation are provided.
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4.1 Latent variable selection

We need to know which latent variables are eliminated in order to properly interpret the solu-

tion. [Chen and Huang, 2012] offer predictors selection of linear model (3.9) where the coefficient

matrix F is factorized into ABT motivated from [Yuan and Lin, 2006]. A similar approach can be

found in [Kharratzadeh and Coates, 2016]. They propose the least-squares problem with sparsity term

that forces some rows of a matrix B to be zero for removing some predictor variables. They proposed

the formulation as follows:

minimize ‖Y −ABTX‖2F + γ
∑r

i=1‖Bi‖2

subject to ATA = I
(4.4)

with variables A ∈ Rq×r, B ∈ Rp×r (Bi expresses ith row of matrix B) where Y ∈ Rq×N and

X ∈ Rp×N are response and predictor matrices, respectively.

However, the solutions from the problem (4.4) might not be unique but the zero rows that are

provided by the penalty term are uniquely determined. In other words, the optimization problem (4.4)

chooses the set of meaningful variables uniquely because the solutions of the problem (4.4) have the

following properties.

Properties of solutions of the problem (4.4)

1. The solution to the optimization problem (4.4) is unique up to an r × r orthogonal matrix.

More precisely, suppose (A,B) and (Ã, B̃) are also a solution of the problem (4.4) if and only

if there is an orthogonal matrix Q such that Ã = AQ and B̃ = BQ.

2. Zero rows of Bi of the optimization problem (4.4) is uniquely determined.

Proposed formulation

[Chen and Huang, 2012] forces some rows of B to be zero for predictors selection but our

objective is latent variable selection. Consequently, we use a similar idea to remove hardly important

latent variables that affect y by providing the optimization problem (4.5) that is the least-squares

problem with a regularized term that forces some columns of a matrixA to be zero. The zero columns

illustrate that the latent variables related to such columns are not important. Consequently, we remove

those latent variables. The formulation that we propose is the follows:

minimize ‖Y −ABTX‖2F + γ
∑r

i=1‖Ai‖2

subject to P(B) = 0
(4.5)

with variables A ∈ Rq×r, B ∈ Rp×r (Ai expresses the ith column of A) where Y ∈ Rq×N and

X ∈ Rp×N are response and predictor matrices, respectively. Given projection operator is a function

P : Rp×r → Rp×r, defined as P(B) = Bij when (i, j) ∈ set of zero entries in B and P(B) = 0,
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otherwise. In other words, P(B) is a linear projection transformation mapping the entries of B that

are supposed to be zero based on the structure of B showed in Figure 1.2. Note that the constraints

P(B) = 0 comes from the structure of B which is assumed from prior knowledge for grouping

same characteristic of x in each η. Applying sum of 2-norm penalty is characterized as an `1 - norm

minimization that is regularized least-squares estimation explained in the section 3.2.4. Group lasso

is an extension of the lasso in the sense that promotes some group of parameters simultaneously to

zero [Hastie et al., 2015, §3]. The problem (4.5) connects to the group lasso problem on columns ofA

since the penalty term depending on γ forces some columns of A to zero. Regularization parameter,

γ, controls a sparsity pattern in the sense that it increases the weight of penalized term. As a result,

when γ is large, A contains many zero columns. Besides, the proposed formulation (4.5) is biconvex

problem in (A,B) (see the details in the section of numerical method 4.4).

4.2 Least-squares estimation for reduced MIMIC model

After insignificant latent variables are removed, A and B have smaller number columns. The

penalty term in the formulation (4.5) introduces more bias to the model. Consequently, to reduce

bias of solutions from the formulation (4.5), this part provides the formulation (4.6) to estimate of

A ∈ Rq×m and B ∈ Rp̃×m which are the coefficient matrices that show the relation of y to η and η

to x, respectively.

Proposed formulation

We provide the formulation that estimates A and B as:

minimize ‖Y −ABT X̃‖2F
subject to P(B) = 0

(4.6)

with variables A ∈ Rq×m and B ∈ Rp̃×m where X̃ ∈ Rp̃×N is X that is deleted some observed

variables related to removed latent variables, i.e., deleting some rows of X until it has p̃ rows. The

proposed formulation (4.6) is biconvex problem in (A,B) (see the details in the section 4.4).
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4.3 Model selection

According to the section 4.1 and 4.2, a different γ can provide various remaining latent vari-

ables leading to a model with various structures. Since candidate models have different structures, to

select an appropriate model is depended on choosing a suitable γ. There are several criterions to select

γ from a set of candidate γ’s which provide different model structure. Information criterion which

considers the trade-off between the goodness of fit and the complexity of the model is widely used for

model selection. In this research, Akaike Information Criterion (AIC), corrected Akaike Information

Criterion (AICc), Bayesian Information Criterion (BIC), and Kullback Information Criterion (KIC),

and corrected Kullback Information Criterion (KICc) are applied to select γ with different roles and

different asymptotic assumption. The expression of AIC, AICc, BIC, KIC, KICc are

AIC = −2L+ 2d,

AICc = −2L+
2dN

N − d− 1
,

BIC = −2L+ d logN, (4.7)

KIC = −2L+ 3d,

KICc = −2L+
(d+ 1)(3N − d− 2)

N − d− 2
+

d

N − d
.

where L is a log-likelihood function value of the model,

d is the number of effective parameters in the model. In this work, d is calculated by

qm+ p̃ (a number of all entries in Â and nonzero entries in B̂),

N is the number of observations.

According to (4.7), the first component (negative log-likelihood function) expresses the good-

ness of fit of the model and the second one depending on a number of parameters explains the com-

plexity of the model. Since all information criterions select an appropriate model based on the bias-

variance trade-off of the model, for each criterion, the best model is the one having the lowest infor-

mation criterion score due to minimal combination of bias and variance. AIC [Akaike, 2011,Akaike,

1987, Akaike et al., 1998] tends to select a complex model since the complexity term depends on

only the double number of estimated parameters, regardless of sample size. However, when a size

of sample is small compared to number of parameters, AIC may perform poorly based on Kullback-

Leibler divergence deviation. Consequently, the AICc, an unbiased estimator of AIC, is introduced

to improve bias adjustment on a small-sample setting where the complexity term is a slightly heavier

penalty depending on both sample size and a number of parameters [Anderson and Burnham, 2002].

BIC [Schwarz, 1978] tends to choose a simpler model than the other criterions since the model com-

plexity is penalized by the sample size (log N ). Furthermore, when sample size goes to infinity, it

will select the correct model with probability approaching one [Friedman et al., 2001, §7]. KIC [Ca-

vanaugh, 1999] was suggested under the similar penalty as AIC in the sense of depending on an only
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number of parameters. This criterion serves as an unbiased estimator of Kullback’s asymmetric di-

vergence. Like AIC, KIC is biased and underestimated when the sample size is large with respect to

a number of parameters. KICc [Seghouane, 2006] is proposed to improve the performance of model

selection in KIC for a small-sample setting and also provide a bias reduction. Note that the penalty

term of KIC and KICc is heavier than AIC and AICc but is lighter than BIC; therefore, the model

selected by KIC or KICc is simpler than AIC and AICc but is more complex than BIC.

For real world data, to select an appropriate model depends on objectives and asymptotic as-

sumptions of users. Although all criterions have the same goal to select the best model based on the

bias-variance trade-off of the model, each criterion provides different weights in model complexity

component interpreted by the second term. Because of different roles of complexity selection in each

criterion, we cannot compare their goodness. For example, if the users need such a complex model,

AIC and AICc are more suitable choice; in contrast, BIC is applied when the users need a simple

model. If the users prefer not too complex or too simple model, KIC and KICc are considered. Con-

sequently, we provide these five information criterions to the users in order to select the model based

on their preference and objectives.

According to (4.7), in order to reduce and eliminate redundant inputs, we provide normalized

information criterions scores as follows (see the derivation in Appendix 7.2):

Normalized AIC = log detΣ̂ +
2d

N
,

Normalized AICc = log detΣ̂ +
2d

N − d− 1
,

Normalized BIC = log detΣ̂ +
d logN

N
, (4.8)

Normalized KIC = log detΣ̂ +
3d

N
,

Normalized KICc = log detΣ̂ +
(d+ 1)(3N − d− 2)

N(N − d− 2)
+

d

N(N − d)

Figure 4.1 illustrates the summary of the methodologies including the parts of 4.1, 4.2, and 4.3.

Beginning with latent variable selection in the section 4.1, the formulation (4.5) is proposed to select

m effective latent variables by applying the least-squares problem with penalty term that shrinks

some columns of A to zero. Latent variables related to such zero columns are removed. Since

the penalty term is controlled by regularization parameter γ, we solve the problem (4.5) by varying

γ ∈ [γ0, γmax] in order to vary the sparsity patterns of A where γmax is the γ that penalizes all entries

in A to become zero. Besides, the columns of B related with such removed latent variables will also

be zero automatically. After that, we remove zero columns that illustrate ineffective latent variables in

A andB, saying, columns ofA andB are reduced from r tom. Obviously, x related to such removed

latent variables expressing by rows of B are also deleted, saying, rows of B are reduced from p to p̃.

As a result, from this step,A andB with different structure are provided depending on a various value

of γ. Following by the section 4.2, least-squares estimation for reduced MIMIC model is proposed

to find A and B based on provided structure of A and B from latent variable selection step. Because
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of biconvexity of latent variables reduction and least-squares estimation for reduced MIMIC model

steps problems, alternating minimization is commonly applied to solve these problems. As we know,

various structures of A and B are given depending on γ. Lastly, in the section 4.3, we perform

a model selection via information criterions to select γ from a set of candidate γ’s which provide

different model structure.

Figure 4.1: The diagram of the proposed method.
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4.4 Numerical Methods

This section provides numerical methods to solve the proposed formulations, including, latent

variable selection (4.5) and Least-squares estimation for reduced MIMIC model (4.6). These two

problems are the biconvex optimization, i.e., whenB is fixed, the problem is convex inA; conversely,

when A is fixed, the problem is convex in B. To solve a biconvex problem, a commonly known

alternating minimization is applied.

Biconvex problem and Alternating minimization

Alternating minimization is widely used to solve a biconvex problem. Technically, it fixes

one variable to be constant and optimizes over the other variable. A common stopping criterion for

alternating minimization is to alternate the problem until the solution and the objective function value

converges. The following provides the definition of biconvex problem and the process of alternating

minimization.

For nonempty and convex sets A ⊆ Rm and B ⊆ Rn , biconvex set C ⊆ A × B and given

Ca? := {b ∈ B | (a?, b) ∈ C} and Cb? := {a ∈ A | (a, b?) ∈ C}. According to the form of biconvex

problem,

minimize
a,b

{f(a, b) : (a, b) ∈ C}. (4.9)

To solve the biconvex problem, alternating minimization is applied. Denote (ai, bi) be the

solution of the problem at iteration i. Start with an initial point z0 = (a0, b0) ∈ C and set iteration

index i = 0.

• When bi is fixed, solve the convex problem:

minimize
a

{f(a, bi) : a ∈ Cbi}. (4.10)

If there exists an optimal solution a? ∈ Cbi to this problem, set ai+1 = a?, otherwise, STOP.

• When ai+1 is fixed, solve the convex problem:

minimize
b

{f(ai+1, b) : b ∈ Cai+1}. (4.11)

If there exists an optimal solution b? ∈ Cai+1 to this problem, set bi+1 = b?, otherwise, STOP.

Next, set zi+1 = (ai+1, bi+1). If a stopping criterion is satisfied, then stop, otherwise set i = i+ 1.

The solutions from this method are in general not assured to converge to the global minimum

but those solutions are guaranteed that when they converge, they converge to a partial optimum [Hastie

et al., 2015, §5]. Let f : C → R be a given function and let (a?, b?) ∈ C. Then, (a?, b?) is called a

partial optimum of f , if

f(a?, b?) ≤ (a?, b) for all b ∈ Ca? and f(a?, b?) ≤ (a, b?) for all a ∈ Cb? .
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Although the solution from alternating minimization is generally not guaranteed a convergence,

the convergence is guaranteed under some conditions, i.e., a unique solution from each step of solving,

stated in lemma (3).

Lemma 3. [Gorski et al., 2007] Let the optimization problems (4.10) and (4.11) be solvable. If
for each accumulation point z? = (a?, b?) of the sequence {zi}i∈Z, the optimal solutions of both
problems (4.10) with a = a? and (4.11) with b = b? are unique, then

lim
i→∞
‖zi+1 − zi‖ = 0.

In other words, the convergence of the sequence {z}i∈Z is provided.

In conclusion, the solutions of two subproblems solved by alternating minimization converge

under the assumptions that the problem is solvable and whose solution is uniquely obtained in each

step of alternating minimization. Our two proposed formulations (4.5) and (4.6) are biconvex that

is solved by alternating minimization. Since in each step of alternating minimization is convex,

a solution is unique if the problem is strictly convex. Consequently, the solution is guaranteed to

converge. Next, we provide a numerical method to solve the problem of latent variable selection and

least-square estimation for reduced MIMIC model.

4.4.1 Latent variable selection

The formulation (4.5) is the problem:

minimize ‖Y −ABTX‖2F + γ
∑r

i=1‖Ai‖2

subject to P(B) = 0

with variables A ∈ Rq×r, B ∈ Rp×r. The two alternating steps can be described as follows.

• When B is fixed, the optimization problem (4.5) is reduced to the following group lasso prob-

lem:

minimize ‖Y −ABTX‖2F + γ
∑r

i=1‖Ai‖2 (4.12)

with variables A ∈ Rq×r.

This problem can be solved by many existing efficient convex program solvers such as MAT-

LAB package CVX [Grantl et al., 2014]. Moreover, [Songsiri, 2015] apply a fast alternating direc-

tions method of multipliers (ADMM) algorithm to solve a problem which is class of group fused lasso

formulation. This method provides advantage in the sense of efficiency of the ADMM algorithm in

a high-dimensional setting. Consequently, we apply ADMM following the methodology and codes

in [Songsiri, 2015] (the detail is provided in the section 7.3).

The uniqueness of the solution of (4.12) can be obtained if its cost function is strictly convex.

Since the penalty term is a norm ofA and hence, it is strictly convex (a norm is a strictly convex func-

tion). Moreover, a sum of strictly convex and convex functions is strictly convex. Therefore, (4.12)

has a strictly convex cost objective and therefore has a unique solution.
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• When A is fixed, the optimization problem (4.5) is reduced to

minimize ‖Y −ABTX‖2F
subject to P(B) = 0

(4.13)

with variables B ∈ Rp×r. The problem (4.13) can be considered as linear least-squares problem with

linear constraints and it can be reduced to another unconstrained least squares (4.14). To eliminate the

constraints, we opt to form the problem in a vector form as an unconstrained least-squares problem:

minimize
β

‖w − Zβ‖22. (4.14)

The solution of this problem has a closed form of β = (ZTZ)−1ZTw where

the entries in Z ∈ RqN×p are functions of A and X ,

w ∈ RqN is derived from vectorization of Y ,

β ∈ Rp is derived from vectorization of B (see the details in Appendix 7.1).
These unconstrained least-squares problems are solved by least-squares method. Note that a

solution β is unique under the condition that Z is full rank and skinny. In problem (4.14), the matrix

Z is typically skinny (qN > p) because N , the sample size, is generally large. It is thus left to check

that Z that has structure shown in Appendix 7.1 is full rank or not and the condition depends on A

and X .

We find A and B from the problem (4.12) and (4.13), respectively, as varies γ ∈
[
0, γmax

]
where γmax corresponds to the value of γ that results in zero solution of A in the problem (4.12).

Suppose we obtain convergence from solving the problem (4.5), the zero columns of A indicate that

the latent variables. Consequently, the columns of B and x’s that are related to such latent variables

must be further eliminated Accordingly, A and B after we removed unimportant latent variables will

havem columns and variables in x and rows ofB are reduced from p to p̃. In other words,A ∈ Rq×m

and B ∈ Rp̃×m are provided, i.e., there are m highly effective latent variables.
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4.4.2 Least-squares estimation for reduced MIMIC model

The formulation (4.6) is the problem:

minimize ‖Y −ABT X̃‖2F
subject to P(B) = 0

with variables A ∈ Rq×m and B ∈ Rp̃×m. The two alternating steps are as follows.

• When B is fixed, the optimization problem (4.6) is reduced to the following problem:

minimize ‖Y −ABT X̃‖2F (4.15)

with variables A ∈ Rq×m.

• When A is fixed, the optimization problem (4.6) is reduced to

minimize ‖Y −ABT X̃‖2F
subject to P(B) = 0

(4.16)

with variables B ∈ Rp̃×m.

To obtain the closed from solution of the problems (4.15) and (4.16), we can reduce the prob-

lem to unconstrained least-squares problems with a different number of variables. Consequently, we

opt to convert a matrix form into a vector form of (4.14) (see the details in Appendix 7.1).

For the problem (4.15), the entries in Z ∈ RqN×qm are functions of B and X̃ ,

w ∈ RqN is a vectorization of Y ,

β ∈ Rqm is a vectorization of A.
In the same way,

for the problem (4.16), the entries in Z ∈ RqN×p̃ are functions of A and X̃ ,

w ∈ RqN is a vectorization of Y ,

β ∈ Rp̃ is a vectorization of B.

Note that a solution β is unique under the condition that Z is full rank and skinny. The structure

of Z provided in the Appendix 7.1. Z is skinny when N > m for the problem (4.15) and qN > p̃ for

the problem (4.16) and those two conditions are easily satisfied when N is large. Equivalently, (4.15)

and (4.16) have unique solutions and these two unconstrained least-squares problems are solved by

least-squares method.

From our experimental result for solving the problem (4.5) and (4.6), we found that sometimes,

the solution changes following initial condition that we determine since the solution is local optima

of nonlinear optimization problem. Therefore, a meaningful initial point should be chosen. Next, we

suggest an initialization method used in the alternating minimization.
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4.4.3 Initialization of alternating minimization

When solving a nonconvex problem by any iterative methods, different choices of initial value

may lead to different local optima. This is then quite a general issue when alternating minimization

is applied. Typically, a meaningful initial guess is chosen though there are several ways to specify an

initial point denoted by (A0, B0). Typically we solve the latent variable selection problem (4.5) for

several values of γ, denoted by γ(1), . . . , γ(M) to obtain M models with various complexities. We

first suggest to solve (4.5) with γ(1) = 0 by a special choice of (A0, B0) and use the obtained optimal

solution (A,B) as the initial (A0, B0) when solving (4.5) with the next value of γ, saying γ(2). This

procedure repeats until solving (4.5) with the last γ and will be referred to as a warm start method in

our experiment.

Speaking of choosing a good (A0, B0) when solving (4.5) with γ = 0, note that this is essen-

tially solving a least-squares problem in (A,B). The cost function can be regarded as ‖Y − FX‖F
where F = ABT . We can then propose to firstly solve the least-square for the solution F0, factorize

F0 asA0B
T
0 , and use this (A0, B0) as an initial guess when solving (4.5) by alternating minimization.

To factorize F0 as A0B
T
0 , we examine the rank of F as follows. Since rank(F ) = rank(ABT ) ≤

min{rank(A), rank(B)} = min{q, p, r}, we know that rank(F ) ≤ r in general. If rank(F ) = r,

F0 can be factorized using the singular value decomposition (SVD) that F0 = UDV T (the detail is

provided in the section 3.4), and let A0 = U and B0 = V DT . In the other case, when rank(F ) < r,

we cannot factorize F using SVD since the factor U would have the number of columns less than r

and defining A0 = U is not what we desire as A0 must have r columns. Therefore, we opt to choose

a dense A0 randomly and obtain B0 from F0 = A0B
T
0 .

According to the initial point for other γ’s, we apply warm start, i.e., the solution of the formu-

lation with previous γ will be initial condition of the formulation with next γ. Moreover, it guaran-

tees the consistency of zero columns in A and B, in other words, zero columns will not return to be

nonzero when γ increases when solving the group lasso problem by ADMM algorithm (see the proof

in Appendix 7.3).

According to the problem (4.6), we initialize (A0, B0) from the optimal (A,B) from latent

variable selection that removes zero columns in A and B and removes some rows of B related to

ineffective latent variables. Because this initial point is optimal solution from latent variable selection,

it will be a good choice to be the initial point of least-squares estimation for reduced MIMIC model.
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EXPERIMENTAL RESULTS

This chapter provides all numerical experiments and results of the two proposed formulations:

latent variable selection and least-squares estimation for reduced MIMIC model. We provide simu-

lation results, real data application results and their interpretations. In particular, the performance of

the model estimation indicated by ROC curves and accuracy of model prediction are obtained.

According to simulation experiments, we assume a ground-truth model parametrized by Atrue

and Btrue, with some zero columns illustrating ineffective latent variables. The objective of simula-

tion process is to show the performance of our formulations by showing that our formulations predict

effective and ineffective latent variables correctly or not. The simulation process is that we generate

standard normal random variable X ∈ Rp×N , Atrue ∈ Rq×r with A2, A4, A6 = 0, Btrue ∈ Rp×r

with zero structure showed in Figure 1.2 where p = 7, q = 18, r = 7 and N = 200. Next, we

generate Ytrue ∈ Rq×N following the equation Ytrue = AtrueB
T
trueX + ε where ε ∼ N (0, I) with

var(y) = 10.8967 averaged from 50 samples. Moreover, we vary 100 values of γ ∈ [0, γmax] where

γmax corresponds to the value of γ that results in the zero solution of A in the problem (4.5).

5.1 Illustration of Latent variable selection

This section demonstrates the numerical results of illustrative sample of the proposed formula-

tions (4.5) and (4.6) that is applied to find optimal A and B for each γ. We investigate the estimated

value of a sparsity pattern of A and BIC scores as γ varies.

Sparsity patterns of A as γ varies

One way to investigate zero columns of A is to calculate the Euclidean norm of each column

as γ varies shown in Figure 5.1a. According to Figure 5.1a, we notice that the norms of each column

of A are shrunk to zero when γ increases and all columns of A are zero at γmax. However, the

norms of some columns of A is close to zero rapidly; therefore, it is difficult to investigate the result.

Figure 5.1b shows the larger version of the highlight area in Figure 5.1a when γ/γmax ∈ [0, 0.001]

in order to notice the convergence of norm for some Ai. The result shows that A2, A4, and A6 which

are zero columns in Atrue are the first three columns approaching zero.
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The same conclusion can be illustrated as follows. We use a binary matrix including colored

squares and colorless squares illustrating nonzero entries and zero entries in A, respectively. Accord-

ing to Figure 5.2, beginning with γ = 0, A is dense and while γ = γmax, A is a zero matrix. We can

notice that when γ is larger, sparsity of A is increased. As previously mentioned, the 2nd, 4th, and

6th columns of Atrue that we generate are zero. The result shows that using an appropriate value of γ

gives A that has the zero columns as same as Atrue.
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(a) When γ is larger, A becomes sparser and when γ = γmax, A is zero matrix.
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(b) The figure is zoomed to show the highlight area of the figure 5.1a.

Figure 5.1: Norm of the ith column of A as γ varies.
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Figure 5.2: Trend of zero pattern in A as γ varies: when γ increases, A becomes sparser.
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BIC scores as γ varies

When γ is large, A contains many zero columns leading to low value of penalty term in the

problem (4.5) and has low goodness of fit. More zero columns structure induces more bias to the

model although variance is lower. Figure 5.3 (top) illustrates the relationship between bias and vari-

ance indicated by column sum norm of A (red star line) and norm of prediction error (blue square

line), respectively. We observe that when the value of γ is varied from 0 to the middle range of γmax

(log-scale), the norm of error is quite low as the number of zero column in A is similar to Atrue. In

that case, the value of prediction error is low implying low bias but the variance of parameter is high

as shown by the high value of the column sum norm of A. However, when the value of γ is closer

to γmax, A becomes sparser and the norm of error becomes larger. The penalty term, i.e., the sum

of norm of Ai, monotonically decreases when the value of γ increases because of a larger number

of zero columns in A. This case demonstrates low variance and high bias of the model. Information

criterion which considers a trade-off between goodness of fit and complexity of the model is suitable

for model selection that is to choose γ.

We follow the methodology shown in Figure 4.1, and note that we choose to apply BIC for

model selection. γ that corresponds to the minimum BIC score is selected since it minimizes the

combination of bias and variance. Figure 5.3 (bottom) shows BIC scores as γ varies. At γ which

provides efficient latent variables as same as in the true model, BIC score is lowest showing the

optimal trade-off between bias and variance of the model. When γ is larger, the estimated model is

more discrepant from the true model. Therefore,A andB from such γ is selected to be an appropriate

solution of the proposed formulation (4.6).
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Figure 5.3: As γ varies, norm of error and value of penalty term that are inverse illustrates the trade-
off between goodness of fit and model complexity. At an appropriate γ, BIC is minimum (the red
circle) and such γ is selected to be the suitable penalty parameter of the model.
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5.2 Performance of latent variable selection

This section illustrates a performance of latent variable selection by showing that our formula-

tions can predict zero columns of A correctly or not. We provide Receiver Operating Characteristic

(ROC) curve and accuracy of predicted latent variable selection to evaluate the performance of the

proposed formulations.

5.2.1 Receiver Operating Characteristic (ROC) curve

Given positive is nonzero column on A and negative is zero column in A. The four outcomes

that are True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) are

defined as:

True positive (TP): the number of correctly identified columns as nonzero

(nonzero columns in Â that are in Atrue),

False positive (FP): the number of incorrectly identified columns as nonzero

(nonzero columns in Â that are not in Atrue),

True negative (TN): the number of correctly identified columns as zero

(zero columns in Â that are in Atrue),

False negative (FN): the number of incorrectly identified columns as zero

(zero columns in Â that are not in Atrue).

To illustrate the performance of identifying the zeros on A, common measures are

True positive rate (TPR) = TP/(TP+FN), and False positive rate (FPR) = FP/(FP+TN).

TPR shows correct positive columns occur among all positive samples and FPR shows incorrect

positive columns occur among all negative samples.

Receiver Operating Characteristic (ROC) curve is a plot of TPR versus FPR by varying γ from

0 to γmax. It illustrates the effectiveness of the formulation by showing an ability to predict positions

of zero and nonzero columns. At γ = 0, Â is dense so nonzero columns in Atrue are all correctly

identified and zero columns in Atrue are all incorrectly identified leading to having high TPR and

FPR (top-right corner). When γ increases, a number of zero columns in Â tends to also increase, we

anticipate that FPR will be decreased. Accordingly, a good performance of the formulation provides

ROC curve lying close to the top-left corner and at least lies above the diagonal line, saying that

there are some values of regularized parameter giving high TPR and low FPR simultaneously, i.e., the

accuracy of prediction is high. We evaluate the performance proposed formulation via ROC curves

with various settings including ROC curves with different initialized method, different sample size,

and different number of zero columns in Atrue as γ varies. Each point on ROC curve is generated by

plotting TPR against FPR averaged over 50 runs at each γ and ROC curve is obtained by varying γ

from 0 to γmax.
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ROC curves with different initialization methods

In general, in the case of applying the same initial point for all γ, zero columns in A and B can

return to be nonzero when γ increases. However, using warm start guaranteed the consistency of zero

columns in A and B, in other words, zero columns will not return to be nonzero when γ increases

explained in section (4.4.3). Figure 5.4 illustrates ROC curves of results from our formulations when

we use the same initial point for all γ versus initialize with warm start. The results show that the

performance of both methods yield similarly good results. According to the method of the same initial

point for all γ, the trend of ROC curve is not smooth since nonzero columns of A do not monotonically

decrease when γ increases, meaning that zero column of A can be returned to nonzero column leading

to a fluctuation of FPR. However, initialization of warm start guarantees the consistency of estimated

zero columns; consequently, we apply warm start method to our experiment.
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Figure 5.4: A comparison of ROC curves between two methods: initialization with the same initial
point for all γ and warm start.

ROC curves with different sample sizes

We investigate the ability of latent variable selection when sample of measurement (N) is

varied via ROC curves in the Figure 5.5. In this experiment, we vary three sample sizes as 50,

200, and 2000, respectively. The result shows that three ROC curves lie close to the top-left corner

illustrating a good performance of latent variable selection. Moreover, the performance of latent

variable selection increases when the sample size increases because N can reduce variance of Â

leading to higher efficiency for correctly prediction.



48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.5: ROC curve illustrates True Positive Rate (TPR) versus False Positive Rate (FPR) as the
sample size (N ) of data varies.

ROC curves with different zero columns in Atrue

Figure 5.6 shows ROC curves when the number of zero columns in Atrue is varied. We vary

three different zero columns number inAtrue as 1, 3, and 5 columns which are calculated to a sparsity

of 14.29%, 42.86%, and 71.43%, respectively, with N = 200. Similar to the previous results, three

ROC curves lie close to the top-left corner illustrating a good performance of latent variable selec-

tion. Moreover, we can notice that the performance of the proposed formulations with sparser Atrue

outperforms denseAtrue. In other words, our formulations can select significant latent variables more

correctly when the number of true insignificant latent variables is large.
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Figure 5.6: ROC curve illustrates True Positive Rate (TPR) versus False Positive Rate (FPR) as the
number of zero columns in Atrue varies.
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5.2.2 Error of predicted latent variables

In addition, we provide the error of predicted latent variables, i.e., the portion of number of in-

correctly predicted latent variable compared between our method and [Chang et al., 2009] ’s method.

Since [Chang et al., 2009] apply F in reduced MIMIC model (4.3) representing the relationship

between x and y to identify relative impacts of η to y that is calculated by the most effective rela-

tive impact of x (in each η) to y. To be easier to understand, firstly, we provide the mathematical

representation of relative impacts as following. Denote

F =
[
F

(1)
1 · · · F

(1)
n1 F

(2)
1 · · · F

(2)
n2 · · · F

(r)
1 · · · F

(r)
nr

]
where ni is a number of x’s in each ηi, superscript shows the index of η and subscript shows the index

of x related to η. The relative impact from [Chang et al., 2009] ’s solution is measured as:

Relative impacts of ηi to y (RIi) = max {‖F (i)
1 ‖2, ‖F

(i)
2 ‖2, . . . , ‖F

(i)
ni ‖2}. (5.1)

In our method, A illustrates a direct relationship between η and y but [Chang et al., 2009] do

not provide a direct measure in the model. Consequently, to compare the result between our method

and [Chang et al., 2009] ’s method, we need to use the same measure. In [Chang et al., 2009] ’s

method, we let Ai be F (i)
j that maximizes RIi and it is served as a proxy to explain the relationship

from ηi to y. Then we compare the performance via A from our method and [Chang et al., 2009] ’s

method. Let j = 1, . . . , ni, in [Chang et al., 2009] ’s method, Ai is defined as:

Ai = argmax
F

(i)
j

RIi. (5.2)

Note that for [Chang et al., 2009] ’s method, the Wald statistical test is applied to test the significance

of column with a significance level of 0.05. We use Ai as in (5.2) and estimated A from our method

to calculate the portion of incorrectly number of predicted latent variables (total error) that is calcu-

lated by number of both False positive (FP) (number of incorrectly predicted nonzero columns of A)

and False negative (FN) (number of incorrectly predicted zero columns of A), then divided by total

number of all columns of A. Figure 5.7 illustrates the total error, FP, and FN, compared between

our method and [Chang et al., 2009] ’s method when N varies and number of zero columns in Atrue

varies, averaged over 50 runs.

Figure 5.7a, 5.7c, and 5.7e illustrate the total error, FP, and FN, respectively, compared between

our method and [Chang et al., 2009] ’s method when sample size N varies as 50, 200, and 2000, re-

spectively. When N is larger, total error from both our method and [Chang et al., 2009] ’s method

tend to decrease, in other words, insignificant latent variables can be removed more correctly since

using large N can reduce variance of Â leading to higher efficiency for correctly prediction. When N

is middle to large, total error from our method is less than [Chang et al., 2009] ’s. However, [Chang
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et al., 2009] ’s method slightly outperforms ours when N is small because N affects to model selec-

tion criterion, BIC. When N is small, BIC may provides A which has different zero structure from

Atrue leading to have large FN shown by Figure 5.7e.

Figure 5.7b, 5.7d, and 5.7f show the total error, FP, and FN, respectively, compared between

our method and [Chang et al., 2009] ’s method when number of zero columns in Atrue varies as 1, 3,

and 5 columns, respectively, from 7 columns with N = 200. The results show that whatever number

of zero columns in Atrue, our method still predicts insignificant latent variables correctly shown by

zero FP for all three cases in Figure 5.7d. We can investigate that the higher number of zero columns

in Atrue lowers the portion of number of incorrectly predicted latent variables from our method. For

interpretation, since we choose BIC score to select the model, A with a sparser pattern is selected

with high possibility. Consequently, if Atrue is sparser, our method will predict more correctly zero

columns as we expected. If Atrue has a few sparse pattern, to choose AIC or KIC score may provide

more accurate prediction of zero columns. This is a reason why the total error from our method is

higher than [Chang et al., 2009] ’s in the case that A is dense. Referring to the result from [Chang

et al., 2009] ’s experiments, the total error of latent variable prediction dose not significantly change

because the Wald statistical test is applied to test the significance of parameter with a significance

level of 0.05. Consequently, the performance of [Chang et al., 2009] ’s is still the same whatever

number of zero columns in Atrue.

In summary, our method provides the very low percentages of FP (zero FP in almost cases)

illustrating a good performance of the proposed formulations for ineffective latent variables predic-

tion. While [Chang et al., 2009] ’s method provides low FN, both methods perform relatively well

because of low error in almost cases. The performance of our method depends on sample size and true

zero columns in the sense that more sample size or more true zero columns introduces more correct

prediction. Although [Chang et al., 2009] ’s method outperform ours in the case of dense true model,

it depends on the model selection criterion used to select γ in the latent variable selection problem

in the sense that if we choose suitable criterion, the prediction is more correct. Moreover, since our

formulation is principally proposed for removing ineffective latent variables, it performs well if a true

model is sparse.
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Figure 5.7: The portion of number of incorrectly predicted latent variables, including, total error, FP,
and FN, compared between our method and [Chang et al., 2009] ’s method from 50 runs.
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5.3 Relative impact of selected latent variables

In this section, we show normalized relative impacts of η to y in order to investigate the effect

of each latent variable to y. We compare normalized relative impacts between the true solution,

our proposed formulation solution and [Chang et al., 2009] ’s reduced MIMIC model solution from

various settings. The relative impacts from true solution and our solution are calculated by column

norm of A as follows:

Relative impacts of ηi to y (RIi) = ‖Ai‖2. (5.3)

Note that, according to [Chang et al., 2009] ’s solution, the relative impact is calculated by (5.1)

since they apply F which is the indirect relationship between x and y to refer the relationship between

η and y. While true solution and our solution have A that is the direct relationship between η and

y so the relative impacts of both solution can be calculated by column norm of A. To be easier to

compare the effect of latent variable to y, we provide the normalized relative impact of ηi to y which

is calculated from RIi divided by sum of all RI as follows:

Normalized relative impact of ηi to y =
RIi∑
i
RIi

. (5.4)

Next, we rank the true relative impacts of each η in descending order, then rank the relative

impacts averaged from 50 trials from our solution and [Chang et al., 2009] ’s solution following the

index of the true one as shown in the Figure 5.8 and 5.9. Figure 5.8a, 5.8b, and 5.8c illustrate the

normalized relative impacts with sample size of 50, 200, and 2000, respectively. Figure 5.9a, 5.8b,

and 5.9c illustrate the normalized relative impacts with one, three, and five zero columns of Atrue,

respectively, by using a moderate sample size of 200.

In overview, the trend of nonzero relative impacts from η, our solution is almost similar

to [Chang et al., 2009] ’s solution but both solutions are different from the true solution. The zero rela-

tive impacts of η from our solution and the true solution in almost all cases come from the same latent

variables. Likewise, for [Chang et al., 2009] ’s solution, the least influential relative impacts come

from such ineffective η. Although the least influential relative impacts from [Chang et al., 2009] ’s

solution come from η which has true zero relative impacts, its existence of those small relative impact

leads to an ambiguous interpretation that we should consider such η or not if we apply [Chang et al.,

2009] ’s method. Nevertheless, our results overcome their weakness because we apply group lasso

that can remove ineffective latent variable. In other words, our method has a good performance for

removing ineffective latent variables but cannot provide a good performance to estimate the relative

impact for effective latent variables. According to Figure 5.8, when N is larger, some nonzero rela-

tive impacts from our solution is closer to the true solution than the case of small N (obviously notice

from the 3rd latent variable in Figure 5.8). Moreover, some zero relative impacts from [Chang et al.,

2009] ’s solution is closer to the true solution (notice from the 5th and 6th indices in Figure 5.8).

Moreover, our formulation provides less FP than [Chang et al., 2009] ’s in the sense of ineffective
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latent variable prediction since it can predict ineffective latent variable correctly for all runs, saying

that FP is zero. Figure 5.9a shows the relative impacts when Atrue is dense, our formulation provides

FN in 6th index, saying that our formulation selects denser model than the true model. Since we

applied BIC which generally selects sparse model for model selection, [Chang et al., 2009] ’s method

outperforms ours in this case. However, according to Figure 5.9b and 5.9c , our method can predict

ineffective latent variables correctly for all runs when number of zero columns of Atrue is larger, in

other words, there is no FP. Besides, when number of zero columns of Atrue is higher, the nonzero

relative impacts from our solution and [Chang et al., 2009] ’s solution are closer to Atrue shown by

Figure 5.9c.
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(c) Sample size of 2000.

Figure 5.8: With different sample size (N), normalized relative impact of η’s to y (log-scale) sorted
by entry magnitude of true solution: the comparison between the true solution with latent variable
selection solution and [Chang et al., 2009] ’s solution.
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(c) Five zero columns of Atrue.

Figure 5.9: With different zero structure of Atrue, normalized relative impact of η’s to y (log-scale)
sorted by entry magnitude of true solution: the comparison between the true solution with latent
variable selection solution and [Chang et al., 2009] ’s solution.

Simulation experiments, including, illustrative of latent variable selection and performance

evauation had already been obtained in this section. In the next section, we apply our proposed

formulations to real application data to identify effective determinants of capital structure.



54

5.4 Identification of determinants of capital structure

In this section, we apply our proposed formulations to real application data to identify effective

determinants of capital structure. Besides, the relations among determinants and measures of capital

structure and relative impacts of the determinants of capital structure are provided. Moreover, the

direction of relationship between determinants and measures of capital structure from our framework

are compared with the trade-off theory and the pecking order theory. This section is divided into two

parts including data description and results as follow.

5.4.1 Data description

We collect 11,382 observations from North America Fundamental Annual Updates in Com-

pustat - Capital IQ based on 28-year pooled sample for the period 1988-2015. According to the

unconstrained least-squares problems of (4.13) and (4.16), one assumption to obtain a unique solu-

tion is that xi for i = 1, . . . , p must be independent based on the structure of Z; see the discussion in

the section 4.4.1. However, there is a duplicate variable RD/S in both η1 (growth) and η2 (uniqueness)

so we remove RD/S in η1 (growth) in order to get rid of the problem of dependent variables. More-

over, MBA and IND are not provided in the database. Consequently, we do not consider these three

variables and we provide a new path diagram of MIMIC model for real sample data set illustrating

the structure of A and B in the Figure 5.10. The sample data sets consist of seven industries based on

four-digit Standard Industrial Classification (SIC) code, including i) Agriculture, Forestry and Fish-

ing, ii) Mining, iii) Construction, iv) Manufacturing, v) Transportation, Communications, Electric,

Gas and Sanitary service, vi) Wholesale Trade, and vii) Retail Trade.

Since we apply the method of least squares in our formulations and assume that ε has a normal

distribution, before estimating A and B, we standardize all variables by transforming the data into

the normal scores, i.e., subtracting the data by the sample mean and dividing the data by the sample

standard deviation.

Figure 5.10: Path diagram of MIMIC model for real data sets illustrating the structure of A and B
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5.4.2 Results

As we mentioned that we provide five model selection criterions to select latent variables fol-

lowing a zero structure of Â, different criterions may give different results based on its assumptions

and objective. Figure 5.11 illustrates AIC, AICc, BIC, KIC, and KICc scores as γ varies. For each

criterion, γ’s that minimize the information criterion score represented by the blue-circled point will

be selected to use in the formulation of latent variable selection.
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Figure 5.11: AIC, AICc, BIC, KIC, and KICc scores as γ varies: γ’s that minimize the information
criterion score represented by the blue-circled point will be selected to use in the formulation of latent
variable selection.

Figure 5.12 represents the best structure of Â for each criterion selected by γ that minimize each

information criterion score. We can investigate that AIC and AICc choose a dense Â consisted of six

latent variables which makes the model very complex. While BIC, KIC and KICc select a simpler

model than AIC and AICc, i.e., only one latent variable providing the simplest model. Table 5.1

represents the determinants of capital structure which are selected by each criterion. growth is only

one determinant which is selected by all information criterions, in other words, all criterions totally

agree that growth is the effective determinant of capital structure. On the contrary, volatility is not

selected by any criterion implying it is not an effective determinant of capital structure in the seven

industries we are interested in the North America.
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Figure 5.12: Structure of Â as γ varies: AIC and AICc choose very complex Â, while KIC, KICc and
BIC select the simpler one.

Table 5.1: Latent variables which all criterions choose: AIC and AICc choose five determinants that
are growth, uniqueness, non-debt tax shields, collateral value of assets, and profitability. While BIC,
KIC and KICc chooses only growth.

Determinants of

capital structure AIC, AICc BIC KIC, KICc

Growth • • •

Uniqueness •

Non-debt tax shields •

Collateral value of assets •

Profitability •

Volatility

Table 5.2 illustrates the estimated coefficient A selected by various criterions that provide dif-

ferent ineffective latent variables. Figure 5.13 shows the normalized relative impacts of the deter-

minants of capital structure selected by varying information criterions, including, AIC, AICc, BIC,

KIC, and KICc. According to AIC and AICc, the relative impacts are described in descending order

as growth, non-debt tax shields, collateral value of assets, uniqueness, profitability, and volatility. For

BIC, KIC and KICc only one determinant, growth, is selected. Apparently, all information criterions

select growth to be the most proficient determinant of capital structure and volatility is not chosen

by any criterion so it is unimportant determinant in this case. Moreover, the normalized relative im-

pacts calculated by the approach from [Chang et al., 2009] ’s is provided. Their result corresponds to

the five information criterions in the sense that growth and volatility are the most significant and the

ineffective determinants of capital structure, respectively.



57

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

Figure 5.13: Normalized relative impact of the determinants of capital structure selected by varying
information criterions and [Chang et al., 2009] ’s solutions: growth is the most effective determi-
nant while volatility does not influence to the capital structure based on the result from information
criterions and is the least effective based on [Chang et al., 2009] ’s solutions.

One important interpretation is to investigate the predicted sign of the estimated coefficient A

in order to get a direction of relationship between measures and determinants of capital structure.

The direction of relationship between ηi to y is the sign of sum of all entries in Ai. Compared with

Table 2.1, Table 5.3 provides the direction of relationship between debt ratios and i) growth (-), ii)

uniqueness (-), and iii) non-debt tax shields (-) that are consistent with the trade-off theory while prof-

itability (+) is consistent with the pecking order theory. The negative relationship between growth

and debt to equity ratios is supported by [Jensen and Meckling, 1976, Myers, 1977]. Since growing

firms with more investment opportunities have lower debt ratio, they will have less leverage and use

more equity financing to avoid underinvestment and asset substitution problems [Jensen and Meck-

ling, 1976,Myers, 1977]. Moreover, [Myers, 1984] argues that since growth opportunity is intangible

assets, the growing firm has to use less debt to prevent bankruptcy situations. Volatility which is not

selected by any criterion does not affect capital structure according to these kind of industries we ap-

ply. This result is consistent with [Titman and Wessels, 1988] ’s result whose volatility and non-debt

tax shields are statistically insignificant. According to a positive relation of Collateral value of asset

to debt ratio, a firm with high collateral value of asset issues more debt since it has a benefit from

low cost of debt [Myers and Majluf, 1984]. Moreover, because of high collateral value of assets from

fixed assets, a firm is not necessary to reveal all information for obtain long-term debt capital from

financial institutions. Uniqueness is negatively related to debt to equity ratio is supported by [Titman

and Wessels, 1988, Chang et al., 2009]. This can imply that a high uniqueness firm will have high

research and development expenditure used to improve the existing products and provides more liq-

uidity to a firm in the sense that customers will difficult to find other products. Non-debt tax shields

is consistent with the trade-off theory in the sense that it is negatively related to debt to equity ratio.
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It is the reduction in income taxes due to non-debt quantity that are allowed to subtract from taxable

income, e.g., depreciation expenses, investment tax credits. If non-debt tax shields are large, a firm

will have the less debt due to the tax benefits of debt financing [DeAngelo and Masulis, 1980]. Be-

sides, the negative relation between Profitability and leverage is supported by pecking order theory.

A firm with high profitability uses internal fund first because of more retained earnings, then issues

securities, and is followed by issuing new equity. In contrast, a low profit firm uses more debt because

of insufficient internal fund.

As we mentioned in the section 2.1 that the direction of relation between debt ratios and deter-

minants of capital structure provides the benefit about financial policy formulation, when we know

that the empirical results match to either the trade-off theory or the pecking order theory, the capital

structure behavior of a firm is also known. If the direction are consistent with the trade-off theory, it

means that the financing of a firm is considered by the trade-off between the benefit and cost of debt.

If the direction is consistent with the pecking order theory, the capital structure of a firm is formulated

based on asymmetry information. When a firm’s financing behavior is recognized, policy maker will

obtain a policy guide to create a reasonable financing policy. For example, if the government would

like to boost the economic of the capital market, a policy maker may increase taxes to have more

investments based on the trade-off theory. Future research may extend this work to serve as a policy

guide for policy formulation by investigating the behavior of firm’s capital structure in order to reduce

bankruptcy and information asymmetry problems.
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Table 5.2: Estimated coefficient A showing the relationship between the measures and the determi-
nants of capital structure selected by various information criterions.

Criterion

HHH
HHHHy

η
Growth Uniqueness

Non-debt

tax

shields

Collateral

value of

asset

Profitablity Volatility

TD/TE -0.0254 0.0011 0.0022 -0.0002 0.0003

ST/MVE 0.0001 0.0003 -0.0283 0.0049 0.0001

AIC,
AICc

LT/MVE 0.0001 -0.0000 0.0128 0.0022 -0.0001

C/MVE 0.0001 -0.0002 -0.0069 0.0011 0.0000

ST/BVE -0.0605 -0.0051 0.0100 -0.0011 -0.0035

LT/BVE -0.0323 0.0008 0.0056 -0.0005 -0.0000

C/BVE -0.0140 -0.0028 -0.0245 0.0042 -0.0029

TD/TE -0.0220

ST/MVE 0.0001

KIC,
KICc

LT/MVE 0.0000

C/MVE 0.0001

ST/BVE -0.0525

LT/BVE -0.0280

C/BVE -0.0122

TD/TE -0.0220

ST/MVE 0.0001

BIC

LT/MVE 0.0000

C/MVE 0.0001

ST/BVE -0.0525

LT/BVE -0.0280

C/BVE -0.0122
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Table 5.3: Empirical relationship between debt ratio and determinants of capital structure from our
formulation applied to real data. Note that

√
: consistent with theory, X: inconsistent with theory,

blank space: not provide in the theory.

Determinants of capital
structure

Empirical
Relationship

Trade-off
theory

Pecking order
theory

Growth -
√

X

Uniqueness -
√

Non-debt tax shields -
√

Collateral value of assets +

Profitability - X
√

Volatility 0
√ √



CHAPTER VI

CONCLUSION

This thesis provide a scheme to identify the determinants of capital structure whose involved

factors are related via a MIMIC model. Two formulations are proposed to select effective determi-

nants of capital structure and to estimate the relationship between the determinants and the measures

of capital structure based on the MIMIC model. The first formulation is applied to select highly ef-

fective determinants (latent variables). It is a least-squares problem with a 1-norm penalty, says group

lasso problem, to induce a zero structure in the model. Consequently, the procedure of this formula-

tion is that unimportant latent variables will be removed based on the sparsity pattern of parameters

of the model. When ineffective latent variables are removed, the second formulation is least-squares

estimation of reduced MIMIC model to find the remaining parameters of the model illustrating the re-

lationship between the remaining latent and observed variables. Since the two proposed formulations

are biconvex, they are solved by commonly well-known alternating minimization. According to the

simulation experiment, as we assume true coefficient matrices with some zero columns, our proposed

method can remove latent variables correctly with the use of some suitable regularization parameter.

The results show that the performance of latent variable selection increases when the sample size or

zero columns in Atrue increases based on applying BIC to select a model. Moreover, we provide the

comparison of performance between our solution and [Chang et al., 2009] ’s solution. [Chang et al.,

2009] ’s method and ours perform relatively well with low total error of number of predicted latent

variables. In particularly, our solution apparently outperforms [Chang et al., 2009] ’s in the case of

sparse Atrue since our formulation is principally proposed for removing ineffective latent variables, it

performs well if a true model is sparse. Moreover, our method provides very low False Positive indi-

cating a good performance of ineffective latent variables prediction. According to empirical results,

to select an appropriate model in real application data from seven industries in the North America,

we apply AIC, AICc, BIC, KIC, and KICc depending on preferences of users. The normalized rela-

tive impacts of determinants of capital structure show that growth is the most influential determinants

agreed by all information criterions and [Chang et al., 2009] ’s result. On the contrary, volatility is

ineffective determinant since it is not selected by any criterion. Moreover, we compare our results to

the trade-off theory and pecking order theory to perform an appropriate decision to manage capital

in a firm. The direction of relationship between debt ratios and i) growth (-), ii) uniqueness (-), and

iii) non-debt tax shields (-) are consistent with the trade-off theory while profitability (+) is consistent

with the pecking-order theory.
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7.1 The vectorized form of the proposed formulation

This section will explain the transformation of matrix form of (4.15), and (4.16) to the vector form

as (4.14) by vectorization. Let

A =
[
A1 A2 · · · Am

]
= [aij ], for i = 1, . . . , q and j = 1, . . . ,m,

B =
[
B1 B2 · · · Bm

]
= [bij ], for i = 1, . . . , p̃ and j = 1, . . . ,m,

Yvec =
[
y11 · · · yq1 y12 · · · yq2 · · · y1N · · · yqN

]T
.

The problem (4.13),

minimize
B

‖Y −ABT X̃‖2F ,

subject to P(B) = 0,

can be written as a vector form as

minimize
β̃

‖w − Z̃β̃‖22

subject to β̃i = 0 ∀i ∈ Ω,

(7.1)

where Ω is a set of zero entries in B explained from the Figure 1.2.

Consider ABTX =


x11A1b11 · · · xp1A1bp1 x11A2b12 · · · xp1A2bp2 · · · x11Arb1r · · · xp1Arbpr

x12A1b11 · · · xp2A1bp1 x12A2b12 · · · xp2A2bp2 · · · x12Arb1r · · · xp2Arbpr
...

. . .
...

...
. . .

...
...

...
. . .

...

x1NA1b11 · · · xpNA1bp1 x1NA2b12 · · · xpNA2bp2 · · · x1NArb1r · · · xpNArbpr

 .

Consequently, vec(Y −ABTX) =

y11

...

yq1
...

y1N

...

yqN


︸ ︷︷ ︸

w

−


x11A1 · · · xp1A1 x11A2 · · · xp1A2 · · · x11Ar · · · xp1Ar

x12A1 · · · xp2A1 x12A2 · · · xp2A2 · · · x12Ar · · · xp2Ar
...

. . .
...

...
. . .

...
...

...
. . .

...

x1NA1 · · · xpNA1 x1NA2 · · · xpNA2 · · · x1NAr · · · xpNAr


︸ ︷︷ ︸

Z̃



b11

...

bp1
...

b1r
...

bpr


︸ ︷︷ ︸

β̃

.
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Then, we plug β̃i = 0 into the objective function and the problem (7.1) is transformed to un-

constrained problem as the problem (4.14) where β is β̃ with its zero removed and Z is Z̃ that is

removed columns related to zero of β̃ and zero columns of A from the problem (4.12). Consequently,

the problem (4.13) can be vectorized to the problem (4.14).

For the problem (4.15):

minimize
A

‖Y −ABT X̃‖2F ,

it can be written as a vector form as:

minimize
β

‖w − Zβ‖22.

Suppose (i, j) is an index of matrix that we consider, the problem (4.15) can be rewritten as

‖Y −ABT X̃‖2F =
∑

i,j(yij − (ABT X̃)ij)
2

=
∑

i,j(yij −
∑m

k=1 aikgkj)
2

=
∑

i,j(yij −
∑m

k=1 gkjaik)
2

(7.2)

where gkj =
∑p̃

l=1 bklxlj .

If we sort (7.2) sorted by i = 1, . . . , q and fixed j can be written in a vector form as

vec(Y −ABTX) =


y1j

y1j

...

yqj

−

g1t · · · gmt

g1t · · · gmt
. . . · · · . . .

g1t · · · gmt





a11

...

aq1
...

a1m

...

aqm


. (7.3)
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When (7.3) is sorted by j = 1, . . . , N , we get

vec(Y −ABTX) =



y11

...

yq1
...

y1N

...

yqN


︸ ︷︷ ︸

w

−



g11 · · · gm1

g11 · · · gm1

. . . · · · . . .

g11 · · · gm1

g12 · · · gm2

g12 · · · gm2

. . . · · · . . .

g12 · · · gm2

...
...

g1N · · · gmN

g1N · · · gmN
. . . · · · . . .

g1N · · · gmN


︸ ︷︷ ︸

Z



a11

...

aq1
...

a1m

...

aqm


︸ ︷︷ ︸

β

.

Consequently, the problem (4.15) can be vectorized to the problem (4.14).

The vector form of (4.16) is derived in the same way as the problem (4.13) except that the

dimensions of A,B, and X are reduced based on zero columns in A and B.

7.2 Log-likelihood of the model

This section describes the derivation of log-likelihood of the model which is required in model

selection criterion. According to the reduced MIMIC model in term of A and B,

y = ABTx+ ε,

given N independent observations of data set {(x(i), y(i))}Ni=1 where x(i) ∈ Rp and y(i) ∈ Rq and

ε ∼ N (0,Σ). The likelihood of y for parameter θ is defined as:

f(y | x; θ) = f(y | x;A,B,Σ)

= f(y(1), . . . , y(N)|x(1), . . . , x(N);A,B,Σ)

=
1

(2π)N/2(detΣ)N/2
exp

(
−1

2

N∑
i=1

(y(i) −ABTx(i))
T

Σ−1(y(i) −ABTx(i))

)

=
1

(2π)N/2(detΣ)N/2
exp

(
−1

2
tr(Y −ABTX)TΣ−1(Y −ABTX)

)
.
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Log-likelihood function of the model for parameters A,B, and Σ is written as:

L(A,B,Σ) = log f(y|x;A,B,Σ)

= −1

2

(
tr((Y −ABTX)TΣ−1(Y −ABTX)) +N log detΣ +N log 2π

)
−2L(A,B,Σ) = N

(
tr
((Y −ABTX)(Y −ABTX)T

N
Σ−1

)
+ log detΣ + log 2π

)
= N

(
tr(ΣΣ−1) + log detΣ + log 2π

)
= Nq +N log detΣ +N log 2π. (7.4)

If we choose Σ̂ to be the maximum likelihood estimators;

Σ̂ =
1

N

N∑
i=1

ε̂(i)ε̂(i)T =
1

N
(Y − ÂB̂TX)(Y − ÂBTX)T .

To calculate AIC, AICc, BIC, KIC, and KICc, we plug (7.4) into (4.7). However, constant terms

do not affect to the minimization of information criterion score so we ignore the constant terms, then

divided by N to scale down the information criterion score as:

Normalized AIC = log detΣ̂ + 2d
N

Normalized AICc = log detΣ̂ + 2d
N−d−1

Normalized BIC = log detΣ̂ + d logN
N

Normalized KIC = log detΣ̂ + 3d
N

Normalized KICc = log detΣ̂ + d
N(N−d) .

7.3 Consistency of zero column in warm start method

This section explain a consistency of estimating zero columns of the solution in the prob-

lem (4.12) solving by Alternating Direction Method of Multipliers (ADMM) with warm start that we

mention in 4.4.3.

ADMM is a well-known numerical algorithm to solve convex optimization problem by sep-

arating the objective function into two parts of convex function and inviting some auxiliary vari-

ables. [Songsiri, 2015] apply ADMM which is a general efficient numerical algorithm to solve the

group lasso problem characterized as an `1 regularized problem that is convex optimization problem

and we follow methodology from this paper.

According to the group lasso problem (4.12),

minimize
A

‖Y −ABTX‖2F + γ
∑r

i=1‖Ai‖2,
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it can be written in a vector form as following:

minimize
a

‖Ga− yvec‖22 + γ‖a‖2,1 (7.5)

where ‖·‖2,1 is a sum of 2-norm of block vector, for example, denote a = (a1, . . . , aL),

‖a‖2,1 =
L∑
i=1

‖ai‖2.

Besides, the entries in G ∈ RqN×pr are functions of B and X (it is derived in the same way

as Z in the problem (4.15)), yvec ∈ RqN is derived from vectorization of Y , and a ∈ Rpr is derived

from vectorization of A.

To derive consistency of zero column in warm start method, we prove that if Aj and Bj equal

zero at γk, then Aj and Bj equal zero at γk+1 under the assumption of structure of G. Since we apply

alternating minimization to firstly solve A and then solve B, if Aj = 0, then Bj = 0 automatically.

Thereby, we can only prove that if Bj = 0 at γk, then Aj = 0, saying aj = 0 at γk+1.

Before solving (7.5), we have to rearrange this problem into ADMM format as

minimize
x1,x2

1
2‖Gx1 − yvec‖22 + γ‖x2‖2,1

subject to x1 = x2.
(7.6)

In each update step, ADMM algorithm minimizes the augmented Lagrangian defined as following:

L(x1, x2, z) =
1

2
‖Gx1 − yvec‖22 + γ‖x2‖2,1 + zT (x1 − x2) +

ρ

2
‖x1 − x2‖22

with variables x1 ∈ Rpr, x2 ∈ Rpr, and z ∈ Rpr (dual variable), respectively, where the penalty

parameter ρ > 0 controls a speed of convergence. This problem has been proposed in [Songsiri,

2015], therefore we follow the update steps from this paper and it has been described as follows:

x+
1 = argmin

x1

1
2‖Gx1 − yvec‖22 + zT (x1 − x2) + ρ

2‖x1 − x2‖22

= (GTG+ ρI)−1(GT yvec − z + ρx2),

x+
2 = argmin

x2
γ‖x2‖2,1 + zT (x1 − x2) + ρ

2‖x1 − x2‖22

= proxγ/2ρ,L
(
x+

1 + z
ρ

)
where prox is proximal operator of ‖x2‖2,1 [Parikh et al., 2014],

z+ = z + ρ(x+
1 − x

+
2 )

(7.7)

until stopping criterion is satisfied.

According to the update step, we will show that if Bj = 0, then (x+
1 )j and (x+

2 )j = 0 at γk

since this can imply the statement that if Bj = 0 at γk, then Aj = 0, saying aj = 0 at γk+1.
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Let us start with x1-update step. Suppose Bj = 0, we will show that (x+
1 )j = 0. Denote jth

block row ofG, saying (G)j , is (jq − q + 1)th to (jq)th rows ofG. Suppose jth column ofB is zero,

we are interested in jth block row of (GTG+ ρI)−1. Consider a permutation matrix P that permute

the 1st and jth block row, e.g., P =
[
ej e2 · · · e1 ej+1 · · ·

]T
that permutesGTG+ρI so that

the zero block rows and columns become the first block rows and columns. Let 0 be a zero sub-matrix

and be a sub-matrix which does not involved in derivation. If Bj = 0, then

P (GTG+ ρI)P T =

ρI 0

0

 ,
(
P (GTG+ ρI)P T

)−1
=

ρ−1I 0

0

 ,
(
P (GTG+ ρI)P T

)−1

1
=

[
ρ−1I 0

]
. (7.8)

From P = P T and P = P−1, P1 is the first row of P ,(
P (GTG+ ρI)P T

)−1

1
= P1

(
P (GTG+ ρI)P

)−1
P

= eTj
(
P (GTG+ ρI)P

)−1
P

=
(
GTG+ ρI

)−1

j
P

so we obtain
(
GTG+ ρI

)−1

j
P =

[
ρ−1I 0

]
(from (7.8)).

Consequently,
(
GTG+ ρI

)−1

j
=

[
ρ−1I 0

]
P−1

=
[
ρ−1I 0

]
P

=
[
ρ−1I 0

] [
ej e2 · · · e1 ej+1 · · ·

]
=

[
0 0 · · · ρ−1I · · · 0 0

]
.

where ρ−1I is in jth block columns. Therefore, we can always permutes GTG+ ρI so that the zero

block rows and columns become the first block rows and columns and if Bj = 0, we can conclude

that

(
GTG+ ρI

)−1

j
=

[
0 0 · · · ρ−1I · · · 0 0

]
, and

(GT b)j = GTj b = 0.
(7.9)

Note that, when Bj = 0, we have (x2)j = 0. Next, we need (z)j = 0 to get (x+
1 )j = 0. We

can show that (z)j = 0 at kth iteration when k ≥ 1 for any z0. From (7.7) and denote superscript

show iteration of update step, (z1)j = (z0)j + ρ(x1
1)j = 0 since (x1

1)j =
−(z0)j
ρ from the structure of
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(
GTG+ ρI

)−1

j
in (7.9). Consequently, when Bj = 0, then

(x+
1 )j =

(
GTG+ ρI

)−1

j
(GT b+ ρx2 − z)

=
[
0 0 · · · ρ−1I · · · 0 0

](


0


︸ ︷︷ ︸
GT b

+ρ


0


︸ ︷︷ ︸
x2

−


0


︸ ︷︷ ︸
z

)

= 0,

and (x+
2 )j =

(
proxγ/2ρ,L

(
x+

1 + z
ρ

))
j

= max

{
1− γ/2ρ

‖(x+1 )j+
(z)j
ρ
‖22
, 0

}(
(x+

1 )j +
(z)j
ρ

)
= 0 since (x+

1 )j and (z)j are zero.

Since (x+
1 )j = 0 and (x+

2 )j = 0, we can conclude that a+
j = 0, in other words, if Bj = 0 at kth

iteration then aj = 0 at (k + 1)th iteration, i.e., zero columns will not return to be nonzero when γ

increases.

7.4 MATLAB codes of the proposed formulations

This section provides MATLAB codes of functions: latent_selection() to solve the first pro-

posed formulation (4.5) “latent variable selection”, reduced_mimic() to solve the second proposed

formulation (4.6) “least-squares estimation for reduced MIMIC model”, and example of MATLAB

codes for model selection. Note that the function latent_selection() contains subfunctions norm21(),

prox_sumof2norm, and group_lasso() following the method and codes from [Songsiri, 2015]; more-

over, the function shape() is runned before applying reduced_mimic() since it removes zero columns

of A and B from latent_selection(). These codes are used in the simulation process and experiment

for real data described in the following.
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7.4.1 MATLAB codes of latent variable selection

In this part, MATLAB codes for solving the formulation of latent variable selection (4.5) is

provided corresponding to the numerical method in the section 4.4.1 as follows:

1 function [model_latent.A ,model_latent.B,history_latent] =

latent_reduction(X,Y,gamma,Ainit,Binit,IND,rho);

2
3 % solves the following problem via Alternating minization:

4 % minimize || Y-AB'X ||_F^2 + \gamma sum(norm(Ai))

5 % where Ai is i-th column of A

6 % with variables A and B

7
8 % it requires input as follows.

9 % 1) X is p*N matrix where N is number of observations and p is

number of variables in x

10 % 2) Y is q*N matrix where q is number of variables in y

11 % 3) gamma is regularization parameter

12 % 4) Ainit is a q*r initial condition matrix for A

13 % 5) Binit is a p*r initial condition matrix for B

14 % 6) IND is linear indices of nonzero elements in B

15 % 7) rho is the augmented Lagrangian parameter used in group lasso

16
17 % and it returns output

18 % 1) model_latent.A and model_latent.B: A and B that are optimal

solutions.

19 % 2) history_latent is a structure that contains

20 % history_latent.obj_value: the objective value,

21 % history_latent.uniqueB: flag for checking uniqueness of B (return

1 when the solution is unique and 0 when the solution is not

unique),

22 % history_latent.conv_A and history_latent.conv_B: relative error

of A and B for each iteration,

23
24
25 N=length(X(1,:));

26 [q r]=size(Ainit);

27 [p r]=size(Binit);

28
29 epsilon_obj=1e-4; %relative tolerance for objective value

30 epsilon_A=1e-2; %relative tolerance for A

31 epsilon_B=1e-2; %relative tolerance for B

32 itermax=10000;

33
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34 y_vec = Y(:); %vector form of Y

35 X_rep=repmat(kron(X',ones(q,1)),1,r);

36 %use for solving B via alternating minimization

37
38 i=1; %iteration count

39 while i<itermax

40 if i==1;

41 A = Ainit;

42 B = Binit;

43 history_latent.obj_value(i) = ,...

44 (norm(Y-A*B'*X,'fro'))^2+gamma*sum(norms(A));

45 conv_obj_value(i) = history_latent.obj_value(i);

46
47 % check uniqueness of B by vectorizing the

48 % formulation given that A is fixed as follows:

49 % min || y_vec - H_tilde b ||_2^2 with variable 'b'

50 % where b is a vectorized form of B and checking the condition

51 % that H_tilde is full rank and skinny

52
53 % calculate H_tilde

54 A_rep=kron(kron(ones(N,1),A),ones(1,p));

55 H=A_rep.*X_rep;

56 ind_z_B=find(B==zeros); %zero elements in B

57 H_tilde=H;

58 H_tilde(:,ind_z_B)=[]; %H_tilde is H that remove zero col

59 [rowH_tilde colH_tilde]=size(H_tilde);

60 rank_H_tilde=nnz(svd(H_tilde)~=0);

61 %calculate rank(H_tilde) by SVD to avoid numerical error

62 if rank_H_tilde == min(size(H_tilde)) && ,...

63 rowH_tilde > colH_tilde %H_tilde is full rank and skinny

64 history_latent.uniqueB(i)=1; %B is unique

65 else

66 history_latent.uniqueB(i)=0; %B is not unique

67 end

68 else

69
70 % solve A by fixing B and vetorizes the formulation as follows: min

|| y_vec - Ga ||_2^2 +\gamma sum(norm21(a,q)) with variable 'a'

where a is a vectorized form of A

71
72 % calculate G for applying in lasso algorithm

73 G=kron(X'*B,eye(q));

74 ind_zero_G=find(norms(G)==0);
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75 G(:,ind_zero_G)=[]; %remove zero col in G

76
77 ind_zero_col_B=find(norms(B)==0); % index of zero col in B

78 A_new=ones(q,r);

79 A_new(:,ind_zero_col_B)=zeros; % zero col of B

80 if gamma==0

81 a2_b=G\y_vec; %when gamma=0; the problem is least squares.

82 else

83 [a1_b, a2_b,history]=group_lasso(G, y_vec,gamma,q,rho);

84 %a2_b contains nz entries in A but may contains zero

85 end

86 ind_nz_A=find(A_new); %nonzero entries in A

87 A_new(ind_nz_A)=a2_b;

88
89 % solve B by fixing A and vetorize the formulation as

90 % follows: min || y_vec - H_tilde b ||_2^2 with variable 'b'

91
92 % calculate H_tilde

93 A_rep=kron(kron(ones(N,1),A_new),ones(1,p));

94 H=A_rep.*X_rep;

95 ind_zero_col_A=find(norms(A_new)==0); % index of zero col in A

96 B_new=ones(p,r);

97 B_new(:,ind_zero_col_A)=zeros;

98 %force zero col in B following zero col in A

99 B_new(setdiff([1:p*r],IND))=zeros;

100 %plug the constraint of zero path in B

101 ind_z_B=find(B_new==zeros); %zero elements in B

102 ind_nz_B=setdiff(1:p*r,ind_z_B); %nonzero elements in B

103
104 H_tilde=H;

105 H_tilde(:,ind_z_B)=[]; %H_tilde is H that remove zero col

106
107 % check uniqueness of B by checking the condition that

108 % H_tilde is skinny and full rank

109
110 [rowH_tilde,colH_tilde]=size(H_tilde);

111 rank_H_tilde=nnz(svd(H_tilde)~=0);

112 if rank_H_tilde == min(size(H_tilde))&& ,...

113 rowH_tilde > colH_tilde %H_tilde is full rank and skinny

114 history_latent.uniqueB(i)=1; %B is unique

115 else

116 history_latent.uniqueB(i)=0; %B is not unique

117 end
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118
119 % calculate 'b' by least squares

120 b=H_tilde\y_vec;

121 B_new=zeros(p,r);

122 B_new(ind_nz_B)=b;

123
124 % For convergence condition of objective function value

125 history_latent.obj_value(i) = ,...

126 (norm(Y-A_new*B_new'*X,'fro'))^2+gamma*sum(norms(A_new));

127 conv_obj_value(i) = abs(history_latent.obj_value(i) -

history_latent.obj_value(i-1))/abs(history_latent.obj_value

(i-1));

128
129 if (A == zeros)

130 history_latent.conv_A(i)=0;

131 history_latent.conv_B(i)=0;

132 else

133 history_latent.conv_A(i) = norm(A_new-A,'fro')/norm(A,'fro');

134 history_latent.conv_B(i) = norm(B_new-B,'fro')/norm(B,'fro');

135 end

136 A=A_new;

137 B=B_new;

138
139 if (conv_obj_value(i) <= epsilon_obj) && (history_latent.

conv_A(i) <=epsilon_A) && (history_latent.conv_B(i) <=

epsilon_B)

140 history_latent.A=A;

141 history_latent.B=B;

142 break;

143 end

144 end

145 i=i+1;

146 end
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• group_lasso() is applied to solve the group lasso problem (4.12) based on the vector form.

1 function [x1, x2,history] = group_lasso(G, b,lambda,p,rho,

varargin)

2 % group_lassooff Solve group lasso problem via ADMM

3 % [x, history] = group_lassooff(G, b,p,lambda, rho);

4 % solves the following problem via ADMM:

5 %

6 % minimize || Gx - b ||_2^2 + \lambda sum(norm(x,2))

7 %

8 % nn is the total length of x

9 % p is the length of subblocks in x

10 %

11 % The solution is returned in the vector x, and the sparse

version is in x2

12 % history is a structure that contains the objective value,

the primal and

13 % dual residual norms, and the tolerances for the primal and

dual residual

14 % norms at each iteration.

15 %

16 % rho is the augmented Lagrangian parameter.

17 %

18 % BLOCK_SIZE_SUM2NORM is an integer indicating the block size

when computing the sum of norm

19 %

20 % varargin is 'initial condition' for x (optional)

21
22 PRINT_RESULT = 1;

23 FREQ_PRINT = 10;

24 MAXITERS = 20000;

25 ABSTOL = 1e-6;

26 RELTOL = 1e-6;

27
28 % store variables

29 nn = size(G,2);

30
31 % nn = n^2*p; np = (n^2-n)*p;

32 Gtb = G'*b;

33
34 L = chol(sparse(G'*G+rho) ,'lower');

35 L = sparse(L); U = L';

36
37
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38 %% ADMM solver

39
40 optargin = size(varargin,2);

41
42 if optargin == 0,

43 x1 = zeros(nn,1);

44 else

45 x1 = varargin{1};

46 end

47 x2 = x1;

48 z = zeros(nn,1);

49
50 if ~PRINT_RESULT

51 fprintf('%3s\t%10s\t%10s\t%10s\t%10s\t%10s\n', 'iter', ...

52 'r norm', 'eps pri', 's norm', 'eps dual', 'objective');

53 end

54
55 for k = 1:MAXITERS

56 % x1-update

57 q = Gtb + (rho*x2-z); % temporary value

58 x1 = U \ (L \ q); % x1 is not generally sparse

59
60 % x2-update

61 x2old = x2;

62 x2 = prox_sumof2norm(x1+z/rho,p,lambda/2/rho);

63
64 % z-udpate

65 z = z + rho*(x1 - x2);

66
67 % stopping criterion

68 obj = 0.5*norm(G*x1-b)^2+lambda/2*norm21(x2,p);

69
70 history.objval(k) = obj;

71 history.r_norm(k) = norm(x1-x2);

72 history.s_norm(k) = norm(rho*(x2-x2old));

73 history.eps_pri(k) = sqrt(nn)*ABSTOL + RELTOL*max(norm(x1)

, norm(x2));

74 history.eps_dual(k)= sqrt(nn)*ABSTOL + RELTOL*norm(z);

75
76 if (PRINT_RESULT && mod(k,FREQ_PRINT) == 0)

77 fprintf('%3d\t%10.4f\t%10.4f\t%10.4f\t%10.4f\t%10.2f\n

', k, ...

78 history.r_norm(k), history.eps_pri(k), ...
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79 history.s_norm(k), history.eps_dual(k), history.

objval(k));

80 end

81
82 if (history.r_norm(k) < history.eps_pri(k) && ...

83 history.s_norm(k) < history.eps_dual(k))

84 break;

85 end

86 end

87 end

• norm21() is applied to calculate a group norm of vector in group_lasso() .

1 function[y,w] = norm21(x,m)

2 % NORM21 return the group norm of an n-dimensional vector x

3 % where x = (x1,x2,...,xM) and x1,x2,...,xM are vectors of

size m

4 % In other words, we chop x in to k subvectors and each

subvector has size m

5 %

6 % Therefore, mod(n,m) must be zero

7 %

8 % y = NORM21(x,m) = sum_{j=1}^M || xj ||_2

9 % w = [ ||x1|| ||x2|| ... ||xM|| ]

10
11 n = length(x);

12 if mod(n,m)~= 0

13 error('mod(n,m) must be zero. Enter a new m');

14 else

15 M = floor(n/m);

16 end

17
18 if m==1

19 y = norm(x,1); % typical l1-norm

20 w = abs(x);

21 else

22 z = reshape(x,m,M); % z = [x1 x2 ... xM]

23 w = norms(z,2)'; % use norms in CVX

24 y = sum(w);

25 end
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• prox_sumof2norm is applied to calculate the proximal operator in group_lasso().

1 function [x] = prox_sumof2norm(u,p,a)

2
3 % PROX_SUMOF2NORM computes the proximal operator of a*f where

4 % f(x) = sum_{k=1}^K ||xk ||_2

5 % where xk is p x 1 and 'a' is a scalar

6 % The proximal operator of f is the block soft thresholding

7 % prox_{af}(u) _{kth block} = max(1- a/||uk||_2, 0 )* uk

8 % USAGE: [x] = prox_sumof2norm(u,p,a)

9 % u = (u1,u2,...,uN) where uk has size p x 1

10
11 n = length(u);

12 if mod(n,p)~= 0

13 error('mod(n,p) must be zero. Enter a new p');

14 else

15 M = floor(n/p);

16 end

17 z = reshape(u,p,M); % z = [u1 u2 ... uM]

18 w = norms(z,2); % use norms in CVX

19
20 z = z.*repmat(pos(1 - a./w),p,1);

21 x = z(:);
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• shape() is applied to remove zero columns ofA andB from latent variable selection to eliminate

ineffective latent variables and also remove some rows of B related to such insignificant latent

variables.

1 function [A_new_res,B_new_res,X_res] = shape(A,B,X,index_B)

2 %function shape is applied to delete zero columns of A and B

3 %and also some rows of B related to ineffective latent

variables

4
5 %remove zero column of A

6 ind_zero_col_A = find(sum(abs(A)) == 0);

7 ind_zero_col_A =sort(ind_zero_col_A,'descend');

8 A_new_res = A;

9 A_new_res( :, ~any(A_new_res,1) ) = [];

10
11 %insert index_B

12 %remove zero columns of B (and also remove the rows

corresponding to to those columns)

13 B_new_res = B;

14 X_res = X;

15 h=length(ind_zero_col_A);

16
17 %remove row

18 for i=1:h

19 for j=1:length(A)

20 if ind_zero_col_A(:,i)==j

21 ind_B_res=find(index_B(:,2)==j); % index

22 B_new_res(ind_B_res ,:) = [];

23 X_res(ind_B_res,:) = [];

24 end

25 end

26 end

27 %remove col later

28 B_new_res( :, ~any(B_new_res,1) ) = [];

29 end
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7.4.2 MATLAB codes of least-squares estimation for reduced MIMIC model

In this part, MATLAB codes for solving the formulation of least-squares estimation for re-

duced MIMIC model (4.6) is provided corresponding to the numerical method in the section 4.4.2 as

follows:

1 [model.A,model.B,model.Sigma,model.L,model.d,history_reducedMIMIC]

= reduced_mimic(Y,X_res,Ainit,Binit,index_B)

2
3 % solves the following problem via Alternating minization:

4 % minimize || Y-AB'X ||_F^2 with variables A and B

5
6 % it requires input as follows.

7 % 1) Y is q*N matrix where p is number of variables in y

8 % 2) X_res is p_tilde*N matrix where p_tilde is number of remaining

variables in x

9 % 3) Ainit is a q*m initial condition matrix for A

10 % 4) Binit is a p*m initial condition matrix for B

11 % 5) index_B is indeices of B_ij that are fixed to be nonzero

according to MIMIC path diagram by inseting first column for i

and second column for j eg. nonzero elements are B_11, B_23,

B_56 index_B=[1 1;2 3; 5 6].

12
13 % and it returns output

14 % 1) model.A and model.B: A and B that are optimal solutions,

15 % 2) model.Sigma: covariance matrix of prediction error,

16 % 3) model.L: likelihood value,

17 % 4) model.d: no.of free parameters.

18 % 5) history_reducedMIMIC is a structure that contains

19 % history_reducedMIMIC.conv_A and history_reducedMIMIC.conv_B:

relative error of A and B for each iteration,

20 % history_reducedMIMIC.obj_value: objective value,

21 % history_reducedMIMIC.uniqueA and B: flag for checking uniqueness

of A and B (return 1 when the solution is unique and 0 when the

solution is not unique),

22
23
24 epsilon_obj=1e-4; %relative tolerance for objective value

25 epsilon_A=1e-2; %relative tolerance for A

26 epsilon_B=1e-2; %relative tolerance for B

27 itermax=10000;

28
29 y_vec = Y(:); %vector form of Y

30 N=length(Y(1,:));
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31 i=1; %iteration count

32 while i<itermax

33 if i==1;

34 A_res=Ainit;

35 B_res=Binit;

36 [q m]=size(A_res);

37 [p m]=size(B_res);

38 history_reducedMIMIC.obj_value(i) = ,...

39 (norm(Y-A_res*B_res'*X_res,'fro'))^2;

40 conv_obj_value(i) = history_reducedMIMIC.obj_value(i);

41
42 % check uniqueness of A by vectorizing the

43 % formulation given that B is fixed as follows:

44 % min || y_vec - Ga ||_2^2 with variable 'a'

45 % where a is a vectorized form of A and checking the condition

46 % that G is full rank and skinny

47
48 % calculate G

49 G=kron(X_res'*B_res,eye(q));

50 [rowG colG]=size(G);

51 rank_G=nnz(svd(G)~=0);

52 if rank_G == min(size(G))&& rowG > colG %G is full rank and

skinny

53 history_reducedMIMIC.uniqueA(i)=1; %A is unique

54 else

55 history_reducedMIMIC.uniqueA(i)=0; %A is not unique

56 end

57
58 % check uniqueness of B by vectorizing the

59 % formulation given that A is fixed as follows:

60 % min || y_vec - H_tilde b ||_2^2 with variable 'b'

61 % where b is a vectorized form of B and checking the condition

62 % that H_tilde is full rank and skinny

63
64 % calculate H_tilde

65 X_res_rep=repmat(kron(X_res',ones(q,1)),1,m);

66 A_res_rep=kron(kron(ones(N,1),A_res),ones(1,p));

67 H=A_res_rep.*X_res_rep;

68 ind_z_B_res=find(B_res==zeros); %zero elements in B

69
70 H_tilde=H;

71 H_tilde(:,ind_z_B_res)=[]; %H_tilde is H that remove zero col

72 [rowH_tilde colH_tilde]=size(H_tilde);
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73 rank_H_tilde=nnz(svd(H_tilde)~=0);

74 %calculate rank(H_tilde) by SVD to avoid numerical error

75 if rank_H_tilde == min(size(H_tilde))&& rowH_tilde >

colH_tilde %H_tilde is full rank and skinny

76 history_reducedMIMIC.uniqueB(i)=1; %B is unique

77 else

78 history_reducedMIMIC.uniqueB(i)=0; %B is not unique

79 end

80 else

81 % solve A by fixing B and vetorize the formulation as

82 % follows: min || y_vec - Ga ||_2^2 with variable 'a'

83 % where 'a' is a vectorized form of A

84 % check uniqueness of A by checking the condition that

85 % G is full rank and skinny

86
87 % calculate G

88 G=kron(X_res'*B_res,eye(q));

89 [rowG colG]=size(G);

90 rank_G=nnz(svd(G)~=0);

91 if rank_G == min(size(G))&& rowG > colG %G is full rank and

skinny

92 history_reducedMIMIC.uniqueA(i)=1; %A is unique

93 else

94 history_reducedMIMIC.uniqueA(i)=0; %A is not unique

95 end

96 %calculate 'a' by least squares

97 a=G\y_vec;

98 A_new_res=reshape(a,q,m);

99
100 % solve B by fixing A and vetorize the formulation as

101 % follows: min || y_vec - H_tilde b ||_2^2 with variable 'b'

102
103 % calculate H_tilde

104 X_res_rep=repmat(kron(X_res',ones(q,1)),1,m);

105 A_res_rep=kron(kron(ones(N,1),A_new_res),ones(1,p));

106 H=A_res_rep.*X_res_rep;

107
108 ind_z_B_res=find(B_res==0); %zero elements in B

109 ind_nz_B_res=setdiff(1:p*m,ind_z_B_res);%nonzero elements in B

110
111 H_tilde=H;

112 H_tilde(:,ind_z_B_res)=[]; %H_tilde is H that remove zero col

113



88

114 %calculate 'b' by least squares

115 b=H_tilde\y_vec;

116 B_new_res=zeros(p,m);

117 B_new_res(ind_nz_B_res)=b;

118
119 % check uniqueness of B by checking the condition that

120 % H_tilde is skinny and full rank

121 [rowH_tilde colH_tilde]=size(H_tilde);

122 rank_H_tilde=nnz(svd(H_tilde)~=0);

123 if rank_H_tilde == min(size(H_tilde))&& rowH_tilde >

colH_tilde %H_tilde is full rank and skinny

124 history_reducedMIMIC.uniqueB(i)=1; %B is unique

125 else

126 history_reducedMIMIC.uniqueB(i)=0; %B is not unique

127 end

128
129 % For convergence condition of objective function value

130 history_reducedMIMIC.obj_value(i) = (norm(Y-A_new_res*

B_new_res'*X_res,'fro'))^2;

131 conv_obj_value(i) = abs(history_reducedMIMIC.obj_value(i) -

132 history_reducedMIMIC.obj_value(i-1))/abs(history_reducedMIMIC.

obj_value(i-1));

133
134 if (Ainit == zeros)

135 history_reducedMIMIC.conv_A(i)=0;

136 history_reducedMIMIC.conv_B(i)=0;

137 else

138 history_reducedMIMIC.conv_A(i) = norm(A_new_res-A_res,'fro'

)/norm(A_res,'fro');

139 history_reducedMIMIC.conv_B(i) = norm(B_new_res-B_res,'fro'

)/norm(B_res,'fro');

140 end

141 A_res=A_new_res;

142 B_res=B_new_res;

143
144 if (conv_obj_value(i) <= epsilon_obj) && (history_reducedMIMIC

.conv_A(i) <=epsilon_A)

145 && (history_reducedMIMIC.conv_B(i) <=epsilon_B)

146 Sigma=Y-A_res*B_res'*X_res;

147 model.Sigma=Sigma*Sigma'/N; %covariance matrix of

prediction error

148 model.L=(-N/2)*(q+log(det(model.Sigma))+log(2*pi)); %

likelihood value
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149 model.A=A_res;

150 model.B=B_res;

151 break;

152 end

153 end

154 i=i+1;

155 end

7.4.3 MATLAB codes of model selection

In this part, example of MATLAB codes for model selection is provided used the section 4.3

in order to select the model that minimizes information criterion score as follows:

1 % examples of MATLAB codes for model selection

2
3 % it requires input as follows.

4 % 1) X is p*N matrix where N is number of observations

5 % and q is number of variables in x

6 % 2) Y is q*N matrix where p is number of variables in y

7 % 3) gamma \in [0,gamma_max] is regularization parameter containg n

value of gamma

8 % 4) IND is linear indices of nonzero elements in B

9 % 5) rho is the augmented Lagrangian parameter used in group lasso

containg n value of rho

10 % 6) r is a number of latent variables

11
12 % and it returns output

13 % A_opt and B_opt that are optimal solutions.

14
15 [p N]=size(X);

16 q=length(Y(:,1));

17
18 %gamma

19 gamma_max =5000; %penalty parameter that makes all

columns of A be zero

20 gamma=gamma_max*[0 0.5*logspace(-3.6,0,94) linspace(0.7,1.7,5)];

%varies 100 gammas

21 n=length(gamma);

22
23 %IND

24 %structure of B

25 %nonzero elements in B where the element B_ij is shown by B_i (

index of
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26 %i-th row) and B_j (index of j-th column)

27 %eg. nonzero elements are B_11, B_13, B_56, B_i=[1;1;5] and B_j

=[1;3;6]

28 B_i =[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18];

29 B_j =[1,1,1,1,1,1,2,3,3,3,4,5,5,6,6,6,6,7];

30 %linear indices of nonzero elements in B

31 IND=sub2ind([length(B_i),length(B_j)],B_i,B_j);

32
33 %rho

34 rho=logspace(-3,log(gamma_max/70)/log(10),100);

35
36 % apply SVD method for initialization in the case of rank(F)=r

37 F=X'\Y'; F=F';

38 [U D V]=svd(F);

39
40 Ainit=U;

41 Binit=V*D';

42
43 r=nnz(svd(F)~=0); %calculate rank(F) by SVD to avoid numerical

error

44
45 % latent variable selection

46 for j=1:n

47
48 [model_latent.A ,model_latent.B,history_latent] =

latent_reduction(X,Y,gamma(j),Ainit,Binit,IND,rho(j));

49
50 A_save_opt(:,:,j)=model_latent.A; %optimal A for gamma j

51 B_save_opt(:,:,j)=model_latent.B; %optimal B for gamma j

52
53 %apply warm start

54 Ainit=A;

55 Binit=B;

56
57 end

58
59 % least-squares estimation for reduced MIMIC model

60 for j=1:n

61 %remove zero col in A and B and zero row related to zero col in B

and X

62 %then use such A and B to be initial point

63 [Ainit,Binit,X_res] = shape(A_save_opt(:,:,j),B_save_opt(:,:,j),X

,index_B);
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64 X_save_opt_res{j,1}=X_res;

65 if A_save_opt(:,:,j)==zeros(q,m);

66 %if A from latent selection is zero, A,B from this

formulation is zero

67 A_save_opt_res{j,1}=0;

68 B_save_opt_res{j,1}=0;

69 X_save_opt_res{j,1}=0;

70
71 else

72
73 [model.A,model.B,model.Sigma,model.L,model.d,

history_reducedMIMIC] = reduced_mimic(Y,X_res,Ainit,Binit,

index_B);

74 A_save_opt_res{j,1}=model.A;

75 B_save_opt_res{j,1}=model.B;

76
77 % model selection

78 % We solve the problem of least-squares for reduced MIMIC

model by varying 100 gammas \in [0,gamma_max]

79 % then perform model selection by selecting A_opt and B_opt

that minimize BIC scores

80 % BIC=-2*L + d log(N)

81 BIC(j,1)= -2*model.L+model.d*log(N);

82 end

83 end

84
85 ind=find(BIC==min(BIC)); %index of gamma that provide minimun BIC

score

86 A_opt=A_save_opt_res{ind,1};

87 B_opt=B_save_opt_res{ind,1};
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