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MOTIVATION PubMed keyword:

(Brain connectivity) OR (Functional connectivity) OR (Effective connectivity)

4500 Publication related with brain connectivity topic each year
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INTRODUCTION

What are brain signals ?

Electrical activities of the brain from neuronal activities.

Can be measured by

fMRI EEG (Electroencephalogram)

Higher temporal resolution.

Higher spatial resolution.
1000 Hz is used in this project.

Low sampling rate. Does not measure activity inside brain.

https://pixabay.com/photo-782459/ https://smart.servier.com/smart_image/eeg-4/

Interaction between brain regions can be referred as brain connectivity. 0



INTRODUCTION

Brain connectivity can be represented as a matrix.

Types of brain connectivity.
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Granger causality — How about the differences ? e

http://www.neuroinformatics201 | .org/abstracts/identification-and-classification-of-functional-modules-in-the-brain.html
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OBJECTIVES

There are two objectives of this project,

To estimate brain network using Granger causality concept from EEG or fMRI data.

Will be explained in Background section

To compare brain network difference between two control group and patient group.



BACKGROUND

Consider two approaches to find group differences.

Statistical approach [semester |]
Estimate Granger causality (GC) matrix individually.

Differences were defined by differences in average value of GC matrices.

Sparse estimation approach [Expected to be done in semester Il]
Estimate GC matrix two group simultaneously.

Differences can be determined by distance measure or statistical test.



BACKGROUND

STATISTICAL APPROACH

Multivariate Granger causality (GC)

Linear vector autoregressive model (VAR) is used to compute GC.

p
y(t) = Z Ary(t —k) +e(t) VAR process order p

k=1
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Compare model quality between full model and reduced model.

Improve residual covariance matrix or not
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BACKGROUND STATISTICAL APPROACH

Exact zero is nearly impossible in estimation ——— Significant test for finding zero

Granger Causality matrix HAC pval<0.05
Causee channel
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BACKGROUND STATISTICAL APPROACH

Significant test for group difference test.

Test vector mean difference. /

Ho : jt1 = pi2
Hy @ p # pia.

/1; denotes population mean of the ith group.

Two-sample Hotelling’s T-squared test Vectorize
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METHODOLOGY

STATISTICAL APPROACH

Data from USM (Universiti Sains Malaysia)

EEG data
TBI (patient group) Healthy (control group)
Before After Before After
I I I I | | I |
REC REO  REC REO  REC REO REC REO
116 trials 58 trials 58 trials 145 trials 58 trials 87 trials 58 trials 29 trials



METHODOLOGY

STATISTICAL APPROACH

Control group

Patient group
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METHODOLOGY

STATISTICAL APPROACH

EEG data

v
Model selection

GC matrix computation

model order \L
Remove channel y(i) H

y

VAR model VAR model
estimation estimation

Reduced model

JJ

Granger Causality test

Update i

|

GC matrix

Parameter estimation

- Ordinary least square.
- Solve via Yule-Walker equation.

Both methods asymptotically yield same solution.
But Yule-Walker equation can be solve efficiently.

v

Hotelling’s T squared test

Without equal population covariance assumption

Use Multivariate Granger Causality toolbox (MVGC),



RESULTS STATISTICAL APPROACH
n=104 n=23 n=60
Healthy vs TBI Healthy vs Healthy TBI vs TBI
True positive 85 - -
True negative - 0 10
False positive - 23 20
False negative 19 - -
Positive = groups are different Accuracy : 66.8 %
Negative = groups are not different

True positive rate : 81.73%

True negative rate : 48.19%
The received data contains highly correlated EEG electrodes, abnormality such as spikes in signal.

TNR without Healthy: 66.67%
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FUTURE WORK SPARSE ESTIMATION APPROACH

Why sparse brain connectivity ?

: _ : 2
-Can capture brain activities effectively.

-Brain connections are anatomically sparse.

How to achieve ?

-Sparsity pattern of parameter such as in VAR model.

How to determine the differences ?

- Statistical testing (Hypothesis test).
- Distance measure that represents brain network differences.




FUTURE WORK SPARSE ESTIMATION APPROACH

General formulation

minimize ¢1(61) + g2(62) + A([|01]|1 + ||02]]1) +v(||01 — O=2][1)

01.60o
gi(+) is defined as cost function that represent the goodness of fit

6 denotes model parameters.
A controls sparsity pattern of model parameters.
Y controls similarity of model parameter between groups.



FUTURE WORK

SPARSE ESTIMATION APPROACH

Group GC matrix

EEG data

Patient group

Control group
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SUPPLEMENTARY : FULL VS REDUCED
MODEL EXAMPLE

.?ta( ) = 422!/1( 1) F ’12_15/_)( 1)

yi(t) = Ajiyi(t — 1) + Ajjy;(t — 1)

yi(t) yi(t = .
FULL [y] (t)] [ ] [y] (t Zii = Cov(yi - yl)

Past occurrence of y] is included when estimates y;
REDUCED F(t) = Afyi(t —1) 2 = cov(y; — 9"

Past occurrence of y; does not included




SUPPLEMENTARY : PARAMETER EST.

Least square formulation i) i) . WV =1 T
lyp+1) ylp+2) ... y(N)]=[41 ... Ap] W2 u3) . w(N—ptl)

y(l)  y@2) ... yN-p |

Y = X
minimize Y — BX||% Derived normal equation
Solve via QR factorization LXXT)=YXT

Yule-walker equation [4]

ro) ra - re-1

T1) T@ -~ T@I=A 4, -~ 4] T TO - TE=-2)
-7 Ip-27 ~ 1)

Solve via LWR (Levinson Wiggins Robinson) algorithm. @



SUPPLEMENTARY : ASYMPTOTIC EQUAL

r'0) ra) - T(p—1)
F1) T@) - T@]=[4 4, - A, T TO - Te-2)
rp—1" Tre-2)" - T(0)
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yxT =| Zp vk —Dy" p ty(yk — 1T » tyk—=Dyk —p+ DT
» ty(k —}9 + Dy XN tyk—p+ Dyl — 1T y ly(k—p+ .1)y(k -p+ 17

vx' =X ty(k+ Dy(R)" - Xty + Dy —p+ D]



SUPPLEMENTARY : HOTELLING’S T*

Require : Both samples are drawn from normal distribution.

achieved by Central Limit Theorem.

Require : Both samples have equal population covariance matrix.

Solution of Behrens-Fisher problem can be used in case unequal covariance
matrix.

| p+p?
Krish thy & Yu (2004 =
rishnamoorthy & Yu ( ) i e T

Approximates distribution by adjusting degree of freedom
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SUPPLEMENTARY : DATA PROBLEM
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SUPPLEMENTARY : DATA PROBLEM

1
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Correlation matrix between normal(left)

s high correlated(right)
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