LEARNING BRAIN NETWORK DIFFERENCES USING STATISTICAL METHODS

Parinthorn Manomaisaowapak

Advisor: Assist. Prof. Jitkomut Songsiri

Department of Electrical Engineering, Faculty of Engineering

Chulalongkorn University

PRESENTATION OUTLINE

2

- Objectives
- Introduction
- Background
- Methodology
- Results
- Conclusion

OBJECTIVES

There are two objectives of this project,

- To estimate brain network using Granger causality concept from EEG or fMRI data.
- To compare brain network difference between control group and patient group. **Already completed** in semester I (statistical framework).

We further explore formulations of sparse estimation on **simulated data.**

This presentation covered only our **sparse estimation framework.**

INTRODUCTION

What is sparse estimation ?

- Human brains have **large amount of regions**.
- We aim to estimate simpler model to have only **important connection** between regions.

The sparse estimation of brain connectivity.

INTRODUCTION

Effective brain connectivity : Measure of causality

Vector autoregressive (VAR) model

- Dynamic model \longrightarrow Mimicking brain signals.
- Granger causality \longrightarrow Represented as Granger Causality (GC) matrix.

Causal interaction has **direction**

Brain region
$$
j
$$
th

\nBrain region i th

6

What if we have **multiple brain connectivity** to determine ?

Estimate **separately** vs Estimate **jointly** Prior Maintain accuracy with lower sample

7

→We can add prior knowledge on relation between those multiple models in joint estimation.

For example, two models can be estimated from

 k th VAR models can be described by

Where $F^{(\bm{k})}$ represents GC matrix of k th model.

lag 1

METHODOLOGY

Our methodology split into 4 parts,

- 1. Jointly sparse VAR estimation of brain networks.
- 2. Algorithm.
- 3. Model selection for learning brain networks.
- 4. Simulated data generation.

METHODOLOGY 2.ALGORITHM

Our formulation properties.

• Convex problem

Gradient method does not work

- Have smooth fitting term
- But non-smooth in regularization term at zero

Convex Programming in **CVX toolbox** have memory limitations.

We use ADMM (Alternating direction method of multipliers) solver

Require two predetermined tuning-parameters

We used BIC criteria to find optimal tuning-parameters

off-diagonal nonzero estimated parameters

We setup **three** experiments, each with different data assumptions.

Calculated from VAR coefficients

RESULTS | GC MATRIX EXAMPLES

Formulation C estimation

Formulation D estimation

Formulation S estimation

CONCLUSION

- We developed three sparse estimation formulations depended on prior knowledge.
- Each assumption can be interpreted as group-level brain connectivity
- and individual-level connections.
- Each formulation performed best **if the assumptions on data are true**.

$$
Q\&A
$$

SUPPLEMENTARY: FORMULATION COST FUNCTION

$$
(1/2) \|Y^{(k)} - A^{(k)}H^{(k)}\|_2^2
$$
 Least square (individual)

$$
\sum_{i=1}^{n} (1/2) \|Y^{(k)} - A^{(k)}H^{(k)}\|_2^2
$$
 Least square (joint) $C_{ij} = [B_{ij}^{(1)} ... B_{ij}^{(K)}]$

st square (joint)

2

Regularization

 $k=1$

 \boldsymbol{K}

 \sum $k=1$ \sum ≠ $B^{(k)}_{ij}$ $C_{ij} \|_{2}$ $\sum \sum ||C_{ij}||_{2}$ \sum $k=1$ \boldsymbol{K} $i \neq j$

 \boldsymbol{K}

Formulation C Formulation D Formulation S

SUPPLEMENTARY: BIAS HEAT MAP

Parameter bias of formulation D Parameter bias of formulation S

