LEARNING BRAIN NETWORK DIFFERENCES USING STATISTICAL METHODS

Parinthorn Manomaisaowapak

Advisor: Assist. Prof. Jitkomut Songsiri

Department of Electrical Engineering, Faculty of Engineering

Chulalongkorn University

PRESENTATION OUTLINE

2

- Objectives
- Introduction
- Background
- Methodology
- Results
- Conclusion

OBJECTIVES

There are two objectives of this project,

• To estimate brain network using <u>Granger causality</u> concept from EEG or fMRI data.

To compare brain network difference between control group and patient group.
 <u>Already completed</u> in semester 1 (statistical framework).

We further explore formulations of sparse estimation on simulated data.

<u>This presentation</u> covered only our **sparse estimation framework.**

INTRODUCTION

What is sparse estimation ?

- Human brains have large amount of regions.
- We aim to estimate simpler model to have only **important connection** between regions.

The sparse estimation of brain connectivity.

INTRODUCTION

Effective brain connectivity : Measure of causality

Vector autoregressive (VAR) model

- Dynamic model \longrightarrow Mimicking brain signals.
- Granger causality \longrightarrow Represented as Granger Causality (GC) matrix.

Brain region *i*th

What if we have **multiple brain connectivity** to determine ?

Estimate separately vs Estimate jointly

 \rightarrow We can add prior knowledge on relation between those multiple models in joint estimation.

For example, two models can be estimated from

kth VAR models can be described by

$$y^{(k)}(t) = \sum_{q=1}^{p} (A_q)^{(k)} y^{(k)}(t-q) + e(t)$$
which can be efficiently estimated by ordinary least square.

$$\left[\hat{A}_1^{(k)} \dots, \hat{A}_p^{(k)}\right] = A^{(k)} = \arg\min_{A^{(k)}} (1/2) \|Y^{(k)} - A^{(k)}H^{(k)}\|_2^2$$
Zero pattern in GC matrix
We can determine zero pattern in GC matrix by

$$F_{ij}^{(k)} \Leftrightarrow \left(A_q^{(k)}\right)_{ij} = 0; q = 1, 2, ..., p$$
Lag 2
$$F_{ij}^{(k)} \Leftrightarrow \left(A_q^{(k)}\right)_{ij} = 0; q = 1, 2, ..., p$$
Lag 2
$$F_{ij}^{(k)} \Leftrightarrow \left(A_q^{(k)}\right)_{ij} = 0; q = 1, 2, ..., p$$
Lag 2
$$F_{ij}^{(k)} \Leftrightarrow \left(A_q^{(k)}\right)_{ij} = 0; q = 1, 2, ..., p$$
Lag 2
$$F_{ij}^{(k)} \Leftrightarrow \left(A_q^{(k)}\right)_{ij} = 0; q = 1, 2, ..., p$$
Lag 2
$$F_{ij}^{(k)} \Leftrightarrow \left(A_q^{(k)}\right)_{ij} = 0; q = 1, 2, ..., p$$
Lag 2
$$F_{ij}^{(k)} \Leftrightarrow \left(A_q^{(k)}\right)_{ij} = 0; q = 1, 2, ..., p$$
Lag 2
$$F_{ij}^{(k)} \Leftrightarrow \left(A_q^{(k)}\right)_{ij} = 0; q = 1, 2, ..., p$$
Lag 2
$$F_{ij}^{(k)} \Leftrightarrow \left(A_q^{(k)}\right)_{ij} = 0; q = 1, 2, ..., p$$
Lag 2
$$F_{ij}^{(k)} \Leftrightarrow \left(A_q^{(k)}\right)_{ij} = 0; q = 1, 2, ..., p$$
Lag 3
$$F_{ij}^{(k)} \Leftrightarrow \left(A_q^{(k)}\right)_{ij} = 0; q = 1, 2, ..., p$$

Where $F^{(k)}$ represents GC matrix of kth model.

lag I

METHODOLOGY

Our methodology split into 4 parts,

- I. Jointly sparse VAR estimation of brain networks.
- 2. Algorithm.
- 3. Model selection for learning brain networks.
- 4. Simulated data generation.

METHODOLOGY

Our formulation properties.

Convex problem

Gradient method does not work

- Have smooth fitting term
- But non-smooth in regularization term at zero

Convex Programming in **CVX toolbox** have memory limitations.

We use ADMM (Alternating direction method of multipliers) solver

Require two predetermined tuning-parameters

METHODOLOGY

We used BIC criteria to find optimal tuning-parameters

off-diagonal nonzero estimated parameters

METHODOLOGY4.DATA GENERATIONn = 15, p = 3, K = 4We randomized stable VAR coefficients.I. Common type ground truthDensity type IDensity type 2Density type IDensity type 2

2. Differential type ground truth

- Graph density : 0.1
- Difference connection density : 0.1, 0.3

- 3. Similar type ground truth
 - Graph density : **0.1**
- Difference connection density : 0.1, 0.3

50 trials

Generate time-series

50 trials

/୩ / /

hohman

MAAAA

We setup **three** experiments, each with different data assumptions.

Calculated from VAR coefficients

RESULTS

GC MATRIX EXAMPLES

Formulation C estimation

Formulation D estimation

Formulation S estimation

CONCLUSION

- We developed three sparse estimation formulations depended on prior knowledge.
- Each assumption can be interpreted as group-level brain connectivity
- and individual-level connections.
- Each formulation performed best if the assumptions on data are true.

SUPPLEMENTARY: FORMULATION COST **FUNCTION**

(1/2)
$$\|Y^{(k)} - A^{(k)}H^{(k)}\|_2^2$$
 Least square (

$$\sum_{k=1}^{K} (1/2) \left\| Y^{(k)} - A^{(k)} H^{(k)} \right\|_{2}^{2}$$

Least square (joint)

Regularization

Formulation C

 $\sum_{k=1}\sum_{i\neq j}\left\|B_{ij}^{(k)}\right\|_{2}$ K $\sum \left\| C_{ij} \right\|_2$

Formulation D

Formulation S

SUPPLEMENTARY: BIAS HEAT MAP

Parameter bias of formulation D

Parameter bias of formulation S

# Nonzero		Formulation S				
		TPR	FPR	ACC	bias	
Experiment 1	density = 0.1	0.987	0.206	0.969	0.112	
	density = 0.3	0.966	0.193	0.925	0.156	
Experiment 2	density = 0.1	0.945	0.178	0.922	0.128	
	density = 0.3	0.858	0.169	0.846	0.165	
Experiment 3	density = 0.1	0.973	0.195	0.945	0.121	
	density = 0.3	0.926	0.107	0.917	0.130	

# Nonzero and similar		Formulation S				
		TPR	FPR	ACC	bias	
Experiment 1	density = 0.1	0.995	0.303	0.967	0.129	
	density = 0.3	0.974	0.225	0.923	0.176	
Experiment 2	density = 0.1	0.968	0.268	0.924	0.150	
	density = 0.3	0.889	0.180	0.858	0.165	
Experiment 3	density = 0.1	0.972	0.197	0.944	0.125	
	density = 0.3	0.919	0.135	0.904	0.145	

