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1 Introduction

In past few decades, there are enormous increments in publication per year in PubMed database on top-
ics related with brain connectivity as shown in Figure 1. The PubMed database indicated that there are
4,290 publications related with brain connectivity in 2018. The rising demands of information extraction
from brain signal such as fMRI (functional Magnetic Resonance Imaging), EEG (Electroencephalogra-
phy), MEG(Magnetoenchephalography) to discover how brain regions interact to each other have drew
us to attention in this topic.

Figure 1: Publication on PubMed in topic related to brain connectivity each year, keywords: Brain
connectivity OR functional brain connectivity OR effective brain connectivity.

The term brain connectivity refers to a pattern of links across brain regions that indicates causal
interaction or statistical dependencies[Spo07], [RS10]. There are three types of brain connectivity
definition. The first definition is Structural brain connectivity which refers to the links that anatomically
connected between brain regions. The second definition is functional connectivity which are the links
between brain regions are defined by statistical dependencies such as correlation or covariace[Spo07].
But statistical dependencies cannot be interpreted alone in general because statistical measures such as
correlations cannot be interpreted as causality. The causal interactions are described in the last type
of connectivity, the effective brain connectivity. The effective brain connectivity is the description of
causal interaction between brain regions. There are many measures of effective brain connectivity, one
of them is the use of Granger causality test [BL14] which can be displayed as a matrix that entries (i, j)
represents measure of connectivity strength between brain region i and region j denoted as GC matrix
with Fij as elements.

The detection of Granger causality based brain network differences computed on vector autoregressive
model between healthy group and TBI (Traumatic Brain Injury) group is our main interest because the
classification of road accident patients, that they have undetected long-term brain injuries or not, are
crucial. This project is based on two framework, statistical framework and sparse estimation frame
work. In statistical framework, the connectivity matrices are computed from each patient in each group
individually and compute statistical measure such as the average value of brain connectivity measures
as the representation of the whole group to perform hypothesis test between group whether there are
statistical significant different. In sparse estimation framework, [Son15] exploits the sparsity patterns
in brain connectivity matrix and estimates all group’s brain network simultaneously with ` − 1 norm
to regularize the estimation to increase sparsity of VAR parameters that directly relate to structure of
effective brain connectivity, while controlling the brain network to be similar in multiple groups. The
estimated brain networks are expected to have similar sparsity pattern and the brain network differences
can be determined by quantitative method, such as statistical significant from hypothesis testing or
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comparing the differences in distance measure between two brain network. In [VBK+10] they used the
distance between group brain networks in tangent space .

This project aims to learn brain network differences from brain signals such as EEG or fMRI collected
from two groups of subjects. We consider two approaches : statistical and sparse estimation frameworks.
In statistical framework, the methodology will be described in Figure 2, the data will be arranged into
two groups, patient group and control group. In each group, we will estimate GC matrix of each trial
individually, the group GC matrix will be obtained by averaging all GC matrices through all trials in
the group and the difference will be detected by statistical test. We will use Multivariate Granger
Causality toolbox (MVGC) [BL14] to compute Granger causality matrix as a measure of effective brain
connectivity denoted as GC matrix. The GC matrix is based on vector autoregressive model because of
model simplicity. In sparse brain estimation framework, the methodology will be described in Figure 3.
Both methods are different in only how the group GC matrix are obtained. The group GC matrix will be
obtained by estimating brain connectivity of all trials to be similar. Group differences can be obtained
through statistical testing or comparing the pattern in the GC matrix. The detail of two methods will
be revised in detail again in methodology section.

Figure 2: Statistical framework for learning brain network differences.
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Figure 3: Sparse estimation framework for learning brain network differences.

4



2 Objectives

The objectives of this project are

1. To estimate brain network using Granger causality concept from EEG or fMRI data.

2. To compare brain network difference between two groups, control and patient group.

3 Background

This section contains 2 topics. First topic describes the basics in Granger causality computation and
the second topic describes the statistical test which includes significant test for Granger causality matrix
computation and the general knowledge in brain network difference test.

3.1 Granger causality estimation

Granger causality is a concept that test if the past of one time series can help to predict another time
series in sense of reducing the residual variance of the predicted time series. In this project, we will
compute Granger causality based on vector autoregressive model.

Vector autoregressive model order p is defined as

y(t) =

p∑
k=1

Aky(t− k) + e(t) (1)

where y(t), e(t) ∈ Rn, Ak ∈ Rn×n AR model can be expressed in state-space representation as

x(t+ 1) =


A1 A2 . . . Ap−1 Ap
I 0 . . . 0 0
...

. . .
...

...

0 0
. . . 0 0

0 0 . . . I 0

x(t) +


e(t+ 1)

0
...
0
0

 (2)

with x(t) =
[
y(t− 1)T y(t− 2)T . . . y(t− p)T

]T
, and the output equation is

y(t) =
[
I 0 . . . 0 0

]
x(t), (3)

VAR model parameter can be estimated by ordinary least square methods or solve via Yule-Walker
equation [BJ76].

Next, we will introduce the concept of Granger causality test. Let’s consider a multivariate AR(1)
process yi(t), yj(t), note that both are vector. We want to investigate if yi(t) is depended only in its
own past value, not from past of yj(t). The full fitted VAR model is

ŷi(t) = Aiiyi(t− 1) +Aijyj(t− 1)

ŷj(t) = Ajiyi(t− 1) +Ajjyj(t− 1)

which can be expressed as

ŷ(t) =

[
Aii Aij
Aji Ajj

]
y(t− 1). (4)

Note that y(t) =
[
yi(t)

T yj(t)
T
]T

. The model that remove the testing parameter that represent the
connection between yi and yj is called the reduced model. In this scenario, the reduced model is

ŷR(t) =

[
ARii 0
ARji ARjj

]
yR(t− 1). (5)
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One can understand that more complex model has more flexibility, i.e. more parameters to be
determined, than a simpler model. In this case, the full model is more complex than the reduced model
therefore, the residual’s variance of full model should be smaller than the reduced model. In other words,
the full model is expected to have more model quality than the reduced model. However, if residual’s
variance of reduced model is close to the full model, this can be inferred that the removed parameter is
not significant. As in (5), the parameter Aij implies direct impact from the past of yj to current yi. If
Aij is removed and model quality does not reduce, then the past of yj does not have direct effect on yi.
On the contrary, if the model quality is reduced on reduced model. Then yj should have direct effect
on yi but to answer how the strong the effect is, at this point, the concept of Granger causality arises
as the measure of the strength. In multivariate Granger causality, the residual variance will be changed
into the measure that reflects how large the residual covariance matrix is. In [BBS10], they used the
concept of generalized variance which is determinant of covariance matrix and denoted the uses of total
variance, i.e. trace of covariance matrix.

The Granger causality measure is defined as

Fij = log
det ΣR

ii

det Σii
. (6)

Granger causality can be tested by a log ratio of the generalized variance which represents model
quality of the reduced model compared to the full model. this measure is, in general, defined by (6)
which is multivariate version of Granger causality with residual covariance matrix of reduced model ΣR

ii

and the residual covariance matrix of full model Σii. In this case, both yi, yj are vector of time series,
and it has physical meaning as a test of multiple time series to another multiple time series. Intuitively,
if past of yj can explain yi then the generalized variance of full mode will be less than the reduced
model. The value of Fij will be nonzero in this case. Conversely, if past of yj does not help to predict
yi, the generalized variance of two model should be equal and leads (6) to zero. If yi, yj represent as
brain signals of region i, j, Fij can be interpreted as connectivity strength from region j to region i.

Brain signals such as EEG or fMRI, can be applied with Granger causality test to find the causal
interaction between regions in the brain. The strength of Granger causality measure from brain’s region
j to region i is defined as Fij which can be represented in a matrix that the entry i, j contains Fij .
The matrix is called GC matrix. However, In numerical computation, there will be no exact zeros which
emphasizes the reason to perform significant test whether the value inside connectivity matrix is actually
zero. In next section, we will define significant test for Granger causality matrices and brain network
difference.

3.2 Statistical test

One way to indicate zero patterns in GC matrices is to perform significant test. The test will simply set
zero value in GC matrix by hypothesis test that have null and alternative hypothesis as,

H0 : Fij = 0

H1 : Fij 6= 0.
(7)

However, this project aims to find a difference between two groups. The significant test in (7) should
not be performed in order to preserve distribution of GC matrices. We will define the brain network
difference as the inequality of GC matrix population mean of two groups. The significant test for mean
differences is used the hypothesis test as follow,

H0 : µ1 = µ2

H1 : µ1 6= µ2.
(8)

where µi denotes population mean of the ith group.
The null hypothesis will be rejected if the p-value of the test statistics of Fi,j is less than 0.05. In

scalar version, t-test can be used to compare the mean by normality assumption of sample mean. In
multivariate case, the sample mean is vector that elements are not necessary independent. Therefore
the t-test cannot be performed element-wise. Hotelling’s T-squared test will be performed to determine
the differences. Both significant test will be described again in the following section.
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4 Methodology

Figure 4: The detail each steps of methodology in statistical framework.

This project aims to study two approaches. Statistical framework will be done by following Figure
4 and this framework is finished in the first semester. Sparse estimation framework will be done by
following Figure 5 and expected to be done in the second semester. In statistical framework, there are
4 steps to compute group difference test, which are

1. Data preparation.

The data preparation method will described how data was collected.

2. Model estimation.

This section will involve model order selection and VAR coefficient estimation which includes 2
methods of estimation, Ordinary least square and solve via Yule-walker equation [BJ76].

3. GC matrix computation.

This section will explain how the Granger causality matrix was estimated for all available data.

4. Group difference test

The statistical test in (20) will be performed in this step. This step will required asymptotic
normality of sample mean, the testing samples must be large enough.

We will used MVGC toolbox to implement in step 2-3. The detail of sparse estimation framework
will be described in section 4.3. The sparse estimation framework will compute group GC matrix directly
from two groups simultaneously while in statistical framework, the group GC matrix is computed by
averaging all individual GC matrix in each group.
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Figure 5: The detail each steps of methodology in sparse estimation framework.

4.1 Data preparation

The use of central limit theorem to assume normality of averaged GC matrices emphasizes that the
amount of GC matrices should be large enough. One way to increase number of GC matrices is to split
the brain data of one subject into multiple trials. However, VAR model has number of parameter to
be estimated as NV AR = n2p, where n is number of EEG channels, p is time lag. For example, in
p = 3 will be 63× 63× 3 ≈ 12, 000. By using rule of thumb, data points should be 10 times more than
the number of parameters by the reason that more data points in model estimation can improve model
quality. We will use 120, 000 data points to estimate parameter which resulting in 2 trials per subject
as the maximum because one subject has approximately 300, 000 data points.

However, in real data sets, there are multiple highly correlated channels in many subjects. After
filtering those channels out by removing highly correlated channels that have Pearson’s correlation
coefficient above 0.9. Resulting in the number of channels were reduced into 22 channels and the
parameters to be estimated was reduced into 1, 000 parameters therefore, one subject can be splitted
into 29 trials.

4.2 Model estimation

The estimation is based on assumption that the EEG time series are wide-sense stationary, the dynamic
matrix in (2) must be stable.

Model order selection

Model order is selected by AIC, BIC value described by (9) and (10), consecutively

AIC = −2L+ 2k (9)

BIC = −2L+ k logN (10)
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where L is log-likelihood function of VAR(p) process, k is number of parameters to be estimated, in this
case k = n2p, and N is number of all observation. In the MVGC’s source code, AIC implementation is
based on [MT98] that can be used to perform model selection for small sample size. The log-likelihood
function is implemented in the toolbox with maximum log-likelihood function as follow.

AIC = −2L+ 2k
N

N − k − 1
(11)

L = −N
2

log det Σ̂, (12)

where Σ̂ = 1
N−1ee

T is unbiased estimator of residual covariance matrix, e = y − ŷ.
In this project, the amount of data are not sufficient to select higher order model, due to the trade-off

between parameter estimation and the usage of central limit theorem in statistical test. So, the order
candidates are p = 1, 2, 3.

VAR coefficient estimation

There are two main methods to estimate the coefficients,

1. Ordinary least square

Ordinary least square is a solution of the overdetermine system. In this case, the linear system is

[
y(p+ 1) y(p+ 2) . . . y(N)

]
=
[
A1 . . . Ap

]

y(p) y(p+ 1) . . . y(N − 1)

...
... . . .

...
y(2) y(3) . . . y(N − p+ 1)
y(1) y(2) . . . y(N − p)


(13)

This is in the form Y = βX, Y ∈ Rn×(N−p), X ∈ Rpn×(N−p), Ai ∈ Rn×n where n is the number
of channel and N is number of timepoints, p is model order.

Then the least square optimization formulation is

minimize
β

‖Y − βX‖2F (14)

The least square solution β̂ can be solved analytically by solving the normal equation.

β̂(XXT ) = Y XT (15)

In the MVGC toolbox, ordinary least square method is implemented by MATLAB function mrdivide

that simply computes least square solution via QR factorization. In this case, the regressor ma-
trices in (15) are mostly rank deficient, which caused by highly correlated EEG channel, hence,
there will be infinitely many exact solution. However, those channel must be excluded.

2. Solve via Yule-Walker equation

[
Γ(1) Γ(2) . . . Γ(p)

]
=
[
A1 A2 . . . Ap

]


Γ(0) Γ(1) . . . Γ(p− 1)
Γ(−1) Γ(0) . . . Γ(p− 2)

... . . .
. . .

...
Γ(−p+ 1) Γ(−p+ 2) . . . Γ(0)


(16)

Yule walker equation [BJ76] described in (16) is a system of linear equation that came from
taking autocovariance of (1) with multiple lags . where Γ(k) is autocovariance matrix that can
be estimated by its unbiased sample autocovariance. If the datapoints are large enough, by the
law of large number, the XXT in (15) will converge to autocovariance matrix in (16). The
autocovariance matrix in (16) is in Toeplitz form that can be solved efficiently by LWR (Levinson
Wiggins Robinson) algorithm which has been proven that this algorithm will yield stable VAR
coefficients [Whi63].
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4.3 GC matrix computation

GC matrix is calculated by estimating full model and reduced model from the data set directly while
MVGC toolbox recommended to compute GC matrix from autocovariance sequence to increase com-
putation accuracy in frequency-domain GC matrix[BL14] but only time-domain GC matrix is used in
this project. The significant test for zero patterns in GC matrix can be determined by hypothesis test
defined in (7).Fij has asymptotic distribution as chi-squared distribution[BL14],[Gew82]

(N − p)Fij ∼ χ2
p(ni+nj)

(17)

where N, p, ni, nj denotes sample size, lags, dimension of yi, yj respectively. The null hypothesis will be
rejected if p-value of the GC measure is below 0.05 which p-value is probability that the null hypothesis
is true. However, we will not perform significant test for zero patterns due to the hypothesis test on
group difference. In sparse estimation framework as in Figure 4, it is known that the effective brain
connectivity is expected to have sparse structure [Spo07] and human brain is expected to have similar
effective brain connectivity in healthy brain area therefore, in model estimation, the sparse structure
can be achieved by adding `1 norm [HTW15] of parameters as penalty term with penalty parameter
to control sparsity to optimization formulation in parameter estimation. The similar structure can be
achieved by adding `1 norm of subtraction of parameters, so that the parameters are more likely not to
change a lot causing the structure of both groups is similar to each other and the difference of brain
connectivity can be observed.As the conclusion, the estimation method will be based on optimization
formulation that has a general structure as

minimize
θ1,θ2

g1(θ1) + g2(θ2) + λ(‖θ1‖1 + ‖θ2‖1) + γ(‖θ1 − θ2‖1) (18)

where θi are the parameters that can describes brain connectivity matrices such as VAR parameters.
If the parameters that coupled between multiple brian signals are sparse, the causal inference between
them is expected to be sparse. gi(·) is defined as cost function that represent the goodness of fit of
model. In this case λ and γ are regularization parameters. The difference can be determined by whether
hypothesis test or the distance measure between two matrices [VBK+10].

4.4 Group difference test

There are two approaches on this, statistical framework and sparse estimation framework.

Statistical framework

The group differences of brain network is determined by equality testing of element-wise population mean
of GC matrices between healthy group and TBI group. The sample mean of n × n GC matrices are
removed diagonal entries due to self-causal inference is meaningless. After that, the removed-diagonal
GC matrices are vectorized into vector mean with dimension n2 − n in order to use the Hotelling T-
squared test that is the vector mean equality test. The normality of vector mean is assumed by central
limit theorem. The vector mean of two groups, X̄1, X̄2, are n2−n-variate normal distributed. The two
samples Hotelling’s T-squared is used to test whether the vector mean of two samples are equal. The
test statistics is defined as

T 2 = (X̄1 − X̄2)
T

(
S1
N1

+
S2
N2

)−1

(X̄1 − X̄2) (19)

where X̄i is sample vector mean of Xi, Si is unbiased sample covariance matrix of Xi respectively.
The test requires that both X1, X2 are drawn from Normal distribution with common covariance matrix
and test statistics T 2 will have distribution as

T 2 ∼ pv

v − p+ 1
Fp,v−p+1 (20)

where p is dimension of vector, v = N1 +N2 − 2 is degree of freedom [Har01].
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In practical uses, two samples are mostly drawn from assumed normal distribution but with unequal
covariance matrix, this problem is called multivariate Behrens-Fisher problem. There are many solutions,
one of them is to estimate distribution of T 2 by modifying degree of freedom v in (20). In this project,
the degree of freedom is used as in[KY04] which proved that

v =
p+ p2

A1 +A2

where

Ai =
tr[(S̃iS

−1
p )2] + [tr(S̃iS

−1
p )]2

Ni

S̃i =
Si
Ni
, Sp = S̃1 + S̃2

Hotelling T-squared test can be explained intuitively as the multivariate version of student’s t statis-
tics that used to compare mean in scalar version. But in multivariate sense, the vector mean cannot
be compared element-wise because there are many components which are not necessarily independent
to each other such as normal distribution with non-diagonal covariance matrix. The T 2 brings mean
vector into scalar representation as quadratic loss function. If value of T 2 is low, the vector mean of
two samples are more likely to equal.

Sparse estimation framework

Methodology of this framework will follow as Figure 4. The estimation method is different from statistical
framework which this framework estimates group GC matrices of all groups simultaneously by controlling
sparsity pattern to be nearly the same, but not all, which can be inferred as brain connectivity matrix
of the group which shared the connectivity patterns, the differences can be determined whether in
qualitative, the result interpretation by background knowledge in neuroscience or in quantitative such
as the statistical test, the distance measure between brain network of two groups [VBK+10], note that
the distance does not necessary to be Euclidean distance.

5 Data description

The EEG datasets are achieved from USM (University Sains Malaysia). There are two groups of data,
TBI group and Healthy group. Each groups has 7 subjects. Each subjects performed N-back test,
emotion and real-time task. The EEG data are measured before and after those tasks with 2 different
condition, eyes-open and eyes-closed. For example, data with label after REC is the EEG data that
measured After given tasks during Resting state with Eyes-Closed.

5.1 Electrode placement system

Electrode placement systems are standard methods to measure EEG signal from scalp. The example
are 10-20 system and 10-10 system. The number denotes distance in % from front to back, in this
case there are 10% and 20% distance between electrodes. The 10-10 system has more spatial resolution
[Soc16].

5.2 Measurement

The data was measured by 64 channel 10-10 EEG electrode placement system with sampling rate 1000
Hz. Only channel 32 (EOG channel) has to be removed before analysis because it is not connected.
All channel’s EEG signal was a voltage difference between the EEG electrode and reference electrode,
which is channel CPz. The Ground (GND) channel is not presented in data file. The data arrangement
is reported in Figure 7.
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Figure 6: 10-10 system electrode placement system that is used to measure EEG signal with the circled
channels that are selected.

5.3 Data problem

The abnormality of data are investigated by comparing the fitting. The hypothesis is the data that
contains abnormality such as spikes in the signal should be detected when fitting the model by MSE
value as described in Figure 8.(a), 8.(b) which the MSE seems to be very high at those trials. The
example of spikes is in Figure 8.(c). Another problem on data is rank-deficient regressor matrix in (15)
causing non-unique VAR coefficients. One way to solve the problem is to remove the highly channel
correlated channel which measured by sample correlation. By removing highly correlated channels.
However, every subjects has different highly correlated channels position and amount. The possible
solution is to detect channels that highly correlate in most of the data, then remove those channels
in the same index of all data. After filtered out, number of trials are reported in Figure 7. And the
selected channels are circled channels in Figure 6.

6 Preliminary results

6.1 Model estimation
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Figure 7: EEG data arrangement in TBI and healthy group with number of trials that are not filtered
out.
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(a) MSE plot of Yule-Walker method by LWR algorithm in all subjects.

(b) MSE of OLS method in all subjects.

(c) Example plot of abnormal data.

Figure 8: Data abnormality detection to be filtered out.
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(a)

(b)

Figure 9: Example of MSE and maximum log-likelihood plot of each model order.
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Model order is generally selected by lowest BIC score, because it will, in general, return simpler
model than AIC. But in this scenario, the BIC score was calculated using fitness term as log-likelihood
which involved log det Σ that has large value compared to the complexity term in the order of 1000
times larger. Resulting in continuously decreased of BIC score, this should be the sign of overfitting the
data. The order was selected in the sense of major decrease in MSE of fitting which is shown in Figure
9.

Figure 10: Fitting results.

The fitting results in Figure 6.1 are randomly selected from each case.

6.2 GC matrix computation

The GC measure is computed by fitting full and reduced model directly. In this scenario, the causal
inference need to be from one region to another region, not group of regions to another group of regions.
So, the univariate Granger causality is used and (6) is reduced into scalar equation. The Granger test
was performed in each pair of the channels and compute p-value. In each case of a group, there are
multiple of individually computed GC matrices or subject-level GC matrices. We used average value of
GC matrix over a case to represent as the GC matrix of the case or case-level GC matrix. To compare
subject-level GC matrix with the case-level GC matrix, we used significant test to find and to compare
the sparsity pattern of both. In subject-level GC matrix of a case, we will show sparsity pattern by
the indices of sparse elements that occurred frequently through the case. In significant test for sparsity
pattern, we used element-wise Chi-square test[BL14] for subject-level GC matrix and element-wise
one sample t-test for case-level GC matrix to test whether the element of those GC matrices is zero.
To be more clear, subject-level GC matrix will be test if the value is zero through Chi-squared test
and case-level GC matrix will be test whether the averaged value of the elements over the case is zero
through zero mean test by conducting t test (µ = 0 vs µ > 0).

The cases are denoted by an acronym such as HAC to be Healthy After REC. The results of
case-level GC matrix in each case of two groups are shown in Figure 11 with the selected channels.
By inspection, channel Fp1 seems to interact with almost all channel in healthy group which is not
presented in any of subject in patient group. In patient group, the entries that have high GC measure
seems to cluster in the top left region or first 10 channels except for case PBO. In almost all cases, the
GC matrices between REC,REO is similar when After, Before is the same.

However, the problem in t-test arises from similarity of GC matrix between trials that were cut from
same subject causing standard deviation to be low causing the t score to be large. After that, the
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value of large t score will lower p-value of the test. We solved the problem by setting the significant
level to 10−9. For subject-level GC matrix sparsity pattern we set repetitive of zeros elements at same
index across the trials in a case to have atleast 10% of all trials. The sparsity pattern of case-level and
subject-level GC matrices are different, especially in PBC, PAO cases that have large different of their
sparsity pattern. But after we applied to sample of subject-level GC matrix in Figure 13, the pattern
of case-level and subject-level GC matrices are similar in some part of the matrix. Such as in HAC,
case-level GC matrix is obviously similar to the subject-level but not identical. This maybe because
we averaged the case-level GC matrices through the case, it should contain some part of subject-level.
There are similar and non-similar matrices in Figure 13 because the sample of subject-level GC matrix
may not have strength of connectivity enough for clearly view in the case-level GC matrix compared to
another sample in the same case.

Figure 11: Average value of GC matrix over trials in the same cases. H/P denotes Healthy, Patient,
A/B denotes After/Before, C/O denotes REC/REO.
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(a) Sparsity pattern indices of GC matrix computed from one sided t test with significant level 10−9

(b) Sparsity pattern indices of GC matrix calculated by selecting the indices ,that is set to zero by Chi squared test,
that has repetition of zeros more than 10% through a case. Significant level is 0.05

Figure 12: Sparse pattern indices of GC matrix in each level. Black entries denote sparsity pattern
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(a) Case-level GC matrices after hypothesis testing with significant level 10−9.

(b) Subject-level GC matrices after hypothesis testing with sparse pattern.

Figure 13: GC matrix of each level after applied the sparse pattern.
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6.3 Group difference test

The test was performed in two conditions,

1. Crossing test between TBI and Healthy with 29 GC matrix samples. This can measure number of
true positive and false negative of the test. The test was conducted by pairing all vectorized GC
matrix averaged with 29 trials in healthy group and vectorized GC matrix averaged with 29 trials
in TBI group.

2. Test among the same group, between TBI and TBI or Healthy and Healthy with 29 GC matrix
samples. This can measure number of true negative and false positive of the test. The test was
conducted by pairing all vectorized GC matrix averaged with 29 trials and another vectorized GC
matrix averaged with 29 trials in the same group.

In Hotelling T-squared test, the rejection of null hypothesis denotes positive results and accepting as
negative results. The results of group differences test are in Figure 14. The true positive rate is 81.73
%, overall true negative rate is 48.19 %. True negative rate in TBI vs TBI is 66.67 % but in Healthy vs
Healthy is 0 %. The test in the same class such as testing after REO between healthy group and TBI
group, can detect the difference for 75%. The true negative rate is very low mainly because of the test
among healthy group, the possible reasons are

1. The different class in healthy group have different brain networks.

2. The EEG signal in healthy group contained artifacts such as spikes.

3. The number of trials are not enough for statistical testing because it is the comparison of n2

dimensional vector, where n is number of channel. In this scenario, the dimension of vectorized
GC matrices is 22× 22− 22 = 462. The diagonal entries are subtracted. And the samples varies
in ranges of 29-145 which may be not enough. In [KY04] denoted that the sample size should be
atleast 4 times more than vector dimension.

Figure 14: Group differences results. Positive results denote that the brain networks are different.
Negative results denote that the brain networks are not different. n is a number of paired subjects test,
one subject has 29 trials.

However, each trial in the same case as in figure 7 has similar connectivity matrix to each other
causing their sample covariance matrix to be near singular. We used Tikhonov’s regularization to the
sample covariance matrices by adding λ scaled identity matrix to the covariance matrix to solve the
issues. In the test, we selected the parameter λ to be 10−5.

We conducted another experiment that controlled the comparison by comparing within the same case
with two scenarios, different group to find true positive rate and the same group to find true negative
rate. The results are shown in Figure 15 and yielded TPR to be 82.61% and TNR to be 56.52% which
is improved from the previous in Figure 14. However, the regularization of Hotelling T-squared test will
change the distribution of T-squared value. [LAP+16] proposed a modified test for the regularization.
The result of this method is shown in Figure 16 which yielded TPR and TNR to be both approximate
83%.
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Figure 15: Difference test of group of each case result. n denotes number of comparison that categorized
into different rows.

Figure 16: ROC curve of regularized Hotelling T squared test when varying regularization parameter
from 10−3 to 102 with linear step on exponent. MATLAB notation is 10−3:0.1:2 . The point that yield
TPR to be 82.61%, FPR to be 17.39% is with λ = 0.0126

7 Project overview

7.1 Scope of work

1. Use time-domain Granger causality as a measure of brain connectivity study.

2. Study brain networks differences between two groups with number of trials more than 30. In
statistical framework for TBI group and healthy groups which is done in this semester, while in
sparse estimation framework, that expected to finish in the next semester, the group differences
will be study between normal group and autism group.

3. Use linear model to estimate model parameters.

7.2 Expected outcomes

1. Scheme for learning brain connectivity matrix and brain network differences between groups.

2. Computer code for compute brain networks and determine differences between neurological time-
series data from two groups .
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7.3 Project plans

The research schedule is described in Figure 17. The first semester will covered all methodology in
statistical framework which included model estimation through the differences test between TBI group
and healthy group. In second semester, we will study and implement a computer program for group GC
matrix sparse estimation to find the differences between normal group and autism group.
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Figure 17: Gantt chart.
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