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Chapter I

INTRODUCTION

The influences exerted by one region of the human brain on another are described as the
effective brain connectivity or the causality flow within the human brain. Granger causality
(GC) analysis is a model-based method that can reveal effective brain connectivity or causal
interconnections among brain regions from neural activity data using vector autoregressive
(VAR) models; see a review of connectivity inference in de Abril et al. (2018). Unfortunately,
without prior information on the estimated network of interconnections, the resulting Granger
graphical model (or GC network) is typically a dense estimate. Since it is difficult to make
inferences about the brain’s interactive structure from dense models, sparser solutions are
more desirable, which can be achieved using regularization and Bayesian inference frameworks
(de Abril et al., 2018). Sparse GC networks are studied in many variations for insignificant
causality filtering, including lasso GC (Fujita et al., 2007), group lasso GC (Lozano et al.,
2009), or truncated lasso (Shojaie and Michailidis, 2010). Recently, Bore et al. (2020) pro-
posed to use a non-convex ℓq penalty with 0 < q < 1 to improve GC estimation since it was
theoretically superior to a lasso-type penalty in a linear regression context (Wen et al., 2018).

This thesis is concerned with the advancing of GC network estimations in two ways: si-
multaneously learning multiple GC networks, and constructing GC networks using a non-convex
sparsity-inducing penalty. Simultaneous learning in the context of multiple sparse Gaussian
graphical models currently exists as an estimation of the sparse inverse covariance matrix of
random vectors, otherwise known as the graphical lasso problem (Friedman et al., 2007). A
zero pattern of the inverse covariance, also known as the precision matrix, indicates conditional
independence between random variables. This framework has been extended to joint Gaussian
graphical model estimations with added prior knowledge on possible relationships among all
models to force the models decomposed into two parts, a common and a differential part.
The common part is defined as the common nonzeros in the inverse covariance matrices of
all models, and the differential part refers to all other remaining nonzeros. Prior knowledge of
common causality connections can be used to form a group lasso regularization to make all
models have identical sparsity patterns (Liang et al., 2016; Ma and Michailidis, 2016), or a
fused lasso to shrink the parameter differences among models (Danaher et al., 2014; Saegusa
and Shojaie, 2016). Hara and Washio (2013) decomposed the precision matrices of multiple
models into differential parts whose sparsity was promoted by a lasso, and a common part
that were jointly regularized through a convex composite ℓ1,p norm1 for p = 1, 2,∞. Other
variants of single Gaussian graphical modeling approaches extended for multiple modeling also
exploited similar lasso-type techniques; for example, these have involved a row and column
inverse covariance estimation of the matrix Gaussian distribution (Huang and Chen, 2014), or

1The notation of ℓp,q refers to the composite of ℓq with ℓp norm.
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the estimation of the inverse covariance and correlation matrices of Gaussian graphical models
with explanatory variables (Huang et al., 2018). Recently, Yuan et al. (2021) proposed to
use a joint penalty, weighted group lasso and weighted group fused lasso, in a joint Gaussian
graphical model with a constraint that inverse covariance matrix is a Laplacian matrix.

Joint learning of Gaussian graphs has also been extended to use non-convex penalties,
such as ℓ0 to regularize non-zero elements (Tao et al., 2016), the ℓ1,1/2 norm (Guo et al.,
2011), a general composite ℓ1,q norm with 0 < q < 1, truncated logarithmic penalty and
inverse polynomial penalty (Chun et al., 2015). Despite several extensions of Gaussian graph-
ical models to joint modeling, Gaussian graphs lack the core functionalities of capturing the
temporal dependencies of time series and causality directions, issues which can be solved by
multiple sparse GC modeling.

Current approaches to jointly estimate multiple GC graphs have estimating the common
edges among all estimated networks forming a common GC network, and the differential
edges that are unique to individual models forming differential GC networks. A group lasso
is often applied to penalize parameters across models in the estimation of a common GC
network (Songsiri, 2017; Gregorova et al., 2015). To learn both common and differential GC
networks, several studies employed a combination of fused lasso and other lasso variants in
regularized least-squares estimations (Skripnikov and Michailidis, 2019a; Wilms et al., 2018;
Songsiri, 2015). The fused lasso encouraged some parameters to be identical across models,
establishing the common network, while the other lasso-type penalty promoted zeros in each
model’s parameters in building the differential networks. However, because the VAR-based null
GC of a single model contains all the common zeros of all lag coefficients (Lütkepohl, 2005),
when the lasso-type regularization did not penalize all VAR-lag parameters as in Skripnikov
and Michailidis (2019a); Wilms et al. (2018), the induced sparsity pattern did not directly
reflect the null GC. Instead, VAR-lag matrices of an individual model should be penalized
in groups, as was accomplished with a group-norm penalty in Songsiri (2015); Skripnikov
and Michailidis (2019b); Gregorova et al. (2015). Finally, Skripnikov and Michailidis (2019b)
proposed a two-stage procedure to jointly estimate multiple GC graphs using a group lasso
penalty where common and differential GC networks were extracted in two separate stages,
respectively.

Meanwhile, all of the aforementioned studies have relied on the group- and fused-lasso
which are convex penalties. Applying non-convex penalties in applications of GC analysis is a
relatively new approach, and only two recent works are worth noting. In one study, Bore et al.
(2020) proposed using the non-convex ℓ1/2-norm penalty for estimating a single GC network,
but without a group penalization of all VAR-lag parameters to relate null GC with the zero
groups of parameters; this group-norm penalty (ℓ2,1/2) was an extension from the ℓ1/2 norm
which had been shown to yield superior performances in recovering the true sparse solution
over its convex counterpart (Hu et al., 2017). In the other study, the ℓ2,1/2 penalty was
applied in Manomaisaowapak and Songsiri (2020) to estimate multiple VAR models having an
identical GC structure. Despite a performance gain from the non-convex penalty under some
settings, the formulation in Manomaisaowapak and Songsiri (2020) has room for improvement
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by introducing relative weights in the group penalty as a prior describing the edge strengths
in the GC networks. This can be accomplished by adopting the adaptive group lasso in Wang
and Leng (2008) that allowed different amounts of shrinkage on regression coefficients which
saw improved variable selection performances over the lasso.

From the literature, we can draw on the strengths of various relevant methods and craft
stronger regularization techniques consisting of three main features: i) use the group-norm
penalization of individual model parameters to correctly infer null GC from the estimated
group-sparse structure, ii) use the non-convex ℓ2,1/2 penalty to enhance the recovery rate of
true parameters, and iii) use relative weights with group penalties to improve the accuracy
of detecting edges in an estimated network. All three features, applied to jointly estimate
multiple GC networks, form the contributions of this thesis.

We propose three main formulations that each employ all three features listed above:
one estimates multiple GC networks to have the same structure, and the other two estimate
multiple models inferring both common and individually specific GC networks. An example
application of revealing a common GC among multiple models is a group-level inference of brain
connectivity, where data sets contain signals of several subjects recorded under a controlled
condition (e.g., resting-state), and each model parameter belongs to each patient. Presumably,
each patient contributes to a homogeneous brain connectivity structure that can be inferred
from the estimated common GC network, while the model parameters are allowed to differ
according to each patient’s profile. As for examples of discovering differential networks, the
brain connectivity structure among subjects would be assumed to contain differences, perhaps
arising from the testing of patients under two or more conditions (e.g., control versus abnormal
brain patterns). In light of these examples, the effectiveness of our three formulations will
be illustrated by using the fMRI ADHD-200 data sets to learn the group-level brain network
differences between adolescents with attention deficit hyperactivity disorder (ADHD) and
typically developing children (TDC).

Before presenting the main formulations, we provide a background on a single Granger
network estimation first in Chapter 2. Then, the estimation formulations and the causality
learning scheme, which are the main contribution of this thesis, are presented in Chapter 3.
From an algorithmic point of view, we will see in Chapter 4 that our formulations have
complications applying the existing algorithms to our non-convex formulations. This is due to
a violation of assumptions required in convergence analysis. The convergence issue is addressed
by suggesting a heuristic penalty parameter update rule for ADMM to ensure a convergence
in practice. For convex formulations, the ADMM algorithm has global convergence for our
problems. We also include a penalty parameter update rule for the convex case to speed up
the convergence. The effectiveness of the formulations is demonstrated in Chapter 5 through
the extensive simulation experiments and through a benchmarking experiment in which we
compared our works with the existing literature. The real data experiment was also included
in this chapter. Lastly, we concluded the contributions and discuss the possible extension to
this thesis in Chapter 6.
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1.1 Objectives

Identical VAR coef�icients with differences

Common GC network with differences

Identical sparsity pattern

K multivariate time-series

K

n

CGN

DGN

FGN

Figure 1.1: Characteristics of GC networks learned from the proposed formulations.

1. We aim to propose formulations that take time-series as an input and return VAR models
that infer three types of GC networks in the following.

a) CommonGrangerNet (CGN): The estimated networks have an identical sparsity
pattern.

b) DifferentialGrangerNet (DGN): The estimated networks have some identical parts
and some different parts.

c) FusedGrangerNet (FGN): The estimated networks have some block-identical value
of VAR’s coefficients and some different sparsity pattern.

The formulations are presented in Figure 1.1. The dark links are the GC that all models
have in common or the common GC network. The red links indicate an individual GC
or the differential GC network.

2. We aim to provide efficient numerical methods to solve the proposed estimation methods
in a large scale setting.

1.2 Scope of Work

1. The proposed framework will be verified on intensive simulations and one real-world
data set.

2. The application of the proposed methods will be illustrated on brain network analysis.

1.3 Expected outcome

1. Estimation formulations of multiple Granger graphical models.

2. Computer program that solve three formulations and perform causality learning.



Chapter II

BACKGROUND

This chapter provides an introduction to the time-series modeling and to the definition
of a causality measure called the Granger causality. We also provide a review of a group norm
penalty that can induce a block-sparse pattern in the solution, as well as its relation to the
Granger graphical modeling.

2.1 Granger causality

The Granger causality (GC) is a measure used to infer causal interconnections among multi-
variate time-series {y(t)}Tt=1. The computation of GC is often obtained from a p-order vector
autoregressive (VAR) model described by

y(t) = A1y(t− 1) + A2y(t− 2) + · · ·+ Apy(t− p) + ϵ(t), (2.1)

where y(t) = (y1(t), y2(t), . . . , yn(t)) ∈ Rn and Ar ∈ Rn×n is the VAR parameters of lag
r = 1, 2, . . . , p. The element (Ar)ij indicates a gain from yj(t− r) to yi(t). We assume that
ϵ(t) is white Gaussian noise.

An estimation of VAR model’s parameters can be cast as a least-square problem,

minimize
A

1

2N
∥Y − AH∥2F , (2.2)

where

Y =
[
y(p+ 1) y(p+ 2) . . . y(T )

]
∈ Rn×N , A =

[
A1 · · · Ap

]
∈ Rn×np, (2.3)

H =


y(p) y(p+ 1) · · · y(T − 1)
... ... · · · ...

y(2) y(3) · · · y(T − p+ 1)
y(1) y(2) · · · y(T − p)

 ∈ Rnp×N . (2.4)

The first p time-points out of T are used as the initial condition for estimation, resulting in
N = T − p time-points used in the estimation, called effective time-points. The least-square
solution to (2.2) is

Â = Y HT (HHT )−1, (2.5)
which is referred to as a full model because it uses all time-series data. The Granger causality
from yj(t) to yi(t) is based on a comparison between the quality of the full model and the
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quality of a reduced model which is the model that is estimated without a time-series yj(t)
(i.e., least-square fitting to the data y(t) = (y1(t), . . . , yj−1(t), yj+1(t), . . . , yn(t)) ∈ Rn−1).
If the fitting quality of yi(t) from two models are the same, it indicates that the existence
of yj(t) is not useful for estimating yi(t). Thus, the Granger causality from yj(t) to yi(t) is
defined to be zero.

The quality of the fitting can be quantified using the covariance matrix of the residual
of the estimation ( i.e., the difference between the time-series and the model’s output ) or
the residual covariance. In general, a smaller residual covariance indicates a higher quality of
the fitting. From these concepts, the Granger causality (GC) from yj(t) to yi(t) is quantified
by the log-det ratio between residual covariance of two cases as

Fij = log detΣR
ii

detΣii

, (2.6)

where ΣR
ii is the (i, i) entry of residual covariance of yi(t) of the reduced model. The term Σii

is the (i, i) entry of residual covariance of yi(t) when fitted to a full model. If detΣii < detΣR
ii ,

we obtain Fij > 0 and if detΣii = detΣR
ii , we obtain Fij = 0. As a remark, the determinant

in (2.6) is necessary since GC is defined in a general case that yi(t) and yj(t) can be sub-groups
of time-series.

1

2 3
A1

A2

A3

1 2 3

1
2
3

ℱ

Figure 2.1: Granger causality network and matrix (right) inferred from non-zero index of VAR
parameters (left) when n = 3, p = 3.

The Granger causality among all time-series formed a Granger graphical model or a GC
network. A GC network is a directed graph with asymmetric adjacency matrix as shown in
Figure 2.1. The yellow entries indicate the non-zero parameters. Figure 2.1 stressed one of
the advantages of Granger graphical model over the Gaussian graphical model that it also
provides the directionality of the causal connections.

In practice, a small value of Fij numerically computed from (2.6) may not be an exact
zero. To test the exactness of a zero GC or a null GC, we can either perform a hypothesis
test with null hypothesis Fij = 0 against Fij ̸= 0 or use the relation,

Fij = 0↔ (Ar)ij = 0, r = 1, 2, · · · , p, (2.7)
as a prior information for the VAR model estimation. In other words, The VAR coefficients of
index (i, j) must be zero in all lags in order to have a null GC from yj(t) to yi(t) (Lütkepohl,
2005). We can use a sparse penalty to regularize the objective of (2.2) to force the estimated
VAR have sparsity pattern strictly follow the relation (2.7) to obtain a sparse representation
of GC network.
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2.2 Group norm penalty

Directly from the relation (2.7), the null GC connections can be introduced by using a sparse
penalty, g, to convert the problem (2.2) to a regularized least-square problem in the form of

minimize
x

f(x) + λg(x), (2.8)

where f is quadratic loss in (2.2). The tuning parameter λ controls the sparsity level of the
model. The solution to (2.8) is zero if λ is sufficiently large. One of the sparse penalties is
the lasso penalty (g(x) = ∥x∥1) (Tibshirani, 1996). However, the lasso penalty is not suitable
in many applications because it cannot induced the predefined sparsity pattern. In our case,
we required that the sparsity pattern of VAR must follow from (2.7) to effectively obtain a
sparse GC network.

 




(a) The sparsity of solution using a group norm penalty.




(b) The sparsity of solution using a sparse penalty.

Figure 2.2: The difference of sparsity pattern between group norm penalty and a sparse
penalty. The red variables are the example of possible zero locations.

To induce a sparsity structure, one can regularize the objective in (2.2) using a group
norm penalty:

g(x;B) =
∑
l∈B

∥xl∥qp, (2.9)

which is a composite of ℓq with ℓp norm. In this case, we desire the sparsity pattern to follow
the partition set B. For example in Figure 2.2(a), the partition set B is {{1, 2}, {3, 4}, {5, 6}}
and the possible sparsity patterns are (x1, x2) = 0 or (x3, x4) = 0 or (x5, x6) = 0. The
intuition behind this is that the norm of each partition is penalized using a sparse penalty
so that the estimated norm of a partition is exactly zero, yielding a zero partition. From
Figure 2.2(a), the ℓp norm with p ≥ 1 of each partition forms a vector (v1, v2, v3) which is
then penalized using a sparse penalty, ℓq with 0 < q ≤ 1, leading to a sparse v. From a
definition of a norm, when vi is zero, the partition of x according to vi is also a zero vector,
producing a block-sparse solution in the original variable, x. Without the group norm penalty,
the sparsity of the solution may not exactly follows from the predefined pattern as shown
in Figure 2.2(b). The usage of conventional sparse penalty in the problem that the sparsity
structure is meaningful can introduce the extra bias from unnecessary zero variables in the
estimation without learning a desired sparsity structure.



Chapter III

METHODOLOGY

This chapter is concerned with the main contribution of the thesis. The basic informa-
tion on the joint sparse Granger graphical model estimation is given in the first part. The
description of our proposed regularization techniques are provided in the second part. The
last part of this chapter, the GC learning scheme, focus on the applications of the proposed
techniques.

Notation A vector x is partitioned into m blocks as x = (x1, x2, . . . , xm) and a group-norm
ℓp,q of x is defined as ∥x∥p,q = (

∑
i ∥xi∥qp)1/q. We often use the ℓp,q norm to the power of q.

∥ · ∥p indicates p norm.

A joint Granger graphical model is a collection of K pth VAR models,

y(k)(t) =

p∑
r=1

A(k)
r y(k)(t− r) + ϵ(k)(t), k = 1, . . . , K, (3.1)

with predefined relations among all models as a prior knowledge. The prior knowledge takes
the form of a regularization of objective in (2.2) of K models as

minimize
A(1),...,A(K)

1

2N

K∑
k=1

∥∥Y (k) − A(k)H(k)
∥∥2
F
+ g(A(1), . . . , A(K)), (3.2)

where Y (k), H(k) are the matrices containing measurements of kth time-series and A(k) are
VAR coefficients of kth model. The expression of Y (k), H(k) and A(k) is provided in (2.3),
(2.4).

Without prior knowledge of the relations among all models, the estimation in (3.2) is
reduced to K separable optimization problems for each A(k) and can be solved in parallel.
In such case, we can learn K sparse GC networks by using a weighted group norm penalty
function,

g(A) = λ

K∑
k=1

∑
i ̸=j

w
(k)
ij ∥B

(k)
ij ∥

q
2, 0 < q ≤ 1, (3.3)

where,
B

(k)
ij =

[
(A

(k)
1 )ij · · · (A

(k)
p )ij

]
∈ Rp (3.4)

This choice of penalty extends the joint Granger graphical model estimation framework in
three ways.
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• First, this penalty directly follows from Chapter 2 that it penalizes the partition B
(k)
ij

to be zero, leading to a null GC for kth model. We emphasize on the use of ∥B(k)
ij ∥

q
2

instead of using the conventional lasso of VAR coefficients directly as
∑p

r=1 |(A
(k)
r )ij|

(lasso penalty) as it does not promote a common zero among all VAR-lag parameters.

• Second, we include the choice of penalty weight w(k)
ij in (3.3) since a pre-defined w(k)

ij > 0

indicates the degree to which each B
(k)
ij is penalized, or equivalently, it gives a likelihood

prior of GC from y
(k)
j to y

(k)
i . The topology of GC network of the kth model refers to

the sparsity pattern of an n× n matrix formed by the estimated B
(k)
ij for 1 ≤ i, j ≤ n.

• Third, we extends to use the non-convex group norm penalty. When p = 2, q < 1,
the problem is reduced to the non-convex group norm regularized regression which
was studied in the context of group sparsity recovery in Hu et al. (2017). A recovery
bound of group-sparse solutions to an ℓp,q-regularized regression can be guaranteed
upon the (p, q)-group restricted eigenvalue condition (GREC) Hu et al. (2017)1 with
an important property that (2,1)-GREC implies (2,1/2)-GREC. This favorable result
implied that using the ℓ2,1/2 penalty requires a weaker condition than ℓ2,1, that is called
the adaptive group lasso Wang and Leng (2008), to obtain the recovery bound. The
experimental results of Hu et al. (2017) suggested that the range of true sparsity levels
that yielded 100% success recovery rate in ℓ2,1/2 was wider than that of ℓ2,1.

The penalty (3.3) is yet to be a joint modeling framework but can be converted into one
by modifying the structure of group norm penalty to match three assumptions of the relation
among models presented in Figure 3.1. The red links indicate the differential GC link, the
dark links indicate the common GC link and the color intensity indicates GC strength. In
summary, the assumptions are

1. Common GC networks assumption: all models shared the GC connections without
sharing the value. This common topology is called the common GC network,

2. Common and differential GC networks assumption: all models partially shared their
topology and each model also has GC connections different from the common part
called the differential network,

3. Fused and differential GC networks assumption: the definition is the same as assumption
2 but the common GC network in each model has same VAR coefficients.

Their expressions and related literature are presented in the following sections.

1The condition requires the positive definiteness of ATA on the associated subblocks. The bound of the
estimation error is a big O of λ and the group sparsity level of the true parameter; see Theorem 9 in Hu et al.
(2017).
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(a) Common GC networks

(b) Common and differential GC networks

(c) Fused and differential GC networks

Figure 3.1: The assumptions on each joint Granger graphical model estimation when K = 3.

3.1 Common GC network

model #1 model #2 model #3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.2: Example of GC networks learned with CGN formulation.

We propose CommonGrangerNet (CGN) as the formulation for estimating K models
to have the same GC network topology but their value can be different as shown in Figure 3.2
for the case K = 3. A common sparsity of GC network can be obtained by pooling B

(k)
ij from

K models into
Cij =

[
B

(1)
ij B

(2)
ij · · · B

(K)
ij

]
∈ RpK , (3.5)

and regularizing Cij using the group norm penalty

g(A) = λ
∑
i ̸=j

vij∥Cij∥q2, 0 < q ≤ 1. (3.6)
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As the summation over (i, j) of non-negative quantities behaves like an ℓ1 penalty, when the
penalty parameter λ is sufficiently large, some Cij’s (from 1 ≤ i, j,≤ n) are zero, revealing a
common GC structure of K models. Thanks to the characteristics of group norm penalty, the
value of non-zero B

(k)
ij does not require to be the same for all k. The relative penalty weight

among (i, j) is chosen as vij = 1/∥C̃ij∥q2 where C̃ij is the least-squares estimate of Cij. This
choice is suggested from that if a norm of the C̃ij is very small compared to others, it is more
likely that Cij = 0; thus, Cij should be more penalized and vice versa. When q = 1, this
technique is also known as adaptive group lasso (Wang and Leng, 2008). The penalty (3.6)
was considered in Songsiri (2017); Gregorova et al. (2015) but with q = 1, vij = 1.

3.2 Common and differential GC network

model #1 model #2 model #3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.3: Example of GC networks learned with DGN formulation.

In the case that the differences of individual models are favored to learn, CGN cannot
be applied. The differences of GC networks, called the differential GC networks, can be
introduced by combining the term (3.3) to (3.6) as

g(A) = λ1

∑
i ̸=j

K∑
k=1

w
(k)
ij ∥B

(k)
ij ∥

q
2 + λ2

∑
i ̸=j

vij∥Cij∥q2, 0 < q ≤ 1. (3.7)

The second term in (3.7) can promote a shared null GC in some (i, j) entries by all
GC networks, while other (i, j) entries of individual models can be regularized through the
first term of g. With the penalty in (3.7), the models are encouraged to decompose into
the common networks and the differential networks as shown in Figure 3.3. Similar to (3.6),
the relative weights are chosen as the inverse of the least-square estimate: w(k)

ij = 1/∥B̃(k)
ij ∥

q
2

and vij = 1/∥C̃ij∥q2. The estimation (3.2) with penalty (3.7) is referred to as Differential-
GrangerNet (DGN).

Previous works on the regularization techniques that split the GC networks into common
and differential parts include Songsiri (2017); Skripnikov and Michailidis (2019b). Songsiri
(2017) proposed the penalty term that is the special case of (3.7) with q = 1, w

(k)
ij = 1, vij = 1.

In other words, they used convex penalties (group lasso) and did not provide the choices of the
relative weight on model parameters. Skripnikov and Michailidis (2019b) proposed a different
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technique for common-differential network decomposition. Their method consisted of two
stages, they learned the common part in the first stage and the differential part in the second
stage. Despite the convex penalty they used, their two-stages formulation is non-convex. The
global optimality of their formulation cannot be ensured.

3.3 Fused and differential GC network

model #1 model #2 model #3

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.4: Example of GC networks learned with FGN formulation.

In addition to the DGN formulation, we assume that the common Granger networks
share the same VAR coefficients, B(1)

ij = B
(2)
ij = · · · = B

(K)
ij as shown in Figure 3.4. The

common value of GC can be obtained by replacing the second term in (3.7) to be a group
fused lasso penalty (Alaíz et al., 2013) as

g(A) = λ1

∑
i ̸=j

K∑
k=1

w
(k)
ij ∥B

(k)
ij ∥

q
2 + λ2

∑
k<l

∑
i ̸=j

uijkl∥B(k)
ij − B

(l)
ij ∥

q
2, 0 < q ≤ 1, (3.8)

that shrink the differences between B
(k)
ij and B

(l)
ij in all combination of l, k through the sum∑

k<l . A common GC of two models is introduced when their difference is shrunk to zero for
some (i, j) as shown in Figure 3.4. The positive penalty weight uijkl gives a relative degree of
penalizing the group fused lasso among (i, j) entries and all pairs of model k and l. We can
select the penalty weight as, uijkl = 1/∥B̃(k)

ij − B̃
(l)
ij ∥

q
2 where B̃

(k)
ij is the least-square estimate

because when B̃
(k)
ij , B̃

(l)
ij are close to each other, the two vectors are likely to be equal so the

larger penalty weight is favored. We refer to this formulation as FusedGrangerNet (FGN).

Relevant literature of this formulation includes Skripnikov and Michailidis (2019a);
Songsiri (2015, 2017). In Skripnikov and Michailidis (2019a), each vector in the fused term
was constructed differently from (3.8); it was pooled from all entries of VAR-lag coefficients
of a single model, while in FGN, it was pooled from an (i, j) entry of lag coefficients. The
two techniques can force identical parameters of two models due to the fused-lasso feature.
However, when p > 1, we desire fusion results that the sparsity of single model’s parameters
occur as a group of all VAR-lag coefficients for some (i, j); such zero patterns can character-
istically infer causality from variable j to i, which can be achieved by (3.8), but not Skripnikov
and Michailidis (2019a). Despite penalizing all of any two models in (3.8), the fused terms
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in Songsiri (2015, 2017) penalized only two consecutive models and did not apply prior infor-
mation about the common and differential part by simply using uijkl = 1, w

(k)
ij = 1, while our

choice of uijkl, w
(k)
ij can suggest at which (i, j) entry is zero and which pair of two models

have more likelihood of having identical parameters.

3.4 GC learning scheme

common GC

...CGN
Model
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dense sparse#1

#2

#K
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#1

#2

#K

vary

common + differential GC

DGN
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#2
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+
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m
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n sparsesparse
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Figure 3.5: Learning scheme for the proposed formulations.

This section is primarily focused on the applications of the proposed formulations which
is summarized in Figure 3.5. The process of learning the common & differential GC networks
begins with feeding the K time-series into the desired formulation. To find a candidate for
inference, the candidates are obtained by varying the tuning parameters that are used in
the formulation and the candidate is selected by a model selection technique or the penalty
parameter selection. The selected model is then decomposed into common and differential
networks which can be used for the inference task. In the following, we provides the detail of
each learning step.

Penalty parameter selection

Selecting a suitable penalty parameter is to seek an optimal trade-off between model com-
plexity and the fitting of the model using a model selection technique. To select a model, we
propose to use eBIC (Extended Bayesian information criterion) (Chen and Chen, 2008),

eBIC(λ1, λ2) = −2L(λ1, λ2) + df(λ1, λ2) log(N) + 2γ log
(

n2pK

df(λ1, λ2)

)
; 0 ≤ γ ≤ 1, (3.9)

where L(λ1, λ2) is the log-likelihood of the model obtained from the model estimated with
λ1, λ2; N = T − p is number of effective time points; df(λ1, λ2) is the degrees of freedom
(or the complexity measure of a model). We assume that ϵ(k)(t) in (3.1) are independent in
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each k so that the log-likelihood of K VAR models is,

L(λ1, λ2) = −
nNK

2
log(2π)− N

2

K∑
k=1

log det Σ̂(k)(λ1, λ2)−
nNK

2

where Σ̂(k)(λ1, λ2) is the maximum likelihood estimate of kth model’s noise covariance. We
provide the derivation of the log-likelihood in Appendix B.1. The term

(
n2pK

df
)
in (3.9) rep-

resents the number of possible model candidates with a given df. This term represents the
log-prior distribution of model that varies upon model’s df. The amount of prior informa-
tion can be adjusted through a tuning parameter (γ) that eventually affects eBIC asymptotic
property. When γ = 0, the eBIC expression is reduced to BIC score. The expression of df
also affects the asymptotic properties of the criteria (Hastie et al., 2001) and the suitable
choice of df is varied from problem to problem. For a lasso regression, the degrees of freedom
are simply the non-zero estimated variables. For a fused-lasso problem, the multiple variables
sharing the same value are regarded as one degree of freedom. For a group lasso problem,
the degrees of freedom are approximated from the number of non-zero groups and the ratio
between regularized solution norm and least-square solution norm of a group (Yuan and Lin,
2006). Since CGN is essentially an extension to the group lasso regression, we follow the
choice of degrees of freedom from Yuan and Lin (2006):

df(λ) =
∑
i,j

I(∥Cij(λ)∥2 > 0) +
∑
i,j

∥Cij(λ)∥2
∥C̃ij∥2

(pK − 1),

where Cij(λ) and C̃ij are the solution of CGN and the least-square solution respectively. The
notation I(S) denotes the indicator function that return 1 if the statement S holds and return
0 otherwise. This choice of degrees of freedom cannot be applied in other formulations due
to a different group size in DGN and a different type of penalty in FGN (group fused lasso).
We heuristically count the non-zero variables in DGN and counted the fused variables (i.e. the
variables that shared their value) as one degree of freedom in FGN. We select a pair of penalty
(λ1, λ2) if it minimizes (3.9) or

(λ̂1, λ̂2)eBIC = argmin
λ1,λ2

eBIC(λ1, λ2).

As a remark, there are alternative approaches of choosing the penalty parameters other
than the model selection criterion. We consider K-fold cross validation (CV) and stability
selection. The goal of K-fold CV is to seek a model that has the lowest averaged sum-
square error (SSE) of unseen data over K sub-samples. As the name suggested, the K-fold
CV splits the data into K non-overlapping sub-samples. One out of K segment is selected
to be a validation data (or the unseen data), yvalidate, and the rest is called the training data
ytrain which is used in the model estimation. The model with a given regularization is then
estimated using ytrain and evaluating using yvalidate, yielding a sum-square error loss SSE(k)

where k is the validation data segment index. The iteration is then repeated for K time. In
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summary, the sum-square error for all segments are evaluated as

SSE(k)(λ1, λ2) = ∥(y(k)validate − ŷ
(k)
validate(λ1, λ2))∥22, k = 1, . . . , K,

where y(k)validate is the kth validation data segment and ŷ
(k)
validate(λ1, λ2) is the output of the model

estimated with penalty (λ1, λ2) using training data. The process repeated by iterating through
all K segments and repeated over all regularization pairs (λ1, λ2). The result of K-fold CV
is the averaged sum-square-error over K-fold as

SSEavg(λ1, λ2) = (1/K)
K∑
k=1

SSE(k)(λ1, λ2).

The CV method selects the regularization pair such that SSEavg is minimized or

(λ̂1, λ̂2)CV = argmin
λ1,λ2

SSEavg(λ1, λ2).

However, the goal of K-fold CV is to minimize the prediction error in the unseen data
set which is a different objective for the true model selection. In practice, the K-fold CV is
prone to select a dense model.

The stability selection (Meinshausen and Bühlmann, 2010) focuses on the zero location
consistency of the estimated parameters when the data were sub-sampled. Their concept is
that when the data were sub-sampled, the zero index of the estimated parameters should
not be significantly affected. The stability selection begins with randomly drawing half of
the samples as a sub-sample. Each sub-sample is used as data of the sparse estimation and
the process is repeated for K times with the replacement of the drawn data for each penalty
parameter. For a given tuning parameter, the ratio of the times that a variable is estimated
as non-zero over K times is assigned to each variable and is referred to as a stability measure
of an estimated variable. The variables with higher stability measure than a given threshold
are regarded as the stable variables. Unlike the other model selection techniques, the stability
selection is not a direct way for selecting (λ1, λ2). It is rather an ensemble method that is
used to select stable variables over a given range of regularization.

These two techniques have two main drawbacks in the time-series estimation context.
First, they required solving the estimation for a given penalty repeatedly. This is not feasible
for a high dimensional setting. This repetition is not required in the eBIC selection. Second,
the time-series samples are highly time-dependent and cannot be randomly sub-sampled. One
can sub-sample the time-series as a block of smaller time-series but the estimation with
smaller samples may result in poor goodness of fit. Based on these reasons, we prefer the
eBIC selection over the sub-sampling-based model selection.

Critical penalty parameter

Since any sufficiently large penalty parameters will yield a sparsest model, the bound of
penalty grid search should be set by the smallest penalty parameter called the critical penalty
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parameter λc. If the bound is tight, the estimated models are not entirely sparse for all λ < λc

but entirely sparse for λ ≥ λc. After the bound is determined, we can freely set the resolution
of the grid search as we desired over 0 < λ ≤ λc. The expression of λc for cvx-CGN has been
given in Songsiri (2017). The following is its expression based on the vectorized form of (4.1)
which we will revisit in this topic in Chapter 4.

λc = max
i∈J

(1/wi)∥GT
i [I −Gq(G

T
q Gq)

−1GT
q ]b)∥2, (3.10)

where Gq is the block-column of G corresponding to the unpenalized parameters (diag-
onal term of VAR models) and Gi is the block-column of G that associated with the ith block
of off-diagonal VAR coefficients respectively. The set J contains indices of the penalized
blocks with penalty weight wi.

We denotes (λ1c, λ2c) to be the critical penalty parameters for DGN and FGN. For these
formulations, we heuristically compute λ1c, λ2c by determining the analytical form of λ2c based
on λ1 = 0 and λ1c based on λ2 = 0. In DGN, we heuristically computed λc for λ1, called λ1c,
in the case that λ2 is zero and the same for λ2c. In FGN, we also set λ1c the same way as
DGN but we heuristically set λ2c = λ1c. When the formulations are non-convex, the bound
(3.10) is no longer tight; however, the bound is still usable because a non-convex formulation
yields a sparser solution than the convex formulation.

Extracting common and differential network

The K estimated GC networks can be decomposed into two parts, the common GC network
and differential GC networks. For the kth network, we define its edge list, or a set containing
all of non-zero edges as F (k). The edge list of common GC network, Fcommon, is defined from
the intersection of all edge lists for all K as

Fcommon =
K⋂
k=1

F (k)

forming a common GC network. Unlike FGN, the common GC links of CGN and DGN may
not share the same weight, leading to ambiguous choices of weight. We heuristically define
the weight of common GC links to be the average of all common GC networks. For a kth

differential network, its edge list, F (k)
differential, is defined from the edges of the kth GC network

that is not in Fcommon or,

F
(k)
differential = F (k) \ Fcommon k = 1, . . . , K.

The goals of causality learning based on common network and differential networks is
divided into two objectives: focusing on Fcommon and focusing on F

(k)
differential for k = 1, . . . , K.

For the first goal, while each model may contain a different intrinsic GC structure, a meaningful
group-level characteristic is preferred. CGN formulation can directly serves this purpose since
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F
(k)
differential = ∅ for all k. For DGN and FGN, the edges list, Fcommon, can be extracted

from the overlapped non-zeros of B(k)
ij among k. FGN is suitable for this objective since the

coefficients in the estimated common part already share their value for all K models. A wide
application of revealing a common GC is a group-level inference of brain connectivity where
data sets contain brain signals of several subjects collected under a controlled condition (e.g.,
resting-state), and K is then the number of patients. Presumably, these subjects contribute
homogeneous brain connectivity that can be inferred from the estimated GC common network,
while the model parameters are allowed to differ for each patient’s profile. The second goal
aims at investigating the differences among multiple networks directly. After the common
part is specified, the differential network of each model corresponds to the remaining non-zero
locations of B(k)

ij for each k. As examples of discovering differential networks, we aim to infer
brain connectivity differences from the brain signals collected under two or more conditions
(e.g., controlled versus abnormal). The second goal can be served only from DGN and FGN;
however, for FGN, the fused term regularized the differential networks, causing the differences
to be small. Therefore, DGN may be more suitable for the second objective.



Chapter IV

ALGORITHMS

For ease of mathematical presentation, we reformulate the problem formulations CGN,
DGN, and FGN in a vector format (without scaling N) as

minimize
x

(1/2)∥Gx− b∥22 + g(x), (4.1)

where the optimization variable x ∈ Rn2pK refers to the n-dimensional p-order VAR model
parameters of K models: A(k) for k = 1, . . . , K. The problem parameters, b ∈ RnNK , G ∈
RnNK×n2pK , are vectorized from Y (k) and H(k) for all K respectively. The first term in the
objective of (4.1) represents the least-squares objective (model fitting) and the second term,
g(x), is the regularization funtion that depends on the formulation. For all formulations, the
penalty term is either based on B

(k)
ij in (3.4) or Cij in (3.5). Therefore, it is more convenient

to present the variable x in the form of

x = (C11, . . . , C1n, C21, . . . , C2n, . . . , Cn1, . . . , Cnn) ∈ Rn2pK , (4.2)

so that vector x can be partitioned either into B
(k)
ij as a sub-block of size p or into Cij as a

sub-block of size pK. Based on different size of sub-block, we define a partition set containing
index according to sub-block B

(k)
ij as

P = {{1, 2, . . . , p}, {p+ 1, p+ 2, . . . , 2p}, . . . ,
{(B1 − 1)p+ 1, (B1 − 1)p+ 2, . . . , B1p}}, (4.3)

where B1 is the number of all partitions and according to Cij as

K = {{1, 2, . . . , pK}, {pK + 1, pK + 2, . . . , 2pK}, . . . ,
{(B2 − 1)pK + 1, (B2 − 1)pK + 2, . . . , B2pK}}, (4.4)

with B2 as the number of all partitions. With the notation of partitions, we can adopt group
norm penalty from (2.9) with a penalty weight wl > 0 as

h(x;B) =
∑
l∈B

wl∥xl∥q2. (4.5)

The penalization of the partitions in B = K introduces a common Granger network. Similarly,
the penalization of the partition in B = P introduces differential Granger networks.

Because the meaningful GC is based on the off-diagonal parts of VAR coefficients, we
penalize the projected coordinate, Px, where P ∈ R(n2−n)pK×n2pK is a projection mapping
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that maps VAR coefficients, x, onto the off-diagonal parts of VAR coefficients. To show
the structure of P ; consider the case when n = 2, we have x = (C11, C12, C21, C22) with
Cij ∈ RpK . The projection matrix P is given by

P =

[
0 IpK 0 0
0 0 IpK 0

]
,

so that the projected vector, Px = (C12, C21), contains only off-diagonal entries of VAR
coefficients of K models. Therefore, the group norm penalty (4.5) of the off-diagonal VAR
coefficients is h(Px;B).

Similarly for FGN, we are interested in the regularization on the differences of off-diagonal
parameters among all models. For a vectorized variable x, we can define the difference operator
D ∈ R(n2−n)p(K2 )×n2pK that maps all VAR coefficients to the difference of off-diagonal VAR
coefficients between any two models. To show a structure of D; consider the case when
K = 3 and for a fixed (i, j), the term Dx can be constructed by concatenating

B
(1)
ij − B

(2)
ij

B
(1)
ij − B

(3)
ij

B
(2)
ij − B

(3)
ij

 =

Ip −Ip 0
Ip 0 −Ip
0 Ip −Ip


B

(1)
ij

B
(2)
ij

B
(3)
ij

 ,


1 −1 0
1 0 −1
0 1 −1


︸ ︷︷ ︸

DK

⊗Ip


B

(1)
ij

B
(2)
ij

B
(3)
ij

 , (4.6)

for all 1 ≤ i, j ≤ n and i ̸= j. For a general K, we see that DK takes all possible
differences between any two entries, so the structure of DK depends on K and its dimension
is
(
K
2

)
×K. Define D̃ as the (n2−n)-block diagonal matrix with all blocks ofDK⊗Ip. Suppose

z = Px then z contains only off-diagonal entries of VAR parameters. If z is partitioned to
blocks of size p, i.e., each block is B(k)

ij as in (4.6), then we see that D̃z is Dx as desired.
Mathematically, D = D̃P but this expression should not be used in the numerical construction
of Dx. Therefore, the weighted group norm penalty for FGN is h(Dx;B).

The vectorized form of g in all formulations are

CGN : g(x) = λh(Px;K), (4.7)
DGN : g(x) = λ1h(Px;P) + λ2h(Px;K), (4.8)
FGN : g(x) = λ1h(Px;P) + λ2h(Dx;P). (4.9)

Therefore, a unified formulation for all of our vector formulations is

minimize
x

(1/2)∥Gx− b∥22 + λ1h(L1x;B1) + λ2h(L2x;B2). (4.10)

We provided the vectorization detail in Appendix B.2.

Because the gradient at zero of the objective function (4.10) is undefined, the notion
of non-smooth optimization must be introduced. The first part of this section introduces
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Table 4.1: The convergence property and convergence rate for CGN, DGN, FGN formulations
and their convex relaxations. The symbol X indicates the algorithm in the row has a global
convergence and can be efficiently implemented to solve the formulation in the column. The
symbol (X) indicates a global convergence but without efficient implementation.

(a) Algorithm convergence and rate for convex formulations.

Available algorithms cvx-CGN cvx-DGN cvx-FGN
Convergence rate Convergence rate Convergence rate

nmAPG (Li and Lin, 2015) X O(1/k2) (X) O(1/k2) (X) O(1/k2)
Spectral ADMM (Xu et al., 2017b) X X X

Adaptive ADMM X O(1/k) X O(1/k) X O(1/k)
(b) Algorithm convergence for non-convex formulations.

Available algorithms Convergence
CGN DGN FGN

nmAPG (Li and Lin, 2015) X (X) (X)
Spectral ADMM (Xu et al., 2017b)

Adaptive ADMM
(c) Algorithm complexity per iteration based on the number of model parameters
ñ = n2pK.

Available algorithms Worst case computation complexity per iteration
nmAPG O(ñ2) (Matrix-vector multiplication)

Spectral ADMM O(ñ3) (Solving system of linear equations)
Adaptive ADMM O(ñ3) (Solving system of linear equations)

readers to a class of algorithms called the proximal algorithms which are mainly used in
non-smooth convex optimization problems. Since some of our formulations are non-smooth
non-convex problems, we divide the contents into two major parts: the algorithms for convex
and non-convex formulations. In brief, we provide a list of algorithms that we used in our
implementation in Table 4.1(a) for convex formulations and Table 4.1(b) for non-convex
formulations. The known convergence result and the convergence rate is also presented. The
notation k is the iteration index, and let ϵ = f(x(k))−p∗ be the accuracy of objective compared
to the optimal value p∗. The convergence rate is reported as a big O of functions in k which
indicates the accuracy ϵ as a function of k. An algorithm with lower accuracy at the same
number of iterations compared to another algorithm is faster. For example, O(1/k2) has a
faster convergence rate than O(1/k). The worst case computation complexity per iteration
and the description is presented in Table 4.1(c).

4.1 Proximal algorithms

This section provides a brief summary of the proximal algorithms in Parikh and Boyd (2014).
The algorithm in this thesis often involves a proximal operator of a function h defined by

proxλh(v) = argmin
x

h(x) +
1

2λ
∥x− v∥2, (4.11)
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where x, v ∈ Rn, λ > 0. The proximal operator (4.11) is usually presented as a sub-problem
in a class of many algorithms called the proximal algorithms. It is worth noting that many
proximal algorithms do not require the objective to be globally differentiable, so they are more
favorable in the non-smooth optimization problems. When compared to the gradient methods,
the proximal operator is not intuitive; however, it can be interpreted in many ways. The most
natural way is the interpretation as a gradient flow system. Consider the system

ẋ(t) = −∇f(x(t)), (4.12)

where a stationary point of the system is the local optima of f . By using Forward-Euler
discretization with step size λ; ẋ(t) is discretized to (x(t + λ) − x(t))/λ. For notation
simplicity, we refer x(t) as xk and x(t+ λ) as xk+1 . We then obtain the discretized gradient
flow system,

xk+1 − xk

λ
= −∇f(xk), (4.13)

which is the gradient descent algorithm in disguise. Similarly for Backward-Euler discretization,
we obtain

xk+1 − xk

λ
= −∇f(xk+1). (4.14)

It can be seen that (4.14) is the first order optimality condition of the problem (4.11) when
v = xk. Therefore, the Backward-Euler discretized gradient flow eqrefeq:Backward can be
replaced by a fixed-point iteration,

xk+1 = proxλf (xk),

which is known as the proximal point algorithm. Like the gradient descent, a closed-form
expression of the proximal operator reduces the computation cost. However, many problems,
such as regularized regression problems, are in the form of

minimize
x

f(x) + g(x),

where term f is the smooth fitting term such as the sum-square loss and g is a non-smooth
convex regularization such as the ℓ1 norm penalty. Even when a closed-form of proxg is
known, proxf+g is unnecessarily obtained in a closed-form for a general f ; therefore, the
proximal point algorithm cannot be directly applied. To analyze further, we require a concept
of the subdifferentials since the term g is non-smooth.

With a presence of gradient discontinuity for a convex function, the notion of subgradi-
ents must be introduced. For a convex f , the set of all vectors s that satisfied the inequality:

f(x) ≥ f(z) + sT (x− z), ∀x, z ∈ Rn,

are called the subdifferential of f(x) at x = z and its members are called subgradients. Geo-
metrically, a subgradient s is any supporting hyperplane of f(x) at x = z. The subdifferential
of f(x) at x = z is denoted as ∂f(z). As an example, the subgradient of the absolute
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𝑓(𝑥) = |𝑥|

𝑥

𝑓(𝑥)

𝜕𝑓 0 = 𝑎𝑥
𝑎 ≤ 1

Figure 4.1: The subdifferential of absolute function at zero with dashed line as the subgradient.

function, f(x) = |x|, at zero is shown in Figure 4.1; any line that passes the origin with a
slope between −1 and 1 is a subgradient of the absolute function. It is worth noting that the
subdifferential operator is a point-to-set mapping; the equality relation is replaced by ”is a
member of” operator (∈). By considering the system (4.12) and using notion of subgradient,
the subgradient flow system is then

ẋ(t) ∈ −∇f(x(t))− ∂g(x(t)), (4.15)

which can be discretized using the forward Euler discretization on ∇f(x(t)) and backward
Euler discretization on ∂g(x(t)) to obtain,

xk+1 − xk

λ
∈ −∇f(xk)− ∂g(xk+1).

The terms related to xk can be rearranged on the same side of the discretization as in (4.13)
and the terms related to xk+1 can also be arranged on the other side of the discretization as
in (4.14). We then achieve

xk+1 + λ∂g(xk+1) ∋ xk − λ∇f(xk). (4.16)

With notion of proximal operator, the relation (4.16) can be expressed as

xk+1 = proxλg(xk − λ∇f(xk)), (4.17)

which forms a fixed-point iteration. This is also known as proximal gradient algorithm or
the forward-backward algorithm. However, it is often to encounter problems in the form of

minimize
x

f(x) + g(Lx), (4.18)

where proximal operator of g(x) has a closed-form expression but may not for g̃ with g̃(x) =
g(Lx) for a general L. Solving (4.11) numerically in each iteration of proximal gradient is
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not feasible for a large scale setting. This is when ADMM algorithm (Alternating Direction
Method of Multipliers, Boyd et al. (2011)) came into action. ADMM solves the problem in
the form of

minimize f(x) + g̃(z)
subject to Ax+Bz = c.

(4.19)

The example problem (4.18) can be solved by ADMM with A = L,B = −I, c = 0. The
expression g is changed to g̃ to emphasize the difference between g(x) and g̃(z) since their
argument is in different space for a non-square L.

One of the ADMM interpretations is the alternating minimization of augmented La-
grangian,

Lρ(x, z, y) = f(x) + g̃(z) + yT (c− Ax− Bz) + (ρ/2)∥c− Ax− Bz∥22, (4.20)

where x, z are both primal variables; z is referred to as an splitting variable; y is the dual
variable. The algorithm parameter ρ > 0 plays an important role in the convergence of
the algorithm which will be discussed later in this chapter. To keep the algorithm description
simple, we changed the iteration index xk+1, xk, xk−1 to x+, x, x− respectively. ADMM simply
updates the primal variable x and z that minimize the augmented Lagrangian in the alternating
scheme and then updates the dual variable y as

x+ = argmin
x

Lρ(x, z, y), (4.21)

z+ = argmin
z

Lρ(x
+, z, y), (4.22)

y+ = y + ρ(c− Ax+ − Bz+), (4.23)

respectively. ADMM is regarded as the proximal algorithms because when A = −B = I, c =
0, the solution to problem (4.21), (4.22) are

argmin
x

f(x) + (ρ/2)∥x− (z − y/ρ)∥22,

argmin
z

g̃(z) + (ρ/2)∥z − (x+ − y/ρ)∥22.

These expressions are the evaluation of proximal operator, proxf/ρ(z−y/ρ), proxg̃/ρ(x
+−y/ρ)

in disguise.

4.2 Algorithms for convex formulations

The ADMM algorithm can be applied to solve (4.10) with convergence guaranteed under two
conditions: the functions f, g are closed and proper convex functions and the unaugmented
Lagrangian (without the quadratic term) (4.20) has a saddle point (Boyd et al., 2011). It is
evident that cvx-CGN is already in the ADMM format (4.19) with A = P,B = −I, c = 0,
but not for the DGN and FGN. To convert DGN, FGN into ADMM format, we split x and z in
(4.19) such that z1 = L1x ∈ Rm̃1 and z2 = L2x ∈ Rm̃2 . The function f(x) = (1/2)∥Gx−b∥22
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(a) G (b) P (c) D

(d) GTG (e) P TP (f) DTD

Figure 4.2: Sparsity pattern of related matrices when n = 5, p = 10, K = 3.

is convex and its gradient is Lipschitz continuous. With the choice of splitting, we re-define
the penalty g from (4.7)-(4.9) to g̃ : Rm̃1 ×Rm̃2 → R, g̃(z1, z2) = λ1h(z1;B1) + λ2h(z2;B2).
Our ADMM format (4.19) corresponds to

B = −I, A =

[
L1

L2

]
, where

[
L1

L2

]
=

[
P
P

]
for DGN, and

[
L1

L2

]
=

[
P
D

]
for FGN. (4.24)

As stated before, the choice of ρ strongly affects the convergence speed of the algorithm.
The following content is a variant of ADMM that update the penalty parameter ρ as the
algorithm goes. We also discuss the other choices of the algorithms later in this section.

Spectral ADMM

We consider ADMM algorithm with spectral penalty parameter update rule proposed in
Xu et al. (2017b). According to our problem parameters, the augmented Lagrangian is
Lρ(x, z, y) = f(x) + g̃(z1, z2) + yT (z −Ax) + (ρ/2)∥z −Ax∥22. By following the updates in
(4.21)-(4.23), the x-update step involves the minimization of Lρ over x which satisfies the
zero-gradient condition:

(ρATA+GTG)x = GT b+ ATy + ρAT z.
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The computation complexity per iteration is primarily come from solving the linear equation.
The worst-case computation complexity is O((n2pK)3). By seeing that ρATA+GTG has a
block diagonal structure as shown in Figure 4.2, we can further exploit by solving each block
separately. The structure of the system of equations are separated into n smaller system
of equations, each with size of npK × npK. Therefore, we can reduce the computation
complexity from O((n2pK)3) to O(n(npK)3). Moreover, we can use the Cholesky factoriza-
tion to further reduce the computation complexity. We emphasize that the factorization is
only computed when the penalty ρ is updated. When ρ does not change, the computation
complexity per iteration is reduced to O(n(npK)2).

As the definition of h is associated with a partition being used, we denote h1(x) :=
h(x;B1) and h2(x) := h(x;B2) for the simplicity of notation. The z-update step is to
minimize Lρ over z and takes the form of the proximal operator (Parikh and Boyd, 2014):[

z+1
z+2

]
= argmin

z
g̃(z1, z2) + (ρ/2)

∥∥∥∥[z1z2
]
−
[
L1x− y1/ρ
L2x− y2/ρ

]∥∥∥∥2
2

= proxg̃/ρ

([
L1x− y1/ρ
L2x− y2/ρ

])
=

[
proxλ1h1/ρ(L1x− y1/ρ)
proxλ2h2/ρ(L2x− y2/ρ)

]
.

The last equality follows directly from the separable summation property of g̃ (Parikh and
Boyd, 2014, §2). The functions h1 and h2 all take the form of a composite of weighted-ℓq
and ℓ2 norms, expressed as h(x;B) =

∑
l∈B wl∥xl∥q2 given in (4.5). It is well-known that for

q = 1, the proximal operator of h(x;B) is the weighted block-soft thresholding (Parikh and
Boyd, 2014, §6.5). For all l ∈ B,

(proxαh(u))l = (1− αwl/∥ul∥2)+ · ul =

{
(1− αwl/∥ul∥2)ul, ∥ul∥2 ≥ αwl,

0, ∥ul∥2 < αwl.
(4.25)

The proximal operators (4.25) can be computed in parallel for each partition in the partition
set given in (4.3), (4.4).

The ADMM algorithm for solving (4.10) is named SparseGrangerNet and now pre-
sented in Algorithm 1. From (Boyd et al., 2011, §3.3), it is worth noting that the critical
point of (4.19) must satisfy

0 = −Ax+ z, (4.26)
0 = ∇f(x)− ATy, (4.27)
0 ∈ ∂g̃(z1, z2) + y, (4.28)

where (4.26) is called primal feasibility condition since it is the constraint of ADMM in (4.19);
(4.27), (4.28) are called the dual feasiblity since they are zero (sub)gradient condition of the
unaugmented Lagrangian. The iterates generated from ADMM do not satisfy these condition
since x-update step (4.21) and z-update step (4.22) are the solutions to

0 = ∇f(x+)− ATy++ρAT (z+ − z),

0 ∈ ∂g̃(z+1 , z
+
2 ) + y+,
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respectively. It is obvious that the z-update step makes the iterate satisfies optimality condition
in (4.28) but not for x-update step since it has an extra term, s = ρAT (z+ − z). The extra
term is called the dual residual. Other than the dual residuals, the term r = −Ax+ + z+ is
called the primal residual and it measures the primal feasibility of the problem. After updating
x, z and y (dual variable), the primal and dual residuals (r, s) are computed. We follow
the stopping criterion on these two residuals given in (Boyd et al., 2011, §3.3.1) where the
absolute tolerance (ϵabs), relative tolerance (ϵrel) are set to 10−7 and 10−5, respectively. We
also implement ρ-update rules for every T iteration because it is known that the penalty
parameter (ρ) greatly affects the algorithm convergence.

The adaptive rule presented in Subroutine 2 follows the spectral penalty selection pro-
posed by Xu et al. (2017b). The rule was inspired by the Barzilai-Borwein (BB) gradient
method that approximated the secant condition in smooth unconstrained problems. The
adaptive rule was brought into ADMM in Xu et al. (2017b) with a safeguard step for mea-
suring the goodness of fit for linear approximations of subgradients of dual ADMM objective
that was split into two terms according to the conjugate of f and g. The linear approximation
of each term was parameterized by two choices of spectral step sizes: steepest descent and
minimum gradient, and some hybrid rules were further applied to determine the step size.
When the linear approximations were sufficiently credible (as measured by correlations), the
penalty was updated as the geometric mean or one of the step sizes; otherwise, the previous ρ
was kept for the next iteration. We illustrated the performance of the spectral ADMM when
solving CGN, DGN and FGN in Figure 4.3. Since convergence rate of ADMM is O(1/k), we
are expected to see a negative log trend in a log-scale plot of the relative difference between
the objective value and the optimal objective value. From the figure, it can be seen that the
relative difference, when the penalty is unchanged, follow the negative log trend as expected
in the fixed penalty ADMM.
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Figure 4.3: Spectral ADMM performance on CGN, DGN and FGN: F (x) denotes the objective
function in (4.10) with q = 1 (convex case), and p∗ denotes the optimal value. The problem
and estimation parameters are n = 20, p = 2, K = 5, T = 100.

Other available algorithms

There are other alternative approaches to solve our convex formulations as in the following.

Proximal gradient methods. There are other algorithms that can solve cvx-CGN formu-
lation. Even though the regularization term of CGN is composited with P but the proximal
operator of g̃(x) = g(Px) has a closed-form expression because P is a projection matrix.
Therefore, the proximal gradient methods and the accelerated proximal gradient (Parikh and
Boyd, 2014, §4.3) can also be used for CGN.
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Algorithm 1: SparseGrangerNet

Problem parameters: A =

[
L1

L2

]
, G, b

Algorithm parameters: T, ϵpri, ϵdual
Updating sequences: x, y = (y1, y2), z = (z1, z2), (x, y, z)cached, ρ > 0, k = 1
while ∥r∥2 ≥ ϵpri and ∥s∥2 ≥ ϵdual do // stopping criterion

x+ = (ρATA+GTG)−1
(
GT b+ AT (y + ρz)

)
z+1 = proxλ1h1/ρ(L1x

+ − y1/ρ) // thresholding with partition B1
z+2 = proxλ2h2/ρ(L2x

+ − y2/ρ) // thresholding with partition B2
y+ = y + ρ(z+ − Ax+)
r = z+ − Ax+ // primal residual
s = ρAT (z+ − z) // dual residual
if mod (k, T ) = 0 then // Update ρ every T iterations

ρ+ = UpdatePenalty(·)
else

ρ+ = ρ

k ← k + 1

SDMM. We emphasize that the technique of splitting A = (L1, L2) is not new. The
SDMM algorithm (Simultaneous direction method of multipliers) proposed by Combettes and
Pesquet (2011) is similar to Algorithm 1 but has been derived from a different point of view
on the objective function. The SDMM solve the problem in the form of

minimize g0(z0) + g1(z1) + g2(z2)
subject to Ax+Bz = c,

(4.29)

where z0 = L0x ∈ RnNK , z1 = L1x ∈ Rm̃1 , z2 = L2x ∈ Rm̃2 . The objective function of
(4.29) is separable in z0, z1, z2. Our formulations, (4.10), can be arranged to the form (4.29)
by setting,

B = −I, A =

L0

L1

L2

 , where

L0

L1

L2

 =

GP
P

 for DGN, and

L0

L1

L2

 =

GP
D

 for FGN, (4.30)

with g0(z0) = (1/2)∥z0−b∥22 and g1, g2 are the regularization terms in DGN or FGN. Therefore,
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Subroutine 2: UpdatePenalty(·) for convex formulations: Spectral adaptive ρ
(Xu et al., 2017b)

Problem parameters: A =

[
L1

L2

]
, x+, (x, y, z), (x, y, z)cached

Algorithm parameters: ϵc
Updating sequences: ρ > 0
ŷ = y + ρ(z − Ax+),∆ŷ = ŷ − ŷcached
∆F = A(x− xcached) // ∆ subdifferential of dual obj. from f

a1 =
∆FT∆ŷ
∥∆F∥22

, a2 = ∥∆ŷ∥22
∆FT∆ŷ

// a1: minimum gradient, a2:steepest
descent

if 2a1 > a2 then // choose spectral step size for ∆F
a = a1

else
a = a2 − 0.5a1

∆y = y − ycached,
∆G = −(z − zcached) // ∆ subdifferential of dual obj. from g

b1 =
∆GT∆y
∥∆G∥22

, b2 = ∥∆y∥22
∆GT∆y

// b1: minimum gradient, b2:steepest descent
if 2b1 > b2 then // choose spectral step size for ∆G

b = b1
else

b = b2 − 0.5b1

c1 =
∆FT∆ŷ

∥∆F∥2∥∆ŷ∥2 , c2 =
∆GT∆y

∥∆G∥2∥∆y∥2 // correlation terms: linear
approximations of ∆F,∆G
/* Safeguard update rule for ρ */

if c1 > ϵc and c2 > ϵc then // use geometric mean when high
correlations

ρ+ =
√
ab

else if c1 > ϵc and c2 ≤ ϵc then
ρ+ = a

else if c1 ≤ ϵc and c2 > ϵc then
ρ+ = b

else
ρ+ = ρ
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the SDMM iterations are

x+ = (ρATA)−1AT (y + ρz) = (ATA)−1AT (z + y/ρ),

z+0 = proxg0(Gx− y0/ρ),

z+1 = proxg1(L1x− y1/ρ),

z+2 = proxg2(L2x− y2/ρ),

y+ = y + ρ(z+ − Ax+).

By comparing these iterations to Algorithm 1, there is no difference in computation cost since
the proximal operators have closed-form expression. However, when exploiting the x-update
step by using Cholesky factorization, SDMM does not require to repeat the factorization after
updating penalty parameter as in Algorithm 1. This is because ρ can be factored out in
SDMM but not for Algorithm 1. It is worth noting that the length of z0 is proportional to
the length of time-series (i.e. matrix G has nNK rows with N as the effective time-points),
causing additional memory usage when compared to Algorithm 1.

4.3 Algorithms for non-convex formulations

Since the convergence of either ADMM or spectral ADMM on our non-convex problems is
still unknown, we propose a heuristic ρ update rule that makes ADMM converged for our
non-convex problems in practice. After the algorithm is introduced, we reviewed related
issues on the convergence analysis of the ADMM applied to non-convex problems with certain
structures in literature. An important tool in convergence analysis of non-smooth non-convex
optimization problems that satisfied the Kurdyka - Łojasiewicz (KL) inequality which the
objective is called the KL function; see Bolte et al. (2009) and the references therein. The
convergence analysis is useful for modifying the existing algorithms to ensure a convergence for
optimizing KL functions. We emphasize that all of our problem formulations are KL functions
according to the appendix of Feng et al. (2020). The proximal gradient algorithm in (4.17)
is globally converged (Attouch et al., 2013) if g is a KL function. For CGN, the proximal
gradient algorithm can be used but may suffer from a slow convergence. The accelerated
proximal gradient algorithm does not have a convergence guarantee for non-convex CGN.
The issue of accelerated proximal gradient is solved by Li and Lin (2015). They proposed
the non-monotone accelerated proximal gradient algorithm (nmAPG) which is adapted from
accelerated proximal gradient with a safeguard rule to ensure a global convergence. This topic
will be discussed later in this section.

The proximal algorithms in this section are primarily based on the evaluation of the
proximal operator of the weighted ℓ2,1/2 penalty (Hu et al., 2017). By following the notation
from (4.25), the proximal operator of h(x;B) =

∑
l∈B wl∥xl∥1/22 takes the form of

(proxαh(u))l =


(

16∥ul∥
3/2
2 cos3(R(ul))

3
√
3αwl+16∥ul∥

3/2
2 cos3(R(ul))

)
ul ∥ul∥2 > 3

2
(αwl)

2/3,

0, ∥ul∥2 ≤ 3
2
(αwl)

2/3,
(4.31)
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where R(ul) = π/3− (1/3) arccos(αwl

4
(3/∥ul∥2)3/2), for all l ∈ B.

Although the proximal gradient method and nmAPG have a global convergence for both
DGN and FGN, it is infeasible in a large-scale setting since the proximal operator of g(x) in
(4.8) and (4.9) does not have a closed-form expression. For this reason, Algorithm 1 is more
favorable to solve DGN and FGN in a large scale setting. We will discuss on the computational
cost comparison later in this section.

In the following, we first discuss our proposed adaptive ADMM scheme that converges
in practice. We also provide a scheme to numerically compute the proximal operator in the
case that the proximal gradient algorithm is used in DGN. Then we discuss the technique used
in the nmAPG algorithm to make the acceleration on non-convex problem possible. In the
end, we also discuss the other choices of proximal algorithms.

Adaptive ADMM

There is no guarantee for a convergence of ADMM with a fixed ρ when solving non-convex
problems in general. However, we observed that when ρ is too large, the primal residual has
a fast convergence but the dual residual is slowly converged; if ρ is too small, the iterations
could diverge. Therefore, we come up with a strategy that the penalty ρ is increased and
stops adapting after the primal residuals converge to avoid a slow convergence from ρ being
too large. This heuristic update step is described in Subroutine 3; we start ρ with a small
value and increase it by a factor of 2 every T iteration. After the primal residual converges, we
stop the penalty update scheme. This rule was also proposed for solving convex problems in
Xu et al. (2017a) as LA-ADMM, with an improved iteration complexity from a fixed-penalty
scheme, where the choice of initial ρ depends on properties of the objective function. Unlike
Subroutine 3, the scheme of Xu et al. (2017a) has no termination rule; ρ can increase to a
large value, leading to a slow convergence.

Subroutine 3: UpdatePenalty(·) for non-convex formulations
Problem parameter : r
Algorithm parameter: ϵpri
Updating sequences: ρ > 0
if ∥r∥2 ≥ ϵpri then

ρ+ = 2ρ
else

ρ+ = ρ

Convergence of ADMM for non-convex problems. ADMM convergence analysis in non-
convex problems mostly depends on properties of matrix A,B in (4.24). The analysis from
Li and Pong (2015); Wang et al. (2018); Zhang et al. (2016) assumed A to be a full row
rank matrix in their convergence analysis. This condition is impossible for DGN and FGN
to satisfy since the matrix A in (4.24) is a tall matrix. A weaker condition of matrix A for
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ADMM convergence analysis is found in Wang et al. (2019). They required only range(B) ⊂
range(A), instead of full row rank A. However, both DGN and FGN still cannot satisfy
their assumptions. The row rank assumption can be explained from subdifferential calculus
(Rockafellar and Wets, 1998). The subdifferential chain rule required a full row rank A to
have the equality1

∂(g ◦ A)(x) = AT∂g(Ax).

This is the main obstacle for the convergence analysis of ADMM for non-smooth and non-
convex problems. When we explore broader types of Lagrangian-based algorithms, one of
which is ADMM, a unified treatment of convergence analysis was reviewed in Sabach and
Teboulle (2019). A recent adaptive Lagrangian-based multiplier (ALBUM) method (Sabach
and Teboulle, 2019) for non-convex composite problems relies on the so-called a uniform
regularity condition of the composite mapping, which essentially says, in our case, that A
must be surjective, similar to the full rank assumption of A in Li and Pong (2015). To the
best of our knowledge, the undesirable property of our A has become the main obstacle to
analyze the convergence of ADMM when applied to DGN and FGN. We leave this as an
open problem, while our implementation (with fine-tuned parameters) of adaptive ADMM
(Algorithm 1 with Subroutine 3) to DGN and FGN did not return divergent instances in our
experiments.

The performance example of the adaptive ADMM when solving all non-convex formula-
tions is presented in Figure 4.4. For CGN, it can be seen that after around 500 iterations, the
oscillation stopped and converged. When the penalty ρ is updated, the objective is abruptly
changed. We observed that, when the penalty parameter is too small, the sequences oscillated
without pattern; when ρ is sufficiently large, the sequences oscillated with a repeating pattern,
and then the algorithm converges if the penalty is further increased thereafter. This may be
used as exploitation for convergence detection.

Non-monotone accelerated proximal gradient algorithm (nmAPG) for CGN

We applied an accelerated variant of the proximal gradient algorithm called nmAPG proposed
by Li and Lin (2015) presented in Algorithm 4 to solve non-convex CGN with convergence
guaranteed. The convergence of the algorithm is based on the controlling of the energy func-
tion to be a monotonic decrease sequence. The energy function is simply a weighted average
of objective value from the current iteration and to the past iterations with exponentially de-
caying weights. The decaying rate is controlled by parameter η ∈ [0, 1). The algorithm simply
selects the step that gives a sufficiently lower energy function from the proximal gradient step
and accelerated proximal gradient. The monitoring scheme speeds up the convergence by
accelerated proximal gradient algorithm while ensuring the global convergence by using the
proximal gradient as a safeguard step. They also provided a Barzilai-Borwein (BB) backtrack-
ing line search to achieve a larger proximal step size. The idea behind the BB line search is
to estimate the curvature of the update step by choosing step size α in the proximal step to
approximate a secant condition in a least-square sense. If the sufficient descent of a proximal

1See Theorem 10.6 in Rockafellar and Wets (1998), Corollary 2.52 in Mordukhovich and Nam (2013)
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Figure 4.4: Adaptive ADMM performance on CGN, DGN and FGN: F (x) denotes the objective
function in (4.10) with q = 1/2 (non-convex case), and p∗ denotes the optimal value. The
problem and estimation parameters are n = 20, p = 2, K = 5, T = 100.

step is not satisfied, the step size is scaled down with a factor of ρ. The line search rule
is described in Subroutine 5, 6. It is also worth noting that the non-monotone in the name
comes from the non-monotone in objective function F (x) = (1/2)∥Gx−b∥22+g(x) with g(x)
in (4.7) but the energy function is actually a monotonic decreasing sequences.

We also compare the performance of ADMM and nmAPG for solving non-convex CGN in
Figure 4.5. The nmAPG algorithm converged at a lower iteration than adaptive ADMM with
the steeper relative objective curve. This indicated a higher convergence rate of nmAPG over
adaptive ADMM. Slow convergence of adaptive ADMM may come from the initial penalty ρ is
too small. Since the problem to solve is non-convex, it is interesting why the adaptive ADMM
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Figure 4.5: Performance comparison between nmAPG and adaptive ADMM when solving
CGN formulation with (n = 20, p = 2, K = 5, T = 100)

converged to a lower objective value when compared to nmAPG in almost all instances. From
this favorable property in practice, we primarily use adaptive ADMM in the experiment.

Proximal gradient algorithm for CGN

As stated before, the proximal gradient algorithm in (4.17) can be applied on CGN with global
convergence. The update scheme is simply plugging the loss gradient ∇f(x) = GT (Gx− b)
into (4.17) to obtain,

x+ = proxαg(x− αGT (Gx− b)),

with α < 1/∥G∥2; g(x) in (4.7). The global convergence of the proximal gradient method
when solving our problem in the same class with ours is provided in Attouch et al. (2013).
However, the algorithm has a slower convergence when compared to nmAPG.

Inexact proximal algorithms for DGN formulation

Even though the proximal gradient algorithm in (4.17) and nmAPG are globally converged for
all of our formulations, it is inefficient to apply them to solve DGN formulations due to the
lack of closed-form expression for the proximal operator. To use nmAPG to solve DGN, we
are required to solve (4.11) numerically. However, the numerical solution to (4.11) may not
produce a sparse solution. Therefore, a thresholding scheme must be introduced.
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Algorithm 4: nmAPG (Li and Lin, 2015)
Problem parameters: G, b
Algorithm parameters: αx ≤ 1/∥G∥2, αy ≤ 1/∥G∥2, η ∈ [0, 1), δ > 0
Updating sequences: z = x = x− = x0, t = 1, t− = 0, q = 1
F (x) = (1/2)∥Gx− b∥22 + g(x) with g(x) in (4.7)
while ∥x+ − x∥2 ≥ ϵ∥x∥2 do

y = x+ t−

t
(z − x) + t−−1

t
(x− x−), // Caching momentum

z+ = proxαyg(y − αyG
T (Gy − b)), // Replace with Subroutine 5

if F (z+) ≤ c− δ∥z+− y∥22 then // Check descent of accelerated step

x+ = z+

else
v+ = proxαxg(x− αxG

T (Gx− b)), // Replace with Subroutine 6
/* Select proximal gradient step if acceleration fail */

x+ =

{
z+, if F (z+) ≤ F (v+),

v+, else,
,

t+ = (1/2)(1 +
√
4t2 + 1),

/* Recursively compute energy function c+ */
q+ = ηq + 1, c+ = (ηqc+ F (x+))/q+.

Subroutine 5: BB line search for αy

Given sy = y − y−, r = GTGsy, αy =
∥sy∥22
sTy r

, 0 < ρ < 1, δ > 0

F (x) = (1/2)∥Gx− b∥22 + g(x) with g(x) in (4.7)
while F (z+) ≥ F (y)− δ∥z+ − y∥22, and F (z+) ≥ c− δ∥z+ − y∥22, do

z+ = proxαyg(y − αyG
T (Gy − b)),

αy = ραy,

Subroutine 6: BB line search for αx

Given sx = x− y−, r = GTGsx, αx =
∥sx∥22
sTx r

, 0 < ρ < 1, δ > 0

F (x) = (1/2)∥Gx− b∥22 + g(x) with g(x) in (4.7)
while F (v+) ≥ c− δ∥v+ − x∥22 do

v+ = proxαxg(x− αxG
T (Gx− b)),

αx = ραx,
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By recognizing that the problem (4.11), when using g(x) in (4.8), is separable with
partition set K in (4.4). We compute the proximal operator by solving (4.11) in parallel by
each the partition of size pK as,

minimize
x

λ1

K∑
l=1

wl∥xl∥1/22 + λ2v∥x∥1/22 + (1/2)∥x− z∥22, (4.32)

with xl ∈ Rp, x = (x1, . . . , xK) ∈ RpK . By assuming all xl ̸= 0, we obtain the zero gradient
conditions as (

1 +
λ1wl/2

∥xl∥3/22

+
λ2v/2

∥x∥3/22

)
xl = zl, l = 1, . . . , K. (4.33)

We heuristically solve the (4.33) using a fixed point iteration,

x+
l = zl −

(
λ1wl/2

∥xl∥3/22

+
λ2v/2

∥x∥3/22

)
xl, l = 1, . . . , K. (4.34)

We still do not know whether the fixed point iteration (4.34) is converged but it converged
in all of our numerical examples. Since the fixed-point iteration is derived under non-zero
conditions, we must determine the correct sparsity pattern first, and update the fixed-point
iteration only for the non-zero parts. Therefore, we used fixed-point iteration with every
possible combination of the non-zero patterns. The pattern with lowest proximal objective
(4.11) is selected to be a solution of (4.32). As a remark, the number of (4.34) computation
is 2K per proximal operator call and this is only a sub-block of size pK of the entire vector
of size (n2 − n)pK, which is to solve (4.32) for (n2 − n)2K times. This method is feasible
only for small K.

We illustrated the performance difference between adaptive ADMM (Algorithm 3) and
the nmAPG with the inexact proximal operator (or inexact nmAPG) for solving DGN in
Figure 4.6. It can be seen that the inexact nmAPG converged much faster than the proposed
adaptive ADMM in the sense of using a lower number of iterations. However, the time usage
in adaptive ADMM is significantly lower than that of the inexact nmAPG. This is because the
inexact nmAPG has to solve (4.33) repeatedly leading to a high computational cost each time
the proximal operator is called. Moreover, when applying the BB line-search subroutine to
the inexact nmAPG, the proximal operator may be required to be evaluated multiple times for
a single iteration, leading to an even higher computational cost. The computation cost can
be reduced by lowering the tolerance of the fixed point iterations; however, numerical errors
affect the convergence property of the algorithm. In Gu et al. (2018), Yao et al. (2017), they
proposed a method to control the numerical error when solving (4.11) up to some tolerance
degree to make the nmAPG algorithm converged. This can be an alternative algorithm other
than the adaptive ADMM algorithm for solving non-convex DGN. However, we do not know
the convergence of the fixed-point iteration (4.34), so its convergence property is still unknown
as for adaptive ADMM. These reasons make the adaptive ADMM be a more suitable choice
than nmAPG to solve DGN.
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Figure 4.6: Algorithm performance comparison between inexact nmAPG and adaptive ADMM
when solving DGN. F (x) denotes the objective function in (4.10) with q = 1/2 (non-convex
case), and p∗ denotes the optimal value. The problem and estimation parameters are n =
20, p = 2, K = 5, T = 100.

Other proximal methods

As a remark, there may be other classes of algorithms that used to solve the problems in a
similar class with our formulations; however, our formulation structure violated their assump-
tion. Themelis and Patrinos (2020) analyzed the convergence of a variant of ADMM called
the relaxed ADMM algorithm on our problem class but still requires the full row rank assump-
tion. Qiao et al. (2016) analyzed the convergence of a variant of ADMM called the linearized
ADMM on our class of problem which still has the full row rank assumption to guarantee
the global convergence. In most of the literature, the convergence of our problem is still an
open question. We emphasize that there is no divergent instance in our results, which will
be presented in Chapter 5. Therefore, the convergence of ADMM with our heuristic penalty
update rule may be an indication that the rank assumption may be too restrictive.



Chapter V

EXPERIMENTAL RESULTS

We demonstrated the performance of our proposed methods in this chapter. We set
up simulation experiments to show the advantages of the proposed methods over others
under various circumstances. This chapter consists of three parts. The first part concerns on
the generation of stable ground-truth VAR models with predefined prior of model relations
described in Chapter 3. We empirically compared our methods with the existing works on
extensive simulations. In the last part of this chapter, we demonstrated the application of
our formulations as the classification task and brain connectivity differences learning between
children with attention deficit hyperactivity disorder (ADHD) and the typically developing
children (TDC). We provide the source codes to all of our experiments in https://github.
com/parinthorn/JGranger_ncvx/.
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Figure 5.1: The visualization of the binary classification metrics calculation to construct ROC
curve.

The performance of the methods can be evaluated in the same sense as the binary
classification since the positive (negative) class denotes the non-zero (zero) estimate of a GC
connection. The binary classification metrics we used are,

• F1 score : 2TP/(2TP+FP+FN)

• False positive rate (FPR): FP/(FP+TN)

• Accuracy (ACC): (TP+TN)/(TP+TN+FP+FN)

• Matthews correlation coefficient (MCC): TP·TN−FP·FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

,

https://github.com/parinthorn/JGranger_ncvx/
https://github.com/parinthorn/JGranger_ncvx/
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where TP, TN, FP, FN are true positive, true negative, false positive, false negative re-
spectively. The higher value of F1, ACC, MCC, TPR and lower FPR indicates the higher
performance. In Figure 5.1, we visualized how the raw performance metrics were calculated
from the sparse estimation methods with a single tuning parameter λ that controlled the
model sparsity level. The overall performance of a method can be achieved by varying λ to
get a variety of sparsity pattern, resulting in the FPR and TPR evaluate on each λ. The
pair of FPR and TPR for all λ is then used for constructing the ROC (Receiver Operating
Characteristic) curve. The overall performance of a method can be quantified by the area
under the ROC curve (AUC). If the AUC is low, it suggested that the performance is low
no matter what λ is used. Since ROC curve considered only single regularization term, we
reported the overall performance metric in DGN and FGN by using the F1 score on the 2D
grid of regularization pairs instead.

5.1 Ground-truth system generation

Ground-truth systems are regarded asK VAR models that the underlying GC networks coincide
with the assumptions of estimation formulation as follows,

1. Common type ground truth1: All K models have identical topology of GC network.

2. Differential type ground truth: All K models partially shared topology of GC network
and each model also has its own different pattern.

3. Fused type ground truth: same as the differential type but the common part shared
VAR coefficients.

The stability of each VAR model must be ensured to prevent the divergence of the generated
time-series. A VAR model with order p is stable if and only if the dynamic matrix,

A1 A2 · · · Ap−1 Ap

In 0 · · · 0 0
0 In · · · 0 0
... ... . . . ... ...
0 0 · · · In 0

 ,

has all eigenvalue inside unit circle. In order to construct a stable VAR, we first randomized
each Ar to be diagonal matrix, so that the characteristic equation of the dynamic matrix,

n∏
i=1

(zp−1(A1)ii + zp−2(A2)ii + · · ·+ (Ap)ii) = 0,

1However, this type was not used in our experiments since we were more interested in the case of having
both common and differential part
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has all roots lying inside the unit circle. For K > 1, we repeated the generating process to
obtain K stable diagonal VAR models. After the stable diagonal VAR models are constructed,
we added the off-diagonal parameters in the same way as the type of ground-truth systems.
If the generated models are unstable, the randomization process can be re-started until the
obtained models are stable. This method is inefficient if the desired models are either too
dense or having too high order, making the stability condition is difficult to be satisfied.
However, dense and high-order VAR models are not of our interest.

5.2 Common GC network

The experiments were designed to illustrate a benefit of non-convex CGN over its convex coun-
terpart and to compare them to the existing literature. The CGN formulation was compared
with cvx-CGN on three factors, common density, differential density and the time-points used
in the estimation. We set the penalty weight vij in (3.6) to be unity to see the performance
gain only from the non-convex penalty. We compared our formulations with the existing works
in the second part of this section.
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Figure 5.2: The ROC curve comparison between CGN (non-convex) and cvx-CGN (convex) without
penalty weight in problem setting: (common density, differential density).

The performance comparison between CGN and cvx-CGN was evaluated in two folds.
First, we varied both common and differential densities of ground-truth GC networks. This is to
see the impact of the violation of both sparsity assumption from the increased common density
and the violation of homogeneity assumption from the increased differential density. Second,
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we varied time-points to see the performance advantages of CGN over cvx-CGN. We generated
40 time-series realization of differential type joint GC networks with problem parameters as
n = 15, p = 2, K = 4. We varied the common density to be 10% and 20% and the differential
density to be 1% and 5%. The estimation parameters are p = 2, T = 50, 300, 1350.

The ROC curve shown in the Figure 5.2 suggested that CGN outperformed cvx-CGN
in all settings. The CGN formulation has performance reduction less than cvx-CGN as the
common and differential density grow. The increasing differential density has the most impact
on performance in both cvx-CGN and CGN. This was an expected result since the differential
density directly violated the homogeneity assumption of both cvx-CGN and CGN formulation.
The time-points used in estimation significantly affect the ROC curve of cvx-CGN formulation
but not significant for CGN. This result came from that sparsity recovery property has a
weaker condition to be satisfied with non-convex group norm penalty than the convex group
norm penalty.
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Figure 5.3: Performance comparison between existing works and cvx-CGN and CGN formula-
tion.

Table 5.1: Performance index for CGN formulation when the density of common GC networks
is varied.

Common density: 10% Common density: 20%
CGN cvx-CGN Song17C Greg15 CGN cvx-CGN Song17C Greg15

F1 59.2 (4.4) 57.7 (4.6) 52.4 (5.8) 52.6 (6.3) 70.0 (2.3) 70.9 (3.0) 61.0 (4.9) 59.6 (4.4)
FPR 14.7 (2.7) 15.7 (2.8) 19.6 (4.4) 19.4 (4.7) 19.0 (2.0) 18.1 (2.4) 28.6 (6.0) 30.3 (5.8)
TPR 100.0 (0.0) 100.0 (0.0) 99.8 (0.8) 99.7 (1.0) 100.0 (0.0) 100.0 (0.1) 99.9 (0.5) 99.8 (0.7)
ACC 86.7 (2.4) 85.8 (2.5) 82.3 (4.0) 82.4 (4.2) 84.4 (1.6) 85.1 (2.0) 76.5 (4.9) 75.2 (4.7)
MCC 60.0 (4.1) 58.6 (4.2) 53.5 (5.4) 53.7 (5.8) 66.1 (2.4) 67.1 (3.1) 56.0 (5.5) 54.4 (5.1)

The second part concerns on the performance comparison of our methods with the
literature. We compared our formulations to the following formulations,
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• Song17C: a similar group lasso approach to cvx-CGN by Songsiri (2017) but vij = 1
in (3.6).

• Greg15: a combination of group lasso and Tikhonov regularization approach (Gre-
gorova et al., 2015). This work was similar to Song17C but additionally penalized the
diagonal part of VAR coefficients with ℓ2 penalty. In our opinion, the diagonal part is
not involved in inferring the Granger causality among the variables, so such regulariza-
tion only affects the model parameter biases. The penalty parameters of both group
lasso and Tikhonov regularization were set to be equal in Gregorova et al. (2015).

For generating ground-truth VAR systems, we varied the density of common GC from
10% to 20% and set the density of differential GC as 5%, to see the effect of ground-truth
network density on the performances. The ground truth system parameters are n = 20, p =
1, K = 5, T = 100 and we also set p = 1 in the estimation. The performance indices were
evaluated on the common part of the ground-truth network.

The boxplot in Figure 5.3(a) and the averaged metrics in Table 5.1 suggested that both
CGN and cvx-CGN outperformed the other methods with significant improvement gains in
the case of 20% common density. This directly came from introducing a reasonable choice of
vij while setting equal vij’s in Song17C did not exploit different likelihood of zero locations
in VAR parameters. The Tikhonov regularization of Greg15 has no direct effect on the GC
estimation performance as the evaluation was conceptually taken only on the off-diagonal part
of VAR coefficients. The effects of common density on our formulations were illustrated in
Figure 5.3(b) where the performances dropped as the density increased, which is a typical
characteristic in sparse-inducing framework. However, the effect on the actual performance
that is also contributed from the penalty selection (Figure 5.3(a) and Table 5.1) was the
opposite; the F1 score was higher when the density increased.

5.3 Common and differential GC network

This section concerns on the DGN and cvx-DGN performance comparison with the existing
works that included the same prior knowledge on the models relation as in DGN formulation.
The following is the literature aiming at decomposing GC networks in the same sense.

• Skrip19b: a two-stage approach (Skripnikov and Michailidis, 2019b) that estimated
the parameters of the common network using a group lasso (similar to our CGN) in the
first step and subsequently estimates the individual components based on the resulting
common network. This approach does not guarantee a global optimal solution as the
parameters were estimated in sequential steps, not being optimized in batch. They
claimed that the number of models has impact on the performance; the estimation
results improved with the number of models.
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• Song17D: a group lasso combination approach (Songsiri, 2017) which is essentially the
cvx-DGN but the choice of penalty weight was not specified, so it was set to unity in
this experiment.

Since the ground-truth density directly affected the performance of the sparsity recovery
property, we set the density of common GC to 10% and varied the density of differential GC
from 1% to 5% to illustrate the effect of differential network density. For a fair comparison,
in Skrip20b, they signify that their method can perform better as the number of the models
(K) grows. Therefore, we also include the case of varying number of models to be K = 5, 50
to examine how the number of models has an impact on the performance.
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The averaged performance metrics reported in Table 5.2 has the same trends as the me-
dian of performance reported boxplot in Figure 5.4. As the differential density was increased in
Figure 5.4(a), our performance reduction is less than both Song17D and Skrip19b. Song17D
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Figure 5.5: The F1 scores of common and differential GC networks as (λ1, λ2) varied. The
darker color indicates the higher F1 score.
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Table 5.2: Averaged performance metrics of DGN formulation
(a) The performance index for DGN formulation when the density of common GC networks is varied.

Differential density: 1% Differential density: 5%
DGN cvx-DGN Song17D Skrip19b DGN cvx-DGN Song17D Skrip19b

F1 95.1 (2.0) 95.6 (1.9) 90.6 (3.1) 82.4 (2.2) 95.3 (1.8) 95.6 (1.7) 84.1 (2.3) 68.9 (2.0)
FPR 1.0 (0.5) 0.8 (0.5) 1.6 (0.7) 4.9 (0.8) 1.4 (0.7) 1.2 (0.6) 4.7 (1.3) 14.3 (1.4)
TPR 98.0 (1.5) 97.5 (1.7) 94.0 (3.7) 99.6 (0.4) 99.0 (0.7) 98.4 (1.0) 93.7 (3.4) 98.8 (0.8)
ACC 98.9 (0.5) 99.1 (0.4) 98.0 (0.7) 95.5 (0.7) 98.6 (0.5) 98.7 (0.5) 95.0 (0.9) 87.5 (1.1)
MCC 94.6 (2.2) 95.2 (2.1) 89.6 (3.4) 81.6 (2.2) 94.6 (2.0) 94.9 (1.9) 81.9 (2.5) 66.7 (2.0)

(b) The performance index for CGN formulation when the number of models (K) is varied.
DGN cvx-DGN Song17D Skrip19b

K = 5 K = 50 K = 5 K = 50 K = 5 K = 50 K = 5 K = 50
F1 95.3 (1.8) 96.1 (1.2) 95.6 (1.7) 95.3 (0.9) 84.1 (2.3) 82.2 (1.9) 68.9 (2.0) 82.9 (1.6)
FPR 1.4 (0.7) 1.0 (0.5) 1.2 (0.6) 1.2 (0.5) 4.7 (1.3) 5.3 (1.6) 14.3 (1.4) 5.5 (0.8)
TPR 99.0 (0.7) 98.4 (0.8) 98.4 (1.0) 97.6 (1.0) 93.7 (3.4) 92.3 (4.0) 98.8 (0.8) 94.7 (0.9)
ACC 98.6 (0.5) 98.9 (0.4) 98.7 (0.5) 98.7 (0.3) 95.0 (0.9) 94.4 (0.9) 87.5 (1.1) 94.5 (0.7)
MCC 94.6 (2.0) 95.5 (1.3) 94.9 (1.9) 94.6 (1.1) 81.9 (2.5) 79.7 (1.9) 66.7 (2.0) 80.6 (1.8)

suffered from a lack of prior, so the poorer performance is expected in this formulation com-
pared to cvx-CGN. Skrip19b may suffer from a sub-optimality of their formulation. When
K increased in Figure 5.4(b), Skrip19b has considerable performance gains as they claimed,
while our performances appeared not to depend on K. Although our results outperformed the
others for both K = 5 and K = 50, this is a limitation of our formulations. The drawback is
unclear in both CGN and cvx-CGN but it can be seen that the Song17D has a merely reduced
F1 and increased FPR. This problem came from that the estimated common part, Cij, is also
affected by the regularization on the differential part, B(k)

ij . We refer to this phenomenon
as the overlapping penalization problem. This overlapping penalization is clearly presented in
the F1 grid plot of all (λ1, λ2) pairs in Figure 5.5. From the figure, when K = 50, high F1
scores evaluated on the common part occurred in the different regions of (λ1, λ2) from those
evaluated on the differential part. This issue became more severe in a higher K. In a word,
the best-case performance of both the differential and common networks cannot co-exist us-
ing the same pair of (λ1, λ2) for large K. The choice of relative weights, vij and w

(k)
ij , did

mitigate this issue but it did not solve the problem. Hence, achieving the best performance
of both common and differential networks is not quite possible when the number of models
is relatively large. However, achieving the best performance on both parts is unnecessary in
practice, as we generally focus either on the common or the differential GC. In the setting that
a common part is favored, we can apply the model selection to evaluate only on the common
sparsity pattern, not on the total part as in our experiments. Moreover, the applications on
which the differential part is focused generally involve a small K, e.g., brain signals collected
under various symptom stages. In such a case, the issue does not occur.
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5.4 Fused and differential GC network

We demonstrated the performance of FGN and cvx-FGN over the existing works in literature.
The selected works have the same prior knowledge on model relations as our formulations.
The following formulations can extract the common part of the network by shrinking the
differences of VAR parameters between models while the sparsity is also introduced.

• Skrip19a: a sparse fused-lasso approach (Skripnikov and Michailidis, 2019a) employed
a combination of lasso and fused lasso to induce a sparsity on VAR coefficients and
model parameter differences, respectively. The VAR sparsity obtained from their lasso
term does not correspond to the characterization of GC on the all-lag VAR coefficients.

• Song15: a group fused-lasso approach (Songsiri, 2015) similar to cvx-FGN, except that
the fused term was only taken on the consecutive models and the relative penalty weight
was set to one.

The setting in this experiment is similar to Section 5.3 that the ground-truth system
parameters were n = 20, p = 1, K = 5, the common density was fixed at 10% and differential
density was varied to be 1% and 5%. The estimation parameters are p = 1, T = 100. The only
differences that the common GC networks fixed to have same VAR coefficients for examining
the performance of fused framework.
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Figure 5.6: Performances of FGN as the density of ground-truth differential GC networks
varied.

From the boxplot in Figure 5.6(a) and the averaged metrics in Table 5.3, the FGN
outperformed other methods in all settings, thanks to its formulation that accommodates the
prior of having identical parameters across models. The FGN appeared to be most robust to the
differential density variation compared to other methods. A decreased performance when the
density increased is generally expected in sparse learning, and also was observed in the results
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Table 5.3: The performance index for FGN formulation when the density of common GC
networks is varied.

Differential density: 1% Differential density: 5%
FGN cvx-FGN Song15 Skrip19a FGN cvx-FGN Song15 Skrip19a

F1 95.8 (3.0) 89.2 (5.8) 85.0 (3.5) 92.5 (3.0) 95.8 (2.9) 94.3 (3.1) 83.4 (3.4) 92.3 (1.5)
FPR 1.0 (0.8) 2.9 (1.7) 2.8 (1.1) 1.4 (0.6) 1.3 (1.1) 1.8 (1.2) 5.1 (1.7) 2.1 (0.5)
TPR 99.5 (0.5) 99.5 (0.5) 91.7 (3.7) 97.1 (2.1) 99.4 (0.5) 98.9 (0.8) 93.8 (2.4) 97.4 (1.4)
ACC 99.1 (0.7) 97.4 (1.5) 96.6 (1.0) 98.4 (0.6) 98.8 (0.9) 98.3 (1.0) 94.7 (1.4) 97.8 (0.4)
MCC 95.5 (3.2) 88.5 (5.9) 83.5 (3.8) 91.8 (3.3) 95.2 (3.2) 93.5 (3.4) 81.1 (3.8) 91.3 (1.6)

of Song15 and Skrip19a; on the other hand, cvx-FGN performance unexpectedly increased
with the differential density. This can be explained from the histogram in Figure 5.6(b) that
shows empirical distributions of the estimated model’s degree of freedom as (λ1, λ2) varied.
For cvx-FGN, the portion of extracted sparse models in the 1%-density setting was less than
that of 5%, leading to less number of sparse model candidates for eBIC to choose, and hence,
less likely to obtain a high-performance estimated model that was supposed to be sparse. An
advantage of the non-convex penalty in FGN was that the portion of extracted sparse models
was higher than that of cvx-FGN. This allowed the eBIC to choose among finer choices of
sparse candidates.

5.5 Improvement of non-convex formulation

The estimation error bound presented in Hu et al. (2017) depends on the ground-truth group-
sparsity level. The previous results in Figures 5.3, 5.4 and 5.6 did not show significant dif-
ferences between the convex and non-convex performances as the ground-truth systems were
relatively sparse and possibly, the true sparsity levels stayed in the range that allowed both
formulations to perform closely. The GREC as an assumption to obtain a recovery bound (Hu
et al., 2017) can be prone to be violated in a low-sample-high-dimension setting. To illustrate
the benefit of the non-convex penalty over the convex counterparts, we increased the ratio of
variables to data samples from 4:1 to 8:1 by setting the ground-truth system parameters as
(n, p,K, T ) = (20, 1, 5, 100) and (20, 3, 5, 150). The densities of common and differential GC
were set to 10% and 5%, respectively. The convergence to a global optimum for non-convex
problems generally depends on the algorithm initialization. As also pointed out in Wen et al.
(2018) that the improvement of non-convex over convex penalty may not be distinct for some
choice of initialization (such as zero in the regression problems.) In our implementation, we
started the algorithm for non-convex formulations with the least-squares solution.

Directly seen from Figure 5.7 and Table 5.4, the non-convex formulations outperformed
their convex counterparts in this setting. For a fixed penalty parameter, as the non-convex
formulations yield sparser solutions than the convex ones, the false positives can be much
reduced when the true system is sufficiently sparse, supported by a great reduction of FPR from
the non-convex models. Despite the superiority in performance of non-convex formulation,
we should consider the convex formulations first if the time-points to parameters ratio is
sufficiently large in the application that the uniqueness of the solution is significant.
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Figure 5.7: The performance advantages of non-convex penalty functions over convex penalty
functions in each formulation.

Table 5.4: Performance index between of non-convex formulations (CGN, DGN and FGN)
and convex formulations (cvx-CGN, cvx-DGN and cvx-FGN).

CGN cvx-CGN DGN cvx-DGN FGN cvx-FGN
F1 76.6 (5.0) 54.1 (5.9) 88.5 (4.1) 72.9 (4.7) 88.5 (5.4) 73.3 (6.7)
FPR 5.2 (2.0) 18.1 (4.8) 0.4 (0.2) 3.3 (1.1) 0.4 (0.3) 3.5 (1.9)
TPR 92.0 (6.4) 98.7 (2.1) 81.4 (6.7) 69.2 (7.8) 81.9 (9.0) 70.5 (10.3)
ACC 94.5 (1.6) 83.5 (4.2) 97.1 (0.9) 92.8 (1.1) 97.1 (1.2) 92.9 (1.7)
MCC 75.2 (5.0) 54.8 (5.6) 87.4 (4.1) 69.2 (5.0) 87.5 (5.4) 69.8 (7.4)

5.6 Application of CGN: Supervised classification
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Figure 5.8: The classification scheme from learned common GC network in each class.

We demonstrated a practical use of learning common GC network for multi-class clas-
sification using log-likelihood ratio test. Suppose there is one unknown class time-series to
be classified into M classes and each class also has K set of time-series, the goal of this
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Figure 5.9: The classification accuracy improvement of each class using GC network learned
from CGN (purple) over the accuracy of GC network learned from cvx-CGN (yellow) when
the estimation model order was set at p = 1, 2, 3 when the true model order is 2.

experiment is to learn the common GC network from K set of time-series in each class2 and
then use the common GC networks to classify the unknown time-series by the likelihood ratio
test. The likelihood of each class respected to the given time-series is evaluated by fitting the
time-series to the VAR model with sparsity pattern of each class. The unknown time-series
belongs to the class with highest likelihood as shown in Figure 5.8.

We generated 10 different topology of Granger networks to represent each class (M =
10). The problem parameters were n = 15, p = 2, K = 5, common density was set to be
10%, 20% and differential density was set to be 1%, 5%. In each topology, we estimated
common network using estimation parameters as p = 2, T = 50, 300, 1350 for diversifying the
learned common networks. We generated the testing time-series with length 50 according to
each class for 20 realizations. The time-series are then fitted to the common GC network on
each class with parameters p = 1, 2, 3 to see if the wrongly chosen model order affect the
performance. In total, the number of realization in this experiment is 240.

The classification performance gain of the common network learned from CGN over cvx-
CGN was presented in Figure 5.9. The classification using the common GC network learned
with CGN formulation has significant accuracy improvement from the classification based
on cvx-CGN. With the non-convex penalty, the classification has a near-perfect classification
rate. Moreover, the accuracy improvement was still obtained even if the model order (p) was
wrongly chosen.

2In general, the number K can be different in each class.
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5.7 fMRI ADHD-200 data

Children with Attentive deficit hyperactivity disorder (ADHD) are known to suffer from ab-
normalities that originated in some brain regions, both functionally and structurally, when
compared to typically developing children (TDC). We aim to explain differences of effective
brain connectivity underlying the two groups using the ADHD-200 competition data set (Bel-
lec et al., 2017). The fMRI time-series data were obtained from the ADHD-200 data sets
by the ADHD 200 consortium and are available at: https://www.nitrc.org/plugins/
mwiki/index.php/neurobureau:AthenaPipeline. We pre-processed the data using 14
steps according to the Athena functional data processing pipeline Bellec et al. (2017) but
without the bandpass filtering step (0.009 − 0.08 Hz) since Sato et al. (2012) reported that
ADHD and TDC (control) groups were highly discriminative when using the cross-spectral
density at the frequency around 0.2 Hz as a feature. The data were collected from the NYU
site and screened under the criteria: i) the subjects were male adolescents of 7-17 years old
(11.71 ± 3.11), ii) the ADHD and TDC groups were age-matched, iii) the subjects had no
secondary diagnosis, iv) the subjects are right-handed with a score larger than 0.1, where the
score ranged from -1 to 1 (from left-handed to right-handed), iv) the subjects had verbal IQ
in the range of 98-112, and v) ADHD subjects were combined subtype, i.e., ADHD type with
the presence of both inattention and hyperactivity/impulsivity. Under these selections, we
obtained 18 subjects for each of the ADHD and TDC groups. The resting-state fMRI time
series were averaged over voxels within AAL-atlas (Tzourio-Mazoyer et al., 2002) regions of
interest (ROIs) as shown in Table 5.6, resulting in 116-channel time series with time points
of 172.
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Figure 5.10: The D2K, F2K, and C18K schemes of learning ADHD and TDC networks.

As the number of samples is sufficiently moderate compared to the number of variables,
the distinction between the non-convex and convex formulations may not be significant. For
this reason, we used only the convex formulations to avoid the local optimum, or the algorithm
convergence issues. We applied our cvx-CGN, cvx-DGN, and cvx-FGN in different setup as
shown in Figure 5.10 called C18K, F2K and D2K which are,

1. D2K: For each of TDC and ADHD groups, we pooled data from all subjects, so the
sample sizes of each group increased. Combined data from two groups are the input to
cvx-DGN with K = 2 and the outputs are ADHD and TDC networks with extracted
common and differential parts.

https://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
https://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
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2. F2K: The scheme was the same as D2K but cvx-FGN was used to estimate the two
networks.

3. C18K: We applied cvx-CGN to learn a common network among 18 subjects (K = 18)
on each of ADHD and TDC data sets.

All schemes resulted in two estimated GC networks, each for ADHD and TDC subjects.
The networks obtained from D2K/F2K contain a common structure across two groups, and
the individual differences explained the characteristics of each group, while the networks from
C2K represent dominant connections that are common across subjects in each group. As the
number of AAL ROIs is 116, it is quite complicated to visualize the results as a graphical
model. We further analyzed brain connections in the estimated GC network using the edge
betweenness centrality measure (Rubinov and Sporns, 2010) used in network theory, which is
the number of times that an edge of interest appears in all existing shortest paths between
any two nodes of a graph. As input to compute the score, the weights of all edges in the
graph are required.

In GC context, a higher value of GC indicates a stronger connection between two regions,
so we used the reciprocal of GC to be the weight in the graph; specifically, 1/∥B(k)

ij ∥2 can
be used as a proxy-distance between the regions i and j since a stronger GC connection
should indicate a shorter path. If the difference of edge centrality between ADHD and TDC
networks is significantly high, the percentage that such GC edge in ADHD network appears
in the shortest paths of the graph has changed notably from the TDC network (i.e., loosely
speaking, such brain connection in the ADHD network is dominantly different from TDC.)
We divided the centrality differences into two types, the missing and extra types, in which
the centrality measure of ADHD is lower than that of TDC and vice versa. Brain connections
corresponding to the three highest centrality differences were presented in Table 5.5.

From Table 5.5, the differences between ADHD and TDC were primarily concentrated
on two regions: the orbitofrontal region (ORB), and those associated with the limbic sys-
tem. The orbitofrontal region is known to associated with a reward-motivation system that
responds to a reward or punishment (Rolls et al., 2020). Two ROIs that are part of the
limbic system and found in this study were i) the anterior cingulate cortex (ACG), which
was related to emotion (Bush et al., 2000), decision making and social interaction (Lavin
et al., 2013), and ii) the parahippocampal gyrus (PHG) that involved memory retrieval and
emotion processing (Aminoff et al., 2013). Among those two regions, three brain connections
having significant differrences of centrality scores between the two networks are shown in
Figure 5.11(a).

First, the link no.7 connecting from the left superior frontal gyrus (ORBsupmed) to the
left ACG were missing in ADHD. The two areas are believed to explain anti-social behavior of
ADHD patients, supported by anatomical evidence that subjects with focal brain damages in
those areas also exhibited this behavior (Bechara, 2004), and by a decrease of functional brain
connectivity between the two regions in the subjects with social anxiety disorder (Hahn et al.,
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Table 5.5: Distinct connections between ADHD and TDC, ranked by the three highest absolute
differences of the edge betweenness centrality.

No. Scheme Cause Effect Centrality
difference Associated system

ADHD < TDC (missing)
1 D2K Anterior cingulate gyrus L Anterior cingulate gyrus R -648 Limbic system
2 Anterior cingulate gyrus R Fusiform gyrus R -474 Limbic-Temporal
3 Cerebellum 3 L Anterior cingulate gyrus L -442 Cerebellar-Limbic
4 F2K Rectus gyrus L Parahippocampal gyrus R -282 Orbitofrontal-Limbic
5 Amygdala L Superior temporal gyrus L -141 Limbic-Temporal
6 Parahippocampal gyrus R Inferior frontal gyrus (orbital) R -130 Limbic-Frontal
7 C18K Superior frontal gyrus (medial orbital) L Anterior cingulate gyrus L -349 Orbitofrontal-Limbic
8 Superior frontal gyrus (medial orbital) L Superior frontal gyrus (medial orbital) R -125 Orbitofrontal
9 Rolandic operculum R Precentral gyrus R -124

ADHD > TDC (extra)
10 D2K Superior frontal gyrus (medial orbital) R Anterior cingulate gyrus R 367 Orbitofrontal-Limbic
11 Olfactory cortex L Insula L 344 Olfactory-insular
12 Temporal pole (superior) L Putamen L 327 Temporal-Frontal
13 F2K Middle frontal gyrus (orbital) R Superior frontal gyrus (orbital) R 164 Orbitofrontal
14 Temporal pole (superior) L Rolandic operculum L 164 Temporal-Operculum
15 Rectus gyrus R Superior frontal gyrus (medial orbital) R 143 Orbitofrontal
16 C18K Supplementary motor area R Precuneus R 306
17 Superior frontal gyrus (medial orbital) L Middle frontal gyrus (orbital) L 296 Orbitofrontal
18 Middle frontal gyrus (orbital) L Superior frontal gyrus (medial orbital) R 282 Orbitofrontal
* L/R denotes the left or right hemisphere. ** The regions with (orbital) or (medial orbital) are orbitofrontal area.
*** All the missing-type links were not in the ADHD network, except no.3. All the extra-type links were not in the TDC network, except no.18.

2011). Second, not only that we found this connection missing in the left hemisphere, but
the extra connection in the right hemisphere of the ADHD network was also discovered. This
result was supported by Tomasi and Volkow (2012) that found higher functional connectivity
between ORB and ACG in ADHD. Finding the two connections convinced us that the increased
centrality score in the right hemisphere of ADHD network may account for a reward-motivation
dysfunction and the decreased score in the left hemisphere may explain anti-social behavior.
Third, the connection no.4 from the left rectus gyrus (REC) to the right PHG was missing
in the ADHD network, implying a broken connection from the ORB region to part of the
limbic system. This can be partly supported by Itani et al. (2019) that features extracted
from the PHG region was highly discriminative for ADHD classification using decision trees.
In addition, Sung et al. (2016) discovered that subjects with REC resection had an impairment
of memory recall and language skills when tested with the mini-mental state examination, so
the REC may involve with the limbic functions, agreeing with our third connection that was
missing.

The five links in Figure 5.11(b) associated with the system of orbitofrontal (no.
8,13,15,17,18 in Table 5.5) shows several connections within the ORB region that had dis-
tinct score differences between ADHD and TDC. For ADHD patients, the ORB region was
responsible for the reward learning sensitivity or a slower learning rate when the objective of
the reward-related task was changed (Itami and Uno, 2002). Out of the five connections,
a common cause of the connections no.8 and 17 was the left ORBsupmed, the region from
which the extracted feature was effective for ADHD classification (Itani et al., 2019). The
extra connection (no.14) from the right REC to the right ORBsupmed in ADHD agreed with
Tang et al. (2020) that such functional link was significant for ADHD classification using
linear discriminant analysis. In addition, the REC and ORBsupmed regions were focused in
a reward-system dysfunction study for obese groups or binge eating disorder (Shott et al.,
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(a) Connectivity between Orbitofrontal region and limbic system

(b) Connectivity within orbitofrontal region

Figure 5.11: The coronal and axial view of the selected brain connections among the or-
bitofrontal region and part of limbic system that have distinct centrality differences between
the ADHD and TDC networks. The blue (red) directed edges show a missing (extra) connec-
tions in ADHD.

2015), symptoms that were related to ADHD as reported in Seymour et al. (2015).

We can draw two conclusions regarding how the three formulations infer different brain
connections shown in Table 5.5. First, most links obtained from C18K are concentrated within
the ORB region, while the ROIs involved connections from D2K/F2K can be more diverse.
In C18K setting, the ADHD and TDC networks were estimated separately; each revealed
significant characteristics that were common within each group. The ORB possibly explains
a brain functioning for both groups, but with different degrees for ORB subregions, so the
centrality differences were found concentrated in this region. On the contrary, the F2K/
D2K formulations jointly estimated the two networks where the differential part was freely
encouraged to present in any regions, so the network differences between the two groups
occurred in several areas.

Second, despite the same paradigm in both F2K and D2K settings, the magnitudes of
centrality differences of D2K were in a higher scale than those of F2K. This can be explained
from the penalty being used since the similarity of parameters across models affects the weight
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Table 5.6: AAL atlas
# ROI # ROI (continue) # ROI (continue)
1 Precentral gyrus, Left 40 Parahippocampal gyrus, Right 79 Heschl gyrus, Left
2 Precentral gyrus, Right 41 Amygdala, Left 80 Heschl gyrus, Right
3 Superior frontal gyrus (dorsolateral), Left 42 Amygdala, Right 81 Superior temporal gyrus, Left
4 Superior frontal gyrus (dorsolateral), Right 43 Calcarine cortex, Left 82 Superior temporal gyrus, Right
5 Superior frontal gyrus (orbital), Left 44 Calcarine cortex, Right 83 Temporal pole (superior), Left
6 Superior frontal gyrus (orbital), Right 45 Cuneus, Left 84 Temporal pole (superior), Right
7 Middle frontal gyrus, Left 46 Cuneus, Right 85 Middle temporal gyrus, Left
8 Middle frontal gyrus, Right 47 Lingual gyrus, Left 86 Middle temporal gyrus, Right
9 Middle frontal gyrus (orbital), Left 48 Lingual gyrus, Right 87 Temporal pole (middle), Left
10 Middle frontal gyrus (orbital), Right 49 Superior occipital gyrus, Left 88 Temporal pole (middle), Right
11 Inferior frontal gyrus (opercular), Left 50 Superior occipital gyrus, Right 89 Inferior temporal gyrus, Left
12 Inferior frontal gyrus (opercular), Right 51 Middle occipital gyrus, Left 90 Inferior temporal gyrus, Right
13 Inferior frontal gyrus (triangular), Left 52 Middle occipital gyrus, Right 91 Cerebellum Crus1, Left
14 Inferior frontal gyrus (triangular), Right 53 Inferior occipital gyrus, Left 92 Cerebellum Crus1, Right
15 Inferior frontal gyrus (orbital), Left 54 Inferior occipital gyrus, Right 93 Cerebellum Crus2, Left
16 Inferior frontal gyrus (orbital), Right 55 Fusiform gyrus, Left 94 Cerebellum Crus2, Right
17 Rolandic operculum, Left 56 Fusiform gyrus, Right 95 Cerebellum 3, Left
18 Rolandic operculum, Right 57 Postcentral gyrus, Left 96 Cerebellum 3, Right
19 Supplementary motor area, Left 58 Postcentral gyrus, Right 97 Cerebellum 4_5, Left
20 Supplementary motor area, Right 59 Superior parietal gyrus, Left 98 Cerebellum 4_5, Right
21 Olfactory cortex, Left 60 Superior parietal gyrus, Right 99 Cerebellum 6, Left
22 Olfactory cortex, Right 61 Inferior parietal gyrus, Left 100 Cerebellum 6, Right
23 Superior frontal gyrus (medial), Left 62 Inferior parietal gyrus, Right 101 Cerebellum 7b, Left
24 Superior frontal gyrus (medial), Right 63 Supramarginal gyrus, Left 102 Cerebellum 7b, Right
25 Superior frontal gyrus (medial orbital), Left 64 Supramarginal gyrus, Right 103 Cerebellum 8, Left
26 Superior frontal gyrus (medial orbital), Right 65 Angular gyrus, Left 104 Cerebellum 8, Right
27 Rectus gyrus, Left 66 Angular gyrus, Right 105 Cerebellum 9, Left
28 Rectus gyrus, Right 67 Precuneus, Left 106 Cerebellum 9, Right
29 Insula, Left 68 Precuneus, Right 107 Cerebellum 10, Left
30 Insula, Right 69 Paracentral lobule, Left 108 Cerebellum 10, Right
31 Anterior cingulate gyrus, Left 70 Paracentral lobule, Right 109 Vermis 1_2
32 Anterior cingulate gyrus, Right 71 Caudate, Left 110 Vermis 3
33 Median cingulate gyrus, Left 72 Caudate, Right 111 Vermis 4_5
34 Median cingulate gyrus, Right 73 Putamen, Left 112 Vermis 6
35 Posterior cingulate gyrus, Left 74 Putamen, Right 113 Vermis 7
36 Posterior cingulate gyrus, Right 75 Pallidum, Left 114 Vermis 8
37 Hippocampus, Left 76 Pallidum, Right 115 Vermis 9
38 Hippocampus, Right 77 Thalamus, Left 116 Vermis 10
39 Parahippocampal gyrus, Left 78 Thalamus, Right

of GC networks. F2K used the fused lasso to encourage a parameter similarity between
ADHD and TDC models, resulting in small centrality differences between the two groups.
In contrast, D2K used the group lasso to enforce a differential structure of each individual
network separately, so the individual model parameters can be shrunk in different degrees,
resulting in a larger scale of centrality differences. This conclusion suggests that the centrality
difference ranking should be made on each formulation separately since the scores are on a
different scale.



Chapter VI

CONCLUSION AND DISCUSSION

This thesis aimed to extend the joint Granger graphical model estimation by combining
the strength of existing regularization techniques presented in multiple literature. We proposed
three sparse formulations namely CGN, DGN, and FGN in Chapter 3 for estimating multiple
Granger causality networks with common causality structure across multiple time series and
differential structures belonging to individual time series. These formulations can be applied to
brain connectivity analysis where we are interested in a group-level inference and connectivity
differences among subject conditions. The proposed formulations employed the group and
fused lasso penalties with a penalty weight for enhancing the accuracy of the estimation. The
non-convex ℓ2,1/2 penalty was used to further improve the estimation in low-sample settings.
The estimation problems were used in combination with the extended BIC as a model selection
criterion which selected an optimal pair of penalty parameters, thus completing our scheme
of learning multiple GC networks at optimal sparsity.

The effectiveness of the formulations was demonstrated in Chapter 5. On average, our
approaches improved F1 and FPR by 3-26% and 0.6-13%, respectively, over existing sparse
multiple Granger graphical model methods in the literature. The main factor that determined
CGN’s accuracy was the density of the common ground-truth network, while DGN/FGN were
slightly affected by the density of the differential ground-truth network. Contrary to previous
results, DGN/FGN’s accuracy was favorably insensitive to the number of models (K), and
their performance improved relative to earlier methods even whenK was small. However, note
that the number of variables grows linearly as K increases, thus affecting the computational
complexity from an algorithm’s point of view.

Not without drawbacks, our framework suffers from multiple weaknesses. We provide a
discussion on each drawback and a solution in the following.

Varying penalty parameters The causality learning scheme presented in Figure 3.5 em-
ployed the proposed formulations to estimate models with various degrees of sparsity through
adjusting (λ1, λ2). For sparse formulations that have a single penalty parameter (such as
lasso, group lasso, or fused lasso), it is possible to derive a range of the penalty parameters in
closed-form, ordered by the model sparsity they induce from densest to sparsest. This range
generally depends on the sample size and problem data. Unfortunately, for sparse-inducing
problems with two or more penalties, it is difficult to derive such a range analytically. Due
to this limitation, a heuristic approach is needed to create a range for (λ1, λ2) by setting the
upper bound of λ1 to its critical value as if there was only λ1 and the same of λ2.
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Algorithms of non-convex formulation Convergence to a global optimum for non-convex
problems generally depends on the algorithm initialization. As also pointed out in Wen et al.
(2018), non-convex penalties may not show any improvements or even distinctions over convex
penalties for some choices of initialization (such as zero in the regression problems.) In
our implementation, the algorithm of non-convex formulations started with the least-squares
solution. When solving the problem with a series of (λ1, λ2), a common remedy is to use the
solution associated with the previous pair to initiate the algorithm.

Overlapped penalization DGN’s penalty consists of two terms that penalize some overlap-
ping groups of parameters. As such, the estimated common part, Cij, is also affected by the
regularization of the differential part, B(k)

ij . For a large K, as we varied the pair (λ1, λ2) on a
grid range, the best solution (in terms of highest F1) evaluated on the common network can
be much different from the one evaluated on the differential network; see more experimental
results in the supplementary material. In other words, the separate best-case performances of
the differential and common networks cannot co-exist using the same pair of (λ1, λ2) for large
K. The choice of relative weights, vij and w

(k)
ij , partly mitigates this issue but it does not

completely solve the problem. However, achieving the best performance on both the common
and differential parts at the same time may not be necessary in practice, since we generally
focus either on the common or the differential GC when analyzing results. In settings where
the common GCs are more informative, we can select a model that benefits evaluating the
common sparsity pattern, and not worry about the total GC network as in our experiments.
Moreover, situations where the differential GC is of more interest generally involve a small K
(e.g., brain signals collected under various symptom stages), and in cases of small K, this
issue does not occur.

We also provided two applications of the proposed methods. First, we applied CGN and
cvx-CGN to extract the common GC networks of many different groups. The sparsity pattern
of each common network was used in the constrained least-square VAR estimation from a
given time series. The time series were classified into a group with the highest likelihood from
the constrained least-square. The results yielded that CGN outperformed cvx-CGN even when
the order of the VAR model was wrongly chosen. In the second application, the proposed
methods were used to analyze the differences of effective brain connectivity (in the GC sense)
between ADHD and TDC subjects with resting-state fMRI time-series data obtained from the
ADHD-200 dataset. Our formulations found results that were consistent with previous studies
supported by both clinical and functional evidence from ADHD literature, asserting that the
orbitofrontal and limbic system regions of the brain appeared highly related to ADHD.
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Appendix A

ADDITIONAL EXPERIMENTAL RESULTS

We provided the experiments that we used to tune the algorithm parameters in the
following.

Experiment: Initial point selection for nmAPG algorithm.

Objective The non-convex problems are known to have multiple local-minima and heavily
affected by the choices of initialization. In these experiments, we aim to select an initial
point for solving the regularized least-square problem using non-convex group norm penalty.
One of the heuristic approaches was initializing the non-convex problem with the solution of
group lasso regression, but we aim to find if there are other easier choices than solving an
optimization problem.

Setting In this experiment, we investigated the initialization in non-convex group norm
penalty in a simple linear regression model. The ground-truth model is

b = Gx̃+ ϵ,

where b ∈ R200, x̃ ∈ R1000 with SNR of 20dB. We also assumed that x̃ is block-sparse with
block size 10 and there are 10 non-zero groups out of 100 groups.

We considered 7 initialization in comparison which are

• xzero = 0, (zero initialization)

• xridge = (GTG+ 0.1I1000)
−1GT b, (ridge solution initialization, λ = 0.1)

• xminnorm = G(GGT )−1b, (minimum-norm solution initialization)

• xrand ∼ N (0, I1000), (Gaussian iid. randomized zero mean initialization)

• xrand+ridge ∼ N (xridge, I1000), (Gaussian iid. randomized with ridge as mean vector
initialization)

• xconvex = { x | argmin
x

(1/2)∥Gx − b∥22 + λh(Px;K), q = 1}, (convex solution initial-
ization)

• xtrue = x̃, (Ground-truth initialization)
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We noted that the ground-truth initialization cannot be achieved in practice, we used this as
a benchmark to compare with other initialization as the ground-truth initialization should give
the best performance. We selected the performance indicators as

1. value of objective function, (1/2)∥Gx̂− b∥22 + λ∥x̂∥(10)2,1/2

2. Relative parameter bias, ∥x̂−xtrue∥2
∥xtrue∥2 .

Table A.1: Converged objective value and relative parameter bias in each initialization over
1000 realizations.

Initialization Loss Parameters bias
zero 5.2445 0.5208
ridge 5.2442 0.5208

min-norm 5.2445 0.5208
rand 5.7040 0.7892

ridge+rand 5.7069 0.7931
convex 5.2183 0.4764

Ground truth 5.2115 0.4118

Results The result is reported in Table A.1. The ground truth initialization gave the best
performance on both loss and relative bias, which is expected but cannot be used. The
second-best performance is the convex initialization. However, the convex initialization may
be too expensive for the large scale setting. The third best is the ridge regression initialization.
The complexity is far less than the convex solution and the loss did not drastically different.
Therefore, if the least-square solution does not exists, we use ridge regression but if it exists,
we can use the least-square solution instead.

Experiment: Non-convex group norm regularization performance in linear regression
model

Objective We aim to explore the performance of the non-convex group norm penalty or the
ℓp,q group norm penalty against the group lasso or the ℓ2,1 group-norm penalty. The objective
is to find out whether the non-convex regularizer outperformed the group lasso and further
compare it with the non-group case, which is lasso and ℓq penalty. We expected that the
structural prior of both group lasso and ℓp,q group norm penalty to outperform its non-group
counterpart.

Setting We generated ground-truth model as,

b = Gx̃+ ϵ

where b ∈ R200, x̃ ∈ R1000 with SNR of 20dB. We also assumed that x̃ is block-sparse with
block size 10 and there are 10 non-zero groups out of 100 groups. We varied the regularization
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parameter to yield the densest model to the sparsest model. The sparsest model is yielded
from the minimum regularization that gives all zero solutions in the group lasso case. The
non-convex formulation also varied in the same range because the non-convex formulation
tends to be sparser. So that, the regularization bound of the convex case is also a sufficient
condition in the non-convex case. The range in ℓ1, ℓq is set in the same sense. We repeated
this experiment 10 times. The area under the ROC curve is the indication we selected to
measure the performance between these two regression methods.
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Figure A.1: ROC curve of linear regression using ℓ1/2, ℓ2,1/2 regression, lasso and group lasso.
nmAPG was initialized by solution of ℓ2,1 regression (left), ground truth parameters (right).

Results The result in the fig. A.1 suggested that the regularized regression with ℓ2,1/2 out-
performed ℓ2,1, which agreed with the previous result in the literature. Moreover, both group
and non-group non-convex penalties have significant improvement when using the ground-
truth model as an initialization as shown in the right plot of Figure A.1. This result indicated
that there would be a room for improvement for initial point selection. The effectiveness of
group penalties are evidently shown in the left plot of Figure A.1. Even ℓq was outperformed
by the group lasso. So, if the good initialization cannot be found, the penalty with a grouping
structure should be considered first.



Appendix B

MATHEMATICAL DETAIL

B.1 Log-likelihood of multiple VAR models

Consider a problem of finding log-likelihood of models parameters given sets of time-series
data {y(k)(t)}Tt=1 for k = 1, · · · , K. The kth VAR model is given by,

y(k)(t) =

p∑
r=1

A(k)
r y(k)(t− r) + ϵ(k)(t),

where ϵ(k)(t) ∼ N (0,Σk). For simplicity, we drop the group index k. The log-likelihood for a
single measurement at time t is

L(y(t); Θ) = −n

2
log(2π)− 1

2
log detΣ− 1

2
ϵ̂(t)TΣ−1ϵ̂(t),

where Θ = (y(1), . . . , y(p), A1, . . . , Ap,Σ) and ϵ̂(t) = y(t) −
∑p

r=1 Ary(t − r). We further
assume that ϵ(t) is independent in each t for t = p + 1, . . . , T . Therefore, the log-likelihood
based on given data points is the sum of log-likelihood in each data point described by

T∑
t=p+1

L(y(t); Θ) = −nN

2
log(2π)− N

2
log detΣ−

T∑
t=p+1

1

2
ϵ̂(t)TΣ−1ϵ̂(t),

where N = T − p. We can further rearrange the sum of the quadratic form as

T∑
t=p+1

1

2
ϵ̂(t)TΣ−1ϵ̂(t) =

1

2
tr


ϵ̂(p+ 1)T

...
ϵ̂(T )T

Σ−1
(
ϵ̂(p+ 1) · · · ϵ̂(T )

)
=

1

2
tr
(
Σ−1

T∑
t=p+1

ϵ̂(t)ϵ̂(t)T

)

=
1

2
tr
(
Σ−1(Y − AH)(Y − AH)T

)
where the definition of Y,A,H is given in (2.3), (2.4). When considering K independent
models, the log-likelihood is simply the sum of log-likelihood in each model or
K∑
k=1

T∑
t=p+1

L(y(k)(t); Θ(k)) = −nNK

2
log(2π)−

K∑
k=1

N

2
log detΣk −

T∑
t=p+1

1

2
ϵ̂(k)(t)TΣ−1

k ϵ̂(k)(t).

(B.1)
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It is obvious that the maximization problem of (B.1) with respect to all Σk is a sepa-
rable maximization problem in each Σk. Therefore, the maximum likelihood estimator of the
covariance is

Σ̂k =
1

N
(Y (k) − A(k)H(k))(Y (k) − A(k)H(k))T , k = 1, . . . , K

with the maximum log-likelihood of

maximize
Σ1,...,ΣK

K∑
k=1

T∑
t=p+1

L(y(k)(t); Θ(k)) = −nNK

2
log(2π)− N

2

K∑
k=1

log det(Σ̂k)−
nNK

2
.

B.2 Vectorization of VAR parameters

In Chapter 4, we solved the proposed formulations in the vectorized form as presented in
(4.10). Therefore, we provide the detail derivation in the following.

Due to the structure of the penalty functions stated in (4.7)-(4.9), we vectorized K
VAR model parameters to be

x = (C11, C12, . . . , C1n, C21, . . . , Cnn)

where Cij is presented in (3.5). From this choice of vectorization, the next step is to identify
the equivalent sum-square loss term in (3.2) or to find G, b such that

K∑
k=1

∥Y (k) − A(k)H(k)∥2F , ∥Gx− b∥22, (B.2)

where the definition of Y (k) ∈ Rn×N , A(k) ∈ Rn×np, H(k) ∈ Rnp×N is provided in (2.3), (2.4).

To vectorize the sum-square loss function, we derive the case K = 1 first and generalizes
thereafter. As a single model vectorization, the problem is reduced to the derivation of matrix
containing measurements M, v from

∥Y − AH∥2F , ∥Mz − v∥22, (B.3)

where M ∈ RnN×n2p. We drop the model index, k, to simplify the notation.

We begin by expanding the LHS of (B.3) as

∥Y − AH∥2F =
n∑

i=1

T∑
t=p+1

(Yit −
np∑
j=1

AijHjt)
2. (B.4)

We define

Hjt =
[
(H1)jt · · · (Hp)jt

]
∈ R1×p, zij =

(A1)ij
...

(Ap)ij

 ∈ Rp,
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to rewrite

np∑
j=1

AijHjt =
n∑

j=1

[
(H1)jt · · · (Hp)jt

] (A1)ij
...

(Ap)ij

 =
n∑

j=1

Hjtzij.

By considering the term Yit for t = 1, . . . , N , we obtainH11 · · · Hn1
... . . . ...
H1N · · · HnN


zi1...
zin

−
Yi1

...
YiN

 , Hz̃i − vi, (B.5)

with z̃i ∈ Rnp, vi ∈ RN . When varying i = 1, . . . , n, we obtained the vectorized loss of kth

model as ∥∥∥∥∥∥∥(In ⊗H)
z̃1...
z̃n

−
v1...
vn


∥∥∥∥∥∥∥
2

F

, ∥Mz − v∥22, z ∈ Rn2p, v ∈ RnN , (B.6)

where (In ⊗H) = diag(H, . . . ,H). At this stage, we see that the fitting term of kth model
is,

∥M (k)z(k) − v(k)∥22.
To cast all K vectorized model into the form in (B.2), we must provide the structure of
x, b to construct G. For the vector x, we can also convert z(k) = (z

(k)
11 , z

(k)
12 , . . . , z

(k)
nn ) for

k = 1, . . . , K to x = [(z
(1)
11 , . . . , z

(K)
11 ), . . . , (z

(1)
nn , . . . , z

(K)
nn )] by the relation,

x =
K∑
k=1

ek ⊗ z
(k)
11...

ek ⊗ z
(k)
nn

 .

The vector b can be the row-concatenation of each v(k) so that the resulting b and G is,

b =

 v
(1)

...
v(K)

 , G =

G
(1)

...
G(K)

 .

At this point, it can be seen that G(k) is a mapping from every variables in kth VAR model to
kth vectorized time-series. For this purpose, we define the matrix H̃(k) that initially constructed
from H(k) and a Kronecker product of a standard unit vector ek in RK to ensure that the
multiplication between H̃(k) and x is the same as H(k) and z(k). The resulting structure is

G(k) = In ⊗ H̃(k) = In ⊗

e
T
k ⊗H

(k)
11 · · · eTk ⊗H

(k)
n1... . . . ...

eTk ⊗H
(k)
1N · · · eTk ⊗H

(k)
nN

 . (B.7)
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Figure B.1: The structure of G, x, b when n = 3, p = 5, K = 3. Each color represents the
related elements of kth model: red, green, blue for k = 1, 2, 3 respectively.

We yielded the expression of G and b in (B.2). We illustrate the concept of the construction
in Figure B.1. It is worth noting that in each G(k), the color stripe was shifted to preserve
the relation between v(k) and G(k)x.

Hence, we obtain the relation:
K∑
k=1

∥Y (k) − A(k)H(k)∥2F , ∥Gx− b∥22, (B.8)

which is the vectorized sum-square-error with the same definition of x as in (4.2) �
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