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Overview

@ functional magnetic resonance imaging
@ How to get fMRI data
@ Relationship between fMRI data and brain activity

© Dynamic model of brain activity
@ Granger causal model
@ Including input term into Granger causal model
@ Least-square estimation

© Preliminary Results

@ Project overview
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Objective

@ to study how to apply linear model to explain brain activity

@ to develop numerical algorithm to solve model estimation problem
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functional magnetic resonance imaging
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Figure: How to get MRI
Figure: MRI scanner Ref : M.A.Lindquist, J.M.Loh, L.Y Atlas,
Ref - and T.D.Wager, “Modeling the

http://www.clipmass. hemodynamic response function in fMRI

com/story/35886. . efficiency, bias and mis-modeling,”

Patawee Prakrankamanant ID 5630349021 AcGranger causality analysis of task-related fMF December 13, 2016 4 /24


http://www.clipmass.com/story/35886.
http://www.clipmass.com/story/35886.

Blood-Oxygen-Level-Dependent signal

A
5 10 15 20
Resting Activated Time (Seconds)
Figure: BOLD signal Figure: observed BOLD signal in voxel
Ref : Ref : M.A.Lindquist, J.M.Loh,
www.sbirc.ed.ac.uk/research/ L.Y.Atlas, and T.D.Wager, “Modeling
techniques/functional.html the hemodynamic response function in

fMRI: efficiency, bias and mis-modeling,”
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Granger causal model

Granger causal model is one of models which use to explain brain activity.
It use Granger causality and autoregressive model (AR)
[A.Pruttiakaravanich, 2016]

y(t) = Aiy(t— 1) + Aoy(t — 2) + ... + Apy(t — p) + &(t) (1)

where y(-) € R" is the observed BOLD signal, Ay € R™", k=1,2,...,p
and ¢(-) is noise. The concept of Granger causality is that if y;(t) is
Granger-caused of yj(t), Information of previous y;(t) help to predict yi(t).
In autoregressive process, the concept of Granger causality become simple
condition that yj(t) isn't Granger causal y;(t) if and only if

(Ak),'j:O k:1,2,...,p (2)
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Granger causal model with Stimulus Input

Autoregressive model (1) does not have any input term but exogenous
inputs could help to improve the prediction. We add input terms to the
autoregressive model that changes to be autoregressive with Exogenous
input model (ARX).

W(t) = Ary(t—1) 4. . .+ Ay(t—p)+ Bru(t—1)+. . .+ Byu(t—q)+e(t) (3)

where y is the observed BOLD signal, u is controlled stimuli input and e is
noise.
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Least-square estimation in ARX model

from (3)
X » q 2 el
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L east-square estimation in ARX model with zero constaints

min |V — 45 - BK(, min |y~ G~ Faf

=

subjectto(4,) =0 k=12,...p subject to x =0
Y| |G¢ GF||G N 2
s G y « min ‘y—a;—FZ‘L

z| |F*6¢ F'FE|.E”

[8 F :I Full-rank
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fMRI data in project
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noise VS residual error (1)

Generate true
model

Generate time series with
difference noise variance

Estimate model Hypothesis : If noise variance is

increase, residual error will be
Compute and Compare
residual error increase_

10 times ?

Figure: flow chart of noise VS residual
error experiment
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noise VS residual error
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Figure: residual error form different noise, zc : we include true zero constraint in
estimation, uc : we don't include zero constraint in estimation

Result : Noise variance is increase, residual error is increase.
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numbers of data VS estimation error (1)

Generate true
model

Generate time series

Estimate model using Hypothesis : If we use many time
300, 600, 1200 time . .
point data to estimate model,

points
estimation error will be small.
Compute and

Compare model
error

Figure: flow chart of numbers of data VS
estimation error experiment

Patawee Prakrankamanant ID 5630349021 AcGranger causality analysis of task-related fMF December 13, 2016



numbers of data VS model error (2)

error_300_data | error_600_data | error_1200_data
error_A; 0.68619 0.2365 0.2365
error_A 1.2492 0.56347 0.23491
error_As 1.1646 0.60372 0.28544
error_A, 0.40715 0.2945 0.1607
error_B; 5.0978 5.1126 5.1102
error_B, 3.8473 3.8529 3.8658
error_avg 2.0754 1.8038 1.6489

Table: estimation error form estimating by using different numbers of time point

Result : We use many time point data to estimate model, estimation error

is small.
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Model selection (1)

Generate true model

Generate time series
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compute AIC and BIC score . . .
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Select model that have
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Figure: flow chart of model selection
experiment
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Model selection (2)

LA }“’ ||
(a) AIC score

(b) BIC score
for sparse model for sparse model

Result :

it

(c) AIC score

AIC choose model which is
dense greater than BIC. BIC choose
model which is sparse greater than
AIC. But no one choose model
correctly.

(d) BIC score
for dense model for dense model
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Scope of work

@ we focus only autoregressive model with exogenous input.
@ we test model form generated data and real data.

@ we compare model only data on motor-visual and visual-motor
experiment.
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Plan of working

2015 [ 2016

Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec ‘ Jan ‘ Feb ‘ Mar ‘ Apr ‘ May

Study essential information [ NN ) s0% complete

Experiment generated data B )50 complete
Poposal report G (00% complete
Develop and attempt for real data ( ) 0% complete

Make report and conclude result ) 0% complete

Figure: Gantt chart of the project
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Expected outcomes

Expected outcomes

@ Matlab code can solve estimating linear model problem of brain
activity

@ method to solve estimating autoregressive model with exogenous
input to explain brain activity

Finish
@ Matlab code that solve least square estimation with or without zero
constrains
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Q& A

atawee Prakrankamanant ID 5630349021 AcGranger causality analysis of task-related fMFK December 13, 2016 20 / 24



References

@ F.-H. Lin, T. Witzel, T. Raij, J. Ahveninen, K. W.-K. Tsai, Y.-H. Chu, W.-T.
Chang, A. Nummenmaa, J. R. Polimeni, W.-J. Kuo (2013)
fMRI hemodynamics accurately reflects neuronal timing in the human brain
measured by MEG

Neuroimage 78, 372-384.

@ A. Pruttiakaravanich, J. Songsiri (2016)
A Review on dependence measures in exploring brain networks from fMRI data
Engineering Journal 20(3), 207-233.

Patawee Prakrankamanant ID 5630349021 AcGranger causality analysis of task-related fMF December 13, 2016 21 /24



Back up (Least-square estimation)
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Back up (Least-square estimation (2))

minimize [|Y— AH — BK||?_—
A B

o—[A B],L:m

d% |Y = 0L||2 = —2(Y—0L)LT =0
0= YLT(LLT)™?
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Back up (AIC & BIC)

AlIC=-2L+2d
BIC = -2L + dlog N

N
£(ABT) = " PlogdetT 2 3™ ()~ ) Z )~ 5(7)
i=p+1

1) = ZA,-y(t— i)+ Z Biu(t— i)

L is log likelyhood function. dis a number of active parameters.
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