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Overview

@ Project overview
@ Method

o Granger causal model
o Autoregressive model with exogenous input

o Experiment
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Project overview (1)

Problem statement
@ we want to explore brain activity by using linear model that have
input terms.

@ to study how to apply linear model to explain brain activity

@ to develop numerical algorithm to solve model estimation problem

Scope of work
@ we focus only linear model when we know value of input signal.
@ we consider autoregressive model with exogenous input and apply
least square estimation.
@ we test model from generated data and fMRI data sets.

v
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Project overview (2)

Expected outcomes

@ The estimation formulation for estimating parameter of autoregressive
model with exogenous input

o MATLAB codes for learning brain connectivity.
can solve estimating linear model problem of brain activity

Unfinished work

@ we do not have experiments with real data set.

A\

Cause of Unfinished work
@ Raw brain image scans require many preprocessing steps.

@ we have to optimize code and algorithm for solving large-scale
problem.

v
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Granger causal model (1)

Granger causality (GC) : How previous data can help to improve predicting
data at present [M. Eichler,2015]

Autoregressive model (AR model) : One of linear model which is widely
used to explain dynamic model of brain

At) = Ayt = 1) + Aoy(t = 2) + -+ Apy(t = p) +e(t) (1)

GC in AR model [M. Eichler,2015] : yj(t) is not Granger causal y;(t) if and
only if
(A;i=0 k=1,2,...,p (2)
two important estimation formulations [J.Songsiri, 2013]
@ estimated AR model with data given GC pattern

@ explore GC pattern form times series data by using AR model
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Granger causal model (2)

(a) estimated AR model with data given  (b) explore GC pattern form times
GC pattern series data by using AR model
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Contribution : Estimation of ARX model

AR model (1) does not have any input terms but real data sets are
generated from external stimulus input. This project uses Autoregressive
model with exogenous input.

y(t) = Awy(t—1)+...+Apy(t—p)+ Bru(t—1)+ ...+ Bqu(t — q) +e(t)

property to use ARX model

o the ARX model is linear.

@ the ARX model includes exogenous input terms.
two important estimation formulation

@ given GC pattern estimated ARX model

@ explore GC pattern form times series data by using ARX model
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Least-square estimation of ARX model

Least squares : estimation parameter that the difference between real
signal and signal generated from model is the least in term of norm-2

N

minjmize (1/2)< S ) ZAJy t—j ZBU Hg) (3)

t=p+1
property of least squares
e equivalent to vector from : minimize (1/2)||yvec — Gx — Fz||3 where
X,Z
Y(t) = Yvec A= x,B— z, y(t—j) = Gand u(t—j) = F
@ Solution has closed-form

@ equivalent to solve linear system
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Least-square estimation in ARX model with GC constraints

Figure: given GC pattern estimated ARX model
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Least-square estimation in ARX model with GC constraints

(2)

GC constraints : we know the pattern of

(AW)ij=0,Yk=1,...,p(i,j) € J or xx, =0 Vk € Jin estimation
problem.

minimize  (1/2)||yvec — Gx — FZ|)3
X,z
subject to xx =0 (k€ J)
property of this estimation problem

@ solving by eliminating constraints which reduces the problem to
unconstrained Least squares problem

o still easy to solve
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Learning GC pattern of ARX model (1)
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Figure: explore GC pattern form times series data by using ARX model
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Learning GC pattern of ARX model (2)

Goal : find a good zero pattern in AR coefficients that best evaluate data.
we added ||Px||2,1 to the cost objective to promote group sparsity in X.

minimize  (1/2)||yvec — Gx — Fz||3 + A||Px||2.1 (5)
subject to xx =0 (k€ J)

reason of adding ||Px||2,1 to estimation problem
@ to force x, = 0 Ik ¢ J [A. Barbero, 2013]
e when X is bigger, ||Px||2,1 will convert to zero.

@ we have other’'s work that using this method [J.Songsiri, 2013]
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Challenges in solving (5)

problem (5) is very hard to solve because
@ the objective function is not differentiable.

o real data have a large number of variables (> 400 millions)
is very large (more than 400 millions variables).

we solved problem (5) by using Alternating Direction Method of
Multipliers (ADMM) because

@ ADMM use less memory storage (request only gradient).

o ADMM is fast converge algorithm ex. g =15,p=2,r=1 and
N = 1000 (number of variable = 465, number of data = 15000 ) , If
we use Intel core-i7-6700HQ 2.60 GHz, Average time of ADMM is
1.041 s.

e suitable for problem (5)

we have provided an analysis of A. which is the minimum value of that
correspond to zero solution.
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Goal : illustrate the benefit of proposed formulations
@ experiment 1 : To show the ARX model outperforms AR model

e more accuracy GC patterns
o less model error in estimated AR parameter

@ experiment 2 : To show the estimated effect form input
of estimation from inputs. Dense input is more suitable than sparse
input due to the principal of persistent excitation.

o less model error in estimated parameter
e more accuracy GC patterns
e more accuracy selected model order
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Experiment : AR model VS ARX model

Generating model

Generating time @ granger causality pattern

series o Indicator : Granger causality
pattern in AR and ARX model
By using (5) with A € [0, A\/]

Estimating model .
@ model error : auto regressive

part
Comparing o Indicator : ||A— A||Z in AR
parameters between and ARX model By using (5)
AR and ARX model with A € [0, A]

Figure: Process in "AR model vs ARX
model” experiment
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Experiment : AR VS ARX (granger causality pattern)
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(a) ROC curve of GC pattern of AR and  (b) numbers of fault GC pattern in AR
ARX model and ARX model
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In ROC curve, the upper left corner of ARX model are overtop the upper
left corner of AR model and minimum numbers of fault GC pattern which
is in ARX model is less than AR model. So, ARX model can detect GC
pattern better than AR model.
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Experiment : AR VS ARX (model error :

part)
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Figure: estimation error of AR parameters in AR and ARX model by using (5)

minimum of estimation error in ARX model is less than AR model.
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Experiment : Sparse input vs Dense input

dense input : persistent excitation is high
sparse input : persistent excitation is low

(a) dense input (b) sparse input

Figure: example of dense input and sparse input
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Experiment : Sparse input vs Dense input (2)
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Figure: spectrum of input : Dense input have excitation more frequencies than
sparse input
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Experiment : Sparse input vs Dense input (3)

@ model error
o Indicator : ||[A— A||Z and ||B— BJ|% in ARX model By using (4)
o Granger causality pattern

o Indicator : Granger causality pattern in ARX model by using (5) with
A€ 0,2

@ model selection
e Indicator : BIC score by using (4)
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Experiment : Sparse input vs Dense input (model error)
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If data is generated form dense input, parameter estimation is better than
data generated form sparse input.
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Experiment : Sparse input vs Dense input (granger
causality pattern)

—
OO
® —*—sparse
S o dense

TPR

0 20 40 60 80 100
FPR

Figure: ROC curve of data generated form dense input and sparse input

Data generated from sparse input and dense input can be used to estimate
GC pattern nearly

Patawee Prakrankamanant ID 5630349021 AcGranger causality analysis of task-related fMF May 18, 2017 22 /30



Experiment : Sparse input vs Dense input (granger

causality pattern) (2)

y(t) = Ay(t—1)+.. .+ Apy(t—p)+Bru(t—1)+...+Bqu(t—q)+e(t) (6)

From (6), the generated Ay parameter are sparse (density 40%). Dynamic
in y(t) could not change very much. But dense input affects on the
fluctuation in y(t) very much which effect on A estimation that A could
be more density. The GC pattern of data generated by dense input may be
more incorrect than data generated by sparse input.
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Experiment : Sparse input vs Dense input (model

selection)

model selection (dense)

True model order : lagging order of
AR is 2 and lagging order of input is
1(p=2,r=1).

In 30 times, the accuracy of p, 7 from
data is generated form dense input is

BIC score

100 %.
10 e The accuracy of p, 7 from data is
P generated form dense input is 100 %.
Figure: example of BIC score in Both of data can select order of

experiment (p is lagging order of AR and model well.
r is lagging order of input.)
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conclusion

o If signal is stimulated by external input,using ARX model to learn
signal is more suitable than AR model

o If persistent excitation input is high, the model estimation
performance is better.

@ The estimation problem can be solved in large scale by the selected
ADMM algorithm.
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Q& A
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Back up (Alternating Direction Method of Multipliers (1))

minimize  (1/2)|ly — Gx — Fz||3 + A||Px||2.1
X7y
subject to xx =0 (k€ J)

we can create the augmented Lagrangian which is

£, = fxion) + h(xs) + uT<le - X3) + 2P —

we define

fixz) = (1/2)r|y—GX—FZII%=(1/2)HY‘[G f ﬂ

h(x) = Allxll2.1
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Back up (Alternating Direction Method of Multipliers (2))

minimize f{xy, x2) + h(x3)
X1,X2

subjectto Px; —x3 =0

() = argmin(fx, ) + 17 (P —x5) + £[1Pxa = xsl3)
X1,X2
x;' = argmin(h(X3) + ,uT(Pxf —x3) + gHPXi" — X3H%)
x3
ut = u+ ,O(le+ — xgr)
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Back up (Alternating Direction Method of Multipliers (3))

Iz < e* 52 < et

([ 5 )] - [+ [0 o
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Back up (Alternating Direction Method of Multipliers (4))

x§ = argmin()\HXg,Hg,l +uT(Px{ — x3) + gHPXf - X3H%>
X3
= argmin (Ml + 211 — x5 + u/plB) (8)
X3

(A 1
argmin (2 sz + 5 1P =3 + u/pl}3)
x3 P
we can separate problem (8) to
minimize |xill2 + (1/2)|1x; — will3 (9)
The close-form solution of problem (9) is

X :max{l S O}W;

[|will2”
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