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1 Introduction
Defined by the International League Against Epilepsy (ILAE), an epileptic seizure is a transi-
tory occurrence of symptoms due to abnormal excessive or synchronous neuronal activity in the
brain [FAA+14]. It was reported that 65 million people of all ages are affected the epilepsy [TBB+11].
Consequences of epilepsy are dependent on types of seizures and areas that the seizures appear.
For instance, a tonic-clonic seizure can initiate from one side or both sides of the brain. People
affected by tonic-clonic seizures have uncontrollable, stiffening, and jerking muscles that may cause
the people fall down or bite their tongue [BR07]. An absence seizure which is a generalized onset
seizure affects patient’s awareness. Absence seizures usually have effects in a short period, less
than 10 seconds, but there are also absence seizures that last longer [RT03]. Due to the impacts
of epileptic seizures, which can lead to neuronal and physical injuries, patients with recurrent or
prolonged seizures should be reviewed by neurologists for a prompt diagnosis and treatment. Neu-
rologists usually monitor the patients with continuous video-EEG monitoring [SS97, MFF+13] for
those having refractory status epilepticus that are unresponsive to therapy. This is a combination
of electroencephalography (EEG) and video, recorded simultaneously to observe brain activities
in relation with a clinical change. Nevertheless, this task is still a time-consuming process for the
neurologists to review the continuous EEG. Therefore, automated epileptic seizure detections using
EEG signals have been developed to facilitate the interpretation of long-term monitoring.

Seizure onset detection has an important role in situations that need immediate treatments,
especially in cases when patients do not respond to the medication. There are two types of seizure
oasdft that can be inspected from the scalp EEG signals regarding to the spatial distribution of the
seizure activity. When a seizure originates at some point rapidly distributing the whole networks,
causing EEG changes apparently on the whole brain, it is called a generalized-onset seizure. In
contrast, a seizure is focal-onset when originating within networks limited to one hemisphere,
making the changes in EEG restricted in a particular brain region [SRS+19, FCD+17]. Some
patient who requires a treatment to reduce a seizure effect after the seizure starts needs a seizure
detection system that alarms immediately, or a few seconds later, after the seizure onset. A
detection delay from the actual seizure onset can cause wrong localization of an epileptogenic focus
and late therapy [NFBA13]. For instance, a responsive neurostimulation system is a device that is
implanted in the brain to observe and stimulate brain activities [MR18, Gel18]. This device releases
electricity to reduce an impact of seizure after the seizure onset occurs. Hence, a nearly correct
indication of the seizure onset is needed for the proper treatment.

Moreover, detecting seizure offset is also important. Seizure offset recognition can help reduce
the side effects in postictal states by a prompt treatment [VRB10]. Providing a period of an
epileptic seizure in an EEG record to neurologists instead of only an occurrence of the seizure
can better assist the neurologists to consequently analyze and diagnose types of seizure so that
the patients receive antiepileptic drug (AED) therapy properly [Gol10]. For instance, it is highly
possible that the seizure still maintains if a patient affected by epilepsy longer than five minutes does
not receive therapy properly. In this case, lack of treatment can considerably damage the human
brain. However, it is not easy to indicate the seizure offset following the seizure activity. There are
several possibilities of transitions from the seizure activities to their terminations; the seizure offset
cannot be directly observed from the channels where the seizure initiates [SB10]. It is possible that
a focal-onset seizure is still localized or developed to the whole brain. For example, the focal-onset
seizure can be evolved to a secondary generalized seizure, a seizure activity spreading from the focal
area to the whole brain. Generalized-onset seizures can also end with focal or generalized activities.

From the needs and importance of the automatic detection of epileptic seizures and the starting
and ending points, this work mainly concentrates on detecting the seizure events and determining
their onsets and offsets. We aims to develop methods of the automatic epileptic seizure detection
and of seizure onset-offset localization using only EEG signals. We divide the whole project into two
main steps: epoch-based classification and onset-offset detection. The epoch-based classification is
to classify epochs from long EEG signals, and the onset-offset detection adopts the epoch-based
results to improve the classification performance and indicate the seizure onsets and offsets.
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In Section 2, the proposal overview is described, including objective, scope of work, and benefit
and outcome. Section 3 reviews backgrounds which includes EEG and montages, characteristics of
EEG, and convolutional neural network (CNN). Studies related to the detection of seizure events,
onsets and offsets are discussed in Section 4. The problem statement and research methodology
are stated in Sections 5 and 6, respectively. Moreover, Section 7 describes a proposed model
including classification in epoch-based seizure detection and onset-offset detection technique. The
data sets of scalp EEG signals that can be downloaded only are explained in details in Section 8.
In addition, All experimental settings including data modification and hyperparameter tuning are
clarified in Section 9. Finally, Section 10 summarizes the conclusion, limitations, future work of
this thesis.

2 Proposal overview
In this section, we present an overview of this proposal. This overview contains the objective,
scopes, benefits, and outcomes of this work.

2.1 Objectives
This study aims to provide an offline detection method of seizure activities and the identification
of their starting and ending points in multi-channel scalp EEG signals. The seizure onsets and
offsets can be used to infer when and how long the seizures appear. Furthermore, this method
can also be applied to EEG records that have been continuously collected from a subject being
monitored. Neurologists can use these results as a guide to further dispense and treat the subject
appropriately. Moreover, the results which include the seizure onset and offset can be exploited as
a pre-annotation of the data. EEG signals with pre-annotation can reduce time spent by physicians
on inspecting types and characteristics of seizures, and labeling a new data set for further research.

2.2 Scopes of work
• The proposed system needs to be early trained before it will be used for a specific patient.

So data for training and testing must be collected from the same patient.

• Multi-channel scalp EEG signals are used to detect the seizures activities, not intracranial
EEG signals. An annotation of each record must contain seizure onsets and offsets of individ-
ual seizure events. All training and testing data must be acquired from the same montage,
and the data are collected from an online open source.

• The training and testing stages are conducted offline.

• Types of seizures are not specified, and we do not discriminate the types in this work.

• Results of the proposed method and previous methods are compared.

2.3 Benefits and outcomes
Benefits. With our proposed method, less efforts than usual from the neurologists are required to
review the continuous EEG, and a little background knowledge about epilepsy is needed. Moreover,
no other modality, e.g., electrocardiogram (ECG), electromyogram (EMG), is included. This means
no other equipment is required when collecting the data. In addition, a pre-annotation of an
originally unlabeled data for the neurologists to further analyze seizure characteristics is a result
from the method. Finally, the method can be used to first label the data of a new data set to
enhance an application of machine learning in this research field.
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Figure 1: Illustration of the international 10-20 system from (A) left and (B) top views of the head;
’A’ stands for an ear lope, from [MP95].

Outcomes. First, we provide a method for automatic detection of epileptic seizures and their
seizure onsets and offsets using multi-channel EEG signals. The algorithm associated with the
proposed method is also given to train a model using EEG signals that contain seizure activities
for a specific subject.

3 Background
To appropriately design a method for detecting seizures and their onsets and offsets, some back-
ground knowledge about characteristics of EEG signals and epileptic seizures is required. This
section is divided into three parts: EEG and montages, EEG characteristics, and CNN.

3.1 EEG and montages
EEG is one clinical way of recording and studying electric potentials involved with the brain’s
electrical activities. The study of the electrical activities in the brain using EEG records is one
of the most essential tools for diagnosing diseases in neuroscience, for instance, epilepsy, brain
tumors, head injury, and sleep disorders. There are two types of EEGs, scalp and intraccranial
EEGs, depending on where signals are obtained. The scalp EEG signals are recorded by placing
small disks called electrodes in different positions on the scalp surface with liquid gel. For the
intracranial EEG (iEEG), or so-called electrocorticogram (ECoG), the subdural electrodes are
implanted directly in the brain during the surgery to measure the electrical signals directly from
the cortical cortex.

Locations of electrodes on the scalp are critical because the measured signals spatially vary on
the position of the scalp; thus, this causes difficulties in interpretations. One of the standard place-
ments of electrodes is the international 10-20 electrode system. As shown in Figure 1, electrodes
are placed with 10% or 20% of actual distances between adjacent electrodes in all three directions.
The reference points of the system are nasion, the depressed area between the eyes, and inion, the
prominent bone locating on the middle line of the skull. Each location is assigned by a letter to
specify a lobe and by a number to specify the location of each lobe. The letters F, T, C, P and O are
used in the positions of Frontal, Temporal, Central, Parietal and Occipital lopes, respectively. A
’z’ is indicated the midline of the brain. Even numbers identify electrodes on the right hemisphere,
whereas odd numbers identify those on the left hemisphere.

Because an EEG signal is a difference of electrical signals obtained from two electrodes, the
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electrical signals are amplified using differential amplifiers. The EEG signal can be monitored in
the various way according to a type of montages, the placement of the electrodes. Two popularized
montages that are currently used are bipolar and referential montages. In the bipolar montage, a
pair of adjacent electrodes are inputs to a differential amplifier resulting a waveform of each channel
displayed on the monitor. The referential montage is a montage that the output of each channel
is the voltage difference between a certain electrode and a common reference electrode. Generally,
there is no standard position for the reference; however, the linked ears, referring to the positions
A1 and A2, and midline positions are often used as a reference. When the common reference is an
voltage averaged over the brain, the montage is called an average reference montage.

3.2 EEG characteristics
Since this proposal aims to detect ictal patterns in long EEG signals, it is important to understand
normal behaviors of the EEG signals in order to comprehend the abnormal one. Clinically, neurol-
ogists use the knowledge of the normal activities to visually identify the epileptic seizures from the
long EEG signals. There are four main rhythms of the normal EEG, namely alpha, beta, theta, and
delta, that need to be primarily described [RT03]. Alpha rhythm occurs in a frequency range of
8–13 Hz. This rhythm is considered as the principal background of the normal EEG and discovered
when the patient is relaxed, waking state, and eyes closed. It is usually maximum in the occipital
area and spreads asymmetrically to the adjacent regions, e.g., parietal and temporal regions. Beta
rhythm (14–30 Hz or higher) appears with longer duration than muscle action potentials. Asym-
metric amplitude between both sides of the brain commonly refers to the pathological hemisphere.
Theta rhythm is defined as an activity in a frequency band of 4–7 Hz. It is typically dominant in
the midline and the temporal region. This rhythm indicates a waking and drowsiness state and
should be symmetrically diffused. If the theta activity appears only in one area or one hemisphere,
this may refers to structural disease. Delta rhythm is a slow wave that its frequency distributes
in 0.5–4 Hz. This wave usually has high amplitudes and reliably indicates localized brain diseases.
An occurrence of this wave is also prominent to implications of cerebral dysfunction and sleeping
in adults.

On the other hand, epileptiform patterns in EEG signals are abnormal patterns used to indicate
epileptic seizures in the long EEG signals. By definition, the epileptiform patterns are spikes and
spike-wave complexes; however, other abnormal patterns such as sharp waves are also practically
significant to the detection of the epileptic seizures [BYL84]. The definition of the spike is an abrupt
change of temporal potential from the background where its decline slope is lower than that of the
incline. The spike duration ranges from 20–80 milliseconds and the spike is often followed by a slow
wave with the duration of approximately 200 milliseconds. The spike-wave complex, also called a
spike-slow wave, contains the spike and a following slow wave containing relatively high amplitudes.
The spike-slow wave is in 3±0.5 Hz and the amplitude of the spike is usually lower than that of the
slow wave. The sharp wave is practically essential in determining the epileptic seizure even though
it is not demonstrated as epileptic patterns. The sharp wave is defined as a wave with a frequency
of 5–12.5 Hz. A sequence of spike, sharp, and spike-slow wave is referred to ictal patterns of EEG
when seizures occur. By the morphology of these three patterns, i.e., spikes, spike-slow waves, and
sharp waves, changes in amplitudes, frequencies, and rhythms continuously happen relative to the
background [PPCE92]. First, amplitudes of EEG signal during epileptic seizure activities tend to
be higher than those of normal periods. Second, a frequency shift appears when brain activities
transit from normal events, e.g., drowsiness, eye blink, to the seizure activities. Third, rhythms or
patterns in EEG signals change from normal activities to specific patterns. However, some change
seems to be an occurrence of epileptic seizures even though this change is referred to an artifact.
For instance, EEG signals interfered by main electricity have evolution of amplitudes from low to
high and then still maintain the amplitudes at this level for a course of time. Moreover, periodic
epileptiform discharges (PED) are also uncommon EEG characteristics similar to seizure activities
but determined as non-seizure activities. This makes seizure detection challenging in discriminating
the ictal patterns from EEG signals.
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3.3 Convolutional neural network (CNN)
CNN is a type of neural networks that has been intensively and widely used in various appli-
cations: image processing, object detection, face recognition, natural language processing, and
video processing [LBH15]. For example, VGG16net is a deep CNN that achieves top-5 accuracy
in the ImageNet data set [SZ15]. The CNN is biologically inspired by the idea of animal vision
that concentrates on a specific area of an image, called receptive field, instead of focusing on the
whole image. The main advantages of this network are that it has spatial invariance property
and less computational complexity because of the weight-sharing architecture of convolutional lay-
ers [ATY+19]. The CNN structure mainly consists of convolutional, activation, pooling, and fully
connected layers stacked deeply. The computations of the convolutional, activation, and pooling
layers are visualized in Figure 2. Some regularization technique such as dropout is also added to
reduce the effect of an overfiting problem [SHK+14], and a batch normalization layer is used to
enhance the learning speed [IS15].

The convolutional layer is a layer in which each neuron is locally connected to some area in the
previous layer. This layer is mainly designed to extract and collect low-level and high-level features
from each layer [ATY+19]. The result of each neuron is obtained by multiplying the local input by
weights of filters. As shown in Figure 2a, the convolutional layer is a result of convolution of the
input and the weights. The result can be visually interpreted as a feature map extracted on the
receptive field. So, to extract many features simultaneously in the same layer, independent filters
stacked in depth are used instead of only one filter.

The activation layer also called an activation map is a layer that visualizes activation nodes by
using an activation function. The output of every node in the previous layer is independently passed
to the activation function. Additionally, the activation function can also be physically interpreted
as a function that activates and deactivates each neuron in the layer. An example of using activation
functions transforming a feature map is illustrated in Figure 2b. Common activation functions are
listed with their benefits and drawbacks as follow:

• Identity function is a function that the output and input are the same:

f(z) = z,
d

dz
f(z) = 1. (1)

The identity function is put in the output layer when a regression problem is considered.
However, it is well-known that the activation function in hidden layers should not be the
identity function because if all activation functions are the identify function, the output is
only a linear transformation of the input.

• Sigmoid function (σ), or logistic function, is a common activation function used in neural
networks. The output of the function is known to be the conditional probability given the
input or to be the smooth function of the step function:

σ(z) =
1

1 + e−z
,

d

dz
σ(z) = σ(z)(1− σ(z)). (2)

The advantages of this function are that it is differentiable at every point, bounded, and
monotonic. However, when z is largely positive and negative, the slope of the curve becomes
to small, increasing training time; this problem is called a vanishing gradient. The sigmoid
function also has a shift bias, causing the network to learn slow [XHL16].

• Hyperbolic tangent (tanh) function is a function that is similar to the sigmoid function that
it is bounded. Unlike the sigmoid function, the output of the tanh function is in the range of
(−1, 1):

tanh(z) =
ez − e−z

ez + e−z
,

d

dz
tanh(z) = 1− tanh2(z). (3)

The tanh function is used to overcome the shifted bias problem; however, the vanishing
gradient problem still occurs.
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Figure 2: Computation of each layer in CNN.

• Rectified linear unit (ReLU) function is a piece-wise linear function that provides zero output
when the input is negative, and passes the input to the output when the input is positive:

ReLU(z) =

{
0, z ≤ 0,

z, z > 0.
,

d

dz
ReLU(z) =

{
0, z < 0,

1, z > 0.
(4)

The main advantage of using the ReLU function is its computational efficiency for both
forward and backward propagation [NH10]. Moreover, the ReLU function overcomes the
vanishing gradient problem when z is large since its derivative is always one. It has also been
shown that, in practice, using the ReLU function provides greater convergence performance
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than using the sigmoid function. However, the function is not always differentiable, and the
network learning is prohibited when there are several dead neurons, the neurons that initially
give zero outputs always provide zero outputs.

The pooling layer is a layer used extract some appropriate features from the previous layer.
When an input is two-dimensional, an image for example, this can be interpreted as performing
downsampling along the width and the height, the first and second dimensions, of the input. It can
be intuitively considered as collecting useful information from the previous layer and filtering out
some spatially unnecessary parts. Two common pooling strategies are max pooling and average
pooling. As depicted in Figure 2c, the max pooling passes the highest value from the receptive
field, while the average pooling does average the values in the window.

The batch normalization layer normalizes each input features independently at each mini-batch
so that the mean of features is zero and the variance of features closes to one [IS15]. According to
the ability to extract features in each layer, each neuron in the feature map possibly has different
mean and variance. Moreover, the distribution of the activations is also changed during training
since the weights are adapted continuously. This problem is called Internal Covariate Shift and it
affects the learning speed. This layer is added to enhance the network to converge faster and prevent
the network from the internal covariate shift. Considering a mini-batch B = {x1, x2, . . . , xk}, the
process of the batch normalization is demonstrated in Algorithm 1 where ϵ is a positive constant
preventing numerical instability.

Algorithm 1: Batch normalization
Input: x over a mini-batch: B = {x1, x2, . . . , xk}
Parameter: γ, β
Output: {yi = γxi + β}

1 µB ← 1
k

k∑
i=1

xi // mean of mini-batch

2 σ2
B ←

1
k

k∑
i=1

(xi − µB)
2 // variance of mini-batch

3 x̂i ← xi−µB√
σ2
B+ϵ

// normalization

4 yi ← γxi + β // scale and shift

The dropout layer is added to randomly and temporarily removes some neurons in the input
layer [SHK+14], as pictorially depicted in Figure 3. In Figure 3, the dropout technique is applied to
both hidden layers to temporarily set to neurons to be inactive with a fixed probability. The dropout
can be interpreted as a regularization technique for preventing the network from an overfitting
problem The dead neurons in the layer are untrainable so the weights that need to be train are
only the remaining connections. Furthermore, the dropout is also claimed to be superior over other
regularization techniques [SHK+14].

The fully-connected layer is a layer containing neurons that are all connected to every neuron
in the adjacent layers as visualized in Figure 4. This layer acting like a traditional multilayer per-
ceptron that receives features as an input and produces a real value as an output. Each connection
presents a weight that links two neurons. In deep learning, the fully-connected layer is usually
added in the last layer because of its capability of classifying features from the input.

4 Literature review
From past literature, there have been a lot of researchers aiming to detect epileptic seizure activi-
ties in long EEG signals. Focusing on using scalp EEG signals, many studies mainly developed the
automatic epileptic seizure detection based on epochs from the long EEG signals [SEC+04, SG10b,
TYK16], while some research was designed to detect the seizure activities in the long EEG sig-
nals without any segmentation process [SLUC15]. Previously, the automatic detection of epileptic
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(a) Standard neural network.

X

X

X X

(b) After employing dropout.

Figure 3: Dropout in neural network. By randomly dropping some neurons, the standard neu-
ral network is altered to a network containing less neurons. The neurons with a cross sign are
temporarily removed from the network.

Figure 4: Illustration of a fully-connected layer.

seizures normally contained processes of signal transformation or decomposition, feature extraction,
and classification. Sometimes, artifact or noise rejection was also optionally added at the beginning
of the detection process [AKS18]. In addition, a channel selection technique was considered when
multi-channel EEG signals were used [AESAA15], and feature dimension reduction or selection was
taken into account when inputs have a considerably large magnitude [AWG06].

In our opinion, three aspects: characterization of the seizure activities via feature extraction,
methods of the automatic detection, and the determination of the onsets and offsets, are fundamen-
tal to the automatic detection of epileptic seizure onset and offset. Therefore, we review features
commonly used in the automated epileptic seizure detection in Section 4.1. Section 4.2 describes
methods of automatic epileptic seizure detection using scalp EEG signals. However, there were
only a few developments in identifying seizure onset and offset, as opposed to determining seizure
occurrences. So all of these studies are summarized intensely in Section 4.3.
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4.1 Feature extraction
Features are observable quantities used to determine characteristics or properties of events. In
a classification problem, features should be chosen appropriately to be distinguishable between
classes. Many features have been employed to discriminate ictal patterns from normal activities
in EEG [ASS+13, ASSK16, BLuCS19b]. These features were categorized according to the purpose
of the work. Some studies employed a group of features according to their meanings and inter-
pretations [Got82, GRD+10, OLC+09], while others used features according to the domain from
which they were extracted [TTM+11a, ASSK16]. For example, entropy-based features were applied
to measure the fluctuation of the signal [AMS+12, AFS+15, LYLO14, TYK16]. Using amplitude-
related features including nonlinear energy [AG99] and variance has shown a significant performance
of detecting seizure activities with high amplitudes [Sho09, CODL15, SLUC15]. Different responses
of features are demonstrated in Figure 5. On the other hand, features were also categorized into
time, frequency, and time-frequency-domain features. Time-domain features were computed on
raw or decomposed signals, intrincsic mode functions (IMFs) from EMD for example, in time
domain, whereas frequency-domain features were calculated discrete-Fourier transform (DFT) or
power spectral density (PSD) coefficients of raw EEG signals. On the other hand, time-frequency-
domain attributes were obtained from transformed EEG signals containing both time and frequency
information. For example, coefficients of short-time Fourier transform (STFT) or discrete-wavelet
transform (DWT) were used in feature extraction. From our experimental results in [BLuCS19b],
statistical parameters, energy and entropies were common features in those three domains to capture
information about distributions, amplitudes, and uncertainties. It was concluded that statistical
parameters such as mean, variance, skewness, and kurtosis were always applied jointly. Features,
including the energy and entropies, relevant to amplitude and uncertainty were sometimes used
independently. It was evident that the energy was the most promising feature to capture changes
of amplitude in EEG signals. Eventually, the experiments conducted in [BLuCS19b] showed that
variance and energy calculated from the DWT coefficients were recommended as features based on
the Bayesian method and correlation-based feature selection (CFS) [HS97].

4.2 Automated epileptic seizure detection
In this section, we discuss applications of the automatic detection of epileptic seizure using the CHB-
MIT Scalp EEG database since the data in this database are multi-channel scalp EEG signals. As
previously mentioned above, there have been several studies focusing on the developments of the
automatic epileptic seizure detection. Tables 1 and 2 summarize the performances of methods using
features extracted from a specific domain and multiple domains, respectively.

There were many studies using single-domain features to detect seizures in EEG signals. Some
works aimed to use only a single feature to detect seizures. Raw EEG signals were purely used as
inputs of an artificial neural network (ANN) [CCS+18]. It was reported that this method accom-
plished 100% accuracy. However, the data were specified to contain simple and complex partial
epileptic seizures in the frontal area collected from only female subjects. Amplitude-integrated
EEG (aEEG) was exploited to identify occurrences of high-amplitude seizures [SLUC15]. By using
an adaptive thresholding method, the method obtained the sensitivity of 88.50% and false positive
rate per hour (FPR/h) of 0.18. Nevertheless, this method also responded to artifacts with high
amplitudes and required EEG signal that began with normal activities. An energy computed in
frequency domain using filter bank analysis and a radial basis function (RBF) SVM were jointly
employed to characterize the epileptic seizures. As a result, the energies from seizure samples were
higher than that of the normal ones. Moreover, the logarithm of variance of DWT coefficients
in each sub-band from a selected channel was used to determine a seizure epoch with a thresh-
olding [Jan17a]. According to the best result of each patient, the method obtained the average
performances of 93.24% accuracy, 83.34% sensitivity, and 95.53% specificity. Similarly, the author
also conducted an experiment using a smaller data set, including only 12 subjects. The results
showed that using those features with SVM outperformed a feature combination of line length,
nonlinear energy (NE), variance, power, and maximum value of raw EEG signals with the average
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Figure 5: Features responding to changes in EEG signals. Each feature is calculated from 4-second
EEG epochs and the sliding window is one second. This displayed signal is collected from the
record chb01_16 in the CHB-MIT Scalp EEG database [GAG+00] on the channel FP1-F7. Dash
line indicates the seizure onset and dashdotted line shows the seizure offset.

accuracy, sensitivity, and specificity of 96.87%, 72.99%, and 98.13%, respectively. Furthermore, the
STFT spectrogram was used with a modified stacked sparse denoising autoencoder (mSSDA) to de-
tect an epileptic seizure in individual epochs [YXJZ17]. It reported that this method outperformed
the other methods conducted in the experiment and obtained the accuracy of 93.82%.

On the other hand, a combination of features in a single domain was proposed to capture ictal
patterns in many aspects. Fractal dimension called a box-counting dimension (DB) and energy
were exploited to observe complexity and amplitude of the EEG signal [VI17]. The records included
in [VI17] were chosen to have the same bipolar montage, and the subject chb16 was excluded because
of the short seizure duration. Eventually, the authors showed that using relevant vector machine
(RVM) with these features computed on harmonic wavelet packet transform (HWPT) coefficients
potentially achieved the sensitivity of 97.00% and FPR/h of 0.10. Mean, ratio of variance, standard
deviation (SD), skewness, kurtosis, mean frequency, and peak frequency were extracted from DWT
coefficients [AS16]. An extreme learning machine (ELM) was employed to classify EEG epochs
into a specific class. Due to its effectiveness and efficiency, this combination could accomplish the
accuracy of 94.83%. The work in [AKS18] compared the detection performance of using different
transformations and different classifiers via the accuracy (Acc). First, multi-channel EEG signals
were filtered by multi-scale principal component analysis (MSPCA) to remove artifacts. Then,
the features –absolute mean value, average power, SD, ratio of absolute mean values, skewness,
and kurtosis– computed on decomposed signals by EMD, DWT and wavelet packet decomposition
(WPD) were applied to many classifier: random forest (RF), SVM, ANN, and k-NN. Finally, it was
concluded that the methods using DWT and WPD obtain 100% accuracy. However, only 2,000
eight-second EEG epochs, 1,000 samples for each group, were selected.

Moreover, several features in many domains were also exploited to obtain information in different
domains. The work in [FHH+16] employed many classifiers: linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), polynomial classifier, logistic regression, k-nearest neighbor
(k-NN), decision tree, Parzen classifier, and support vector machine (SVM) with the same features.
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Table 1: Summary of automated epileptic seizure detection using the CHB-MIT Scalp EEG
database when single-domain features were used.

Domain Features Method Performance Ref.
Time Raw signal ANN Acc = 100% [CCS+18]

aEEG Thresholding Sen = 88.50%, FPR/h = 0.18 [SLUC15]
Line length, NE, variance, average power, max RBF SVM Acc = 95.17%, Sen = 66.35%, Spec = 96.91% [Jan17a]
Absolute mean values, average power, SD, ratio of abso-
lute mean values, skewness, kurtosis

MSPCA + EMD + RF Acc = 96.90% [AKS18]

MSPCA + EMD + SVM Acc = 97.50% [AKS18]
MSPCA + EMD + ANN Acc = 96.90% [AKS18]
MSPCA + EMD + k-NN Acc = 94.90% [AKS18]

DB
4 RVM Sen = 97.00%, FPR/h = 0.24 [VI17]

Frequency Energy RBF SVM Sen = 96.00%, FPR/h = 0.08 [SG10a]∗

Time-frequency Spectrogram STFT + mSSDA Acc = 93.82% [YXJZ17]
Mean, ratio of variance, SD, skewness, kurtosis, mean fre-
quency, peak frequency

DWT + ELM Acc = 94.83% [AS16]

Log of variance DWT + thresholding Acc = 93.24%, Sen = 83.34%, Spec = 93.53% [Jan17b]
DWT + RBF SVM Acc = 96.87%, Sen = 72.99%, Spec = 98.13% [Jan17a]∗

Absolute mean, average power, SD, ratio of absolute
mean, skewness, kurtosis

MSPCA1 + DWT + RF Acc = 100% [AKS18]

MSPCA + DWT + SVM Acc = 100% [AKS18]
MSPCA + DWT + ANN Acc = 100% [AKS18]
MSPCA + DWT + k-NN Acc = 100% [AKS18]
MSPCA + WPD2 + RF Acc = 100% [AKS18]
MSPCA + WPD + SVM Acc = 100% [AKS18]
MSPCA + WPD + ANN Acc = 100% [AKS18]
MSPCA + WPD + k-NN Acc = 100% [AKS18]

Energy HWPT3 + RVM Sen = 97.00%, FPR/h = 0.25 [VI17]
Energy, DB HWPT + RVM Sen = 97.00%, FPR/h = 0.10 [VI17]

Acc = accuracy, Sen = sensitivity, Spec = specificity, FPR/h = false positive rate per hour
1 Multi-scale principal component analysis, 2 wavelet packet decomposition, 3 harmonic wavelet packet transform, 4 box-counting dimension
∗ Use all data records

Table 2: Summary of automated epileptic seizure detection using the CHB-MIT Scalp EEG
database when multi-domain features were used.

Time Frequency Time-frequency Method Performance Ref.
Variance, RMS, skewness,
kurtosis, SampEn

Peak frequency, median
frequency

LDA Sen = 70.00%, Spec = 83.00% [FHH+16]

QDA Sen = 65.00%, Spec = 92.00% [FHH+16]
Polynomial classifier Sen = 70.00%, Spec = 83.00% [FHH+16]
Logistic regression Sen = 79.00%, Spec = 86.00% [FHH+16]
k-NN Sen = 84.00%, Spec = 85.00% [FHH+16]
Decision tree Sen = 78.00%, Spec = 80.00% [FHH+16]
Parzen classifier Sen = 61.00%, Spec = 86.00% [FHH+16]
SVM Sen = 79.00%, Spec = 86.00% [FHH+16]

Variance, root mean squared value (RMS), skewness, kurtosis, and sample entropy (SampEn) were
used as time-domain features, and peak frequency and median frequency computed from PSD were
exploited to extract information in frequency domain. Combined with a feature selection call LDA
with a backward search, the k-NN outperformed the other classifier with the sensitivity of 84.00%
and specificity of 85.00%. However, the authors chose only records that contained seizures activities
in this study.

4.3 Applications of Seizure onset and offset detection
There have been only a few attempts that aim to develop seizure onset and offset detection. One of
the first automated seizure offset detection was designed by Shoeb et al. [SKS+11]. The researchers
proposed both patient specific and non-specific algorithms using multi-channel scalp EEG signals.
Long EEG signals of patients in the CHB-MIT Scalp EEG database were analyzed by segmenting
the signals into five second epochs and advancing each epoch by one second. Both patient specific
and non-specific methods used signal energies of 25 contiguous frequency bands spanning 0–25 Hz
from each channel independently to observe spatial and spectral properties in the epoch. In the
patient non-specific setting, a feature vector was constructed from the signal energy averaged over
channels of the frequency bands. For the patient-specific case, each feature was a weighted average
of the energy of each frequency band over all channels. The weights were calculated based on the
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differences between the signal energies in ictal and postictal states. Each feature vector was then
fed to SVM to classify the epoch as ictal or postictal. A linear SVM was used in the patient-specific
case whereas a radial basis function SVM (RBF SVM) was exploited in the other case. Once the
seizure onset had been recognized by the algorithm from their previous study [SG10a], the end of
seizure was declared when five consecutive epochs were recognized as postictal. It was reported
that the patient non-specific method was able to detect all seizure ends with an average accuracy of
84% and an average absolute offset latency of 8.9± 2.3 seconds while the patient-specific algorithm
detected 132 out of 133 seizure offsets with an accuracy of 90% and an averaged absolute latency
of 10.3 ± 5.5 seconds over patients. However, seizures that slowly changed from the ictal to the
postictal periods led to a large delay of seizure offset detection. In contrary, seizure ends were so
early detected when the seizure activities were corrupted by artifacts. Additionally, this method
requires an onset detection system to alarm the seizure onset first.

Orosco et al. [OCDL16] applied stationary wavelet transform (SWT)-based feature extraction
in detecting seizures and their onset and offset. Eighteen subjects from the CHB-MIT Scalp EEG
database were used to perform patient-specific and patient non-specific scenarios. Non-overlapping
two second epochs were decomposed by SWT in each channel individually and coefficients of 4
sub-bands corresponding to normal EEG rhythms were used to extract features. In each channel,
mean frequency and peak frequency were calculated on the power spectral density (PSD) of all
selected sub-bands coefficients and a relative energy of each frequency band, an energy of each
band normalized by the total energy, was extracted. The features were then spatially averaged over
left anterior, right anterior, left posterior, right posterior, and central areas. By feature selection
based on the statistical parameter called Lambda of Wilks, 26 features left were applied to LDA
and artificial neural network (ANN). The results showed that, in the patient-specific case, LDA
outperformed ANN with overall specificity of 99.99%, sensitivity of 92.6%, false positive rate per
hour of 0.3, and onset and offset latencies of 0.2 and 4 seconds after and before the annotation.
For the patient non-specific case, LDA also achieved 99.9% specificity, 87.5% sensitivity, 0.9 false
positive rate per hour (FPR/h), and onset and offset latencies of 1.3 and 3.7 seconds respectively
on average. In this paper, the positive latency was observed when the algorithm detected a seizure
before an annotation. Nevertheless, ranges of seizure onset and offset were very wide in both patient
specific and non-specific cases. Ranges of the seizure onset and offset in the patient-specific case
were 42.4 and 84.4 seconds, while the ranges of the onset and offset in the other case were 248 and
81.3 seconds, respectively. Moreover, in [OCDL16], the sensitivity was calculated based on seizure
events, while the specificity was an epoch-based metric. Due to high FPR/h obtained from each
subject, it was possible that an small amount of epochs during seizure activities were detected so
that the event-based sensitivity was that high.

Another approach focusing on the patient-specific detection of seizure onset and offset that
used the CHB-MIT Scalp EEG database was found in [CUFK19]. EEG records from 18 patients
were analyzed from a 1-second sliding window by exploiting an orthonormal triadic wavelet trans-
form. Each EEG epoch was decomposed into specific frequency ranges using triadic wavelets.
Statistics-based features were extracted each channel individually from selected frequency bands
corresponding to normal EEG rhythms. Then the features of each channel were classified by LDA
and k-nearest neighbor (k-NN) independently. Segments which were recognized as seizure for at
least 6 channel were marked as 1 representing seizure EEG epochs. The results from the channel-
based detection were post-processed by centered moving average (CMA) of length 15 to reduce a
false alarm. Eventually, the output from CMA of each epoch was compared to a threshold of 0.4
to determine the final decision. The first epoch detected as seizure was determined as a seizure
onset and a seizure end was observed when the final decision changed from 1 to 0, representing
transition from a seizure stage to a normal stage. As a result, the method using k-NN achieved
99.62% accuracy, 98.36% sensitivity, 99.62% specificity, 0.80 FPR/h, 6.32 seconds for seizure onset
lantacy, and −1.17 seconds for seizure offset latency respectively on average. On the other hand,
averaged classification performance measurements evaluated by LDA were 98% accuracy, 100%
sensitivity, 98.05% specificity, 4.02 FPR/h, and 1.41 and 8.19 second onset and offset latencies,
respectively. This study denoted the positive latency as a time delay that a predicted time point
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was after an actual time point. However, these methods were also not robust across patients; a
seizure offset of some patients was announced 20 seconds after the annotation whereas a seizure
end of other patients was detect 20 seconds prematurely. Furthermore, the 100% sensitivity was
accomplished when the FPR/h was extremely high. Specifically, the FPR/h of some subjects were
higher than 10, meaning that there were repeated false alarms about every six minutes.

In addition, Correa et al. [CODL15] used the iEEG databased recorded at the Epilepsy Center
of the University Hospital of Freiburg. The data set contained 196 one-hour six-channel iEEG
segments from 21 patients, where 89 records contained seizure events. Every record with seizures
had only one seizure activity. In the pre-processing, the authors applied a bi-directional Butterworth
second-order filter with the frequency range of 0.5–60 Hz the useful information for detecting the
epileptic seizure contained in the frequency range [GG05]. In each window and each channel,
the PSD was calculated from one-second window and 0.5-second overlapping. Subsequently, the
authors computed the relative powers of the normal bands (theta, alpha, and beta), and applied
a median filter with a window of 30 seconds to smooth the sequences of the relative powers. The
derivative of each sequence was then computed by the difference quotient to observe changes in the
sequence. Finally, the final sequence was obtained by averaging the derivative sequences of every
channel and every frequency band followed by the median filter. An iEEG segment was declared
as it contained a seizure when the amplitude of the final sequence was three times higher than the
average power of the final sequence, and the exceeding period was longer than 30 seconds. When
the seizure event was detected, a discrete-wavelet transform (DWT) was exploited to decompose
the iEEG into five sub-bands. Windows of 30 seconds before and after the detected seizure event
were considered to determine the onset and offset. Energies computed from the detail coefficients of
levels 3, 4, and 5 of each channel were used to detect the onset and offset. The 18 sequences of the
energies (from three sub-bands and six channels) were filtered using the median filter. The onset
and offset from each sequence were determined from the first and last points that the sequence
was two times above its median. Eventually, the final onset and offset were obtained by averaging
18 onsets and offsets. As a result, average event-based sensitivity and specificity were 85.39% and
83.17%, respectively. Onset and offset latencies reported from each subject and each segment were
mostly less than 30 seconds. However, this work is not practical in clinic because of the data.
It is possible that there are more than one seizure, as in the CHB-MIT Scalp EEG database, in
a one-hour record. Furthermore, this method is heuristic; there are needs for parameter settings
from experts since many types of seizures may occur in one patient. Even though the authors also
reported epilepsy types and showed that there were a small amount of detection error, the data
from each subject was too small to conclude that it was practical.

5 Problem statement
The problem of epileptic seizure detection and seizure onset-offset determination can be divided into
two crucial steps in sequential order: epoch-based seizure detection and onset-offset identification,
as shown in Figure 6. In the process of the seizure detection, a seizure detector receives inputs as
information and produces the probability of a seizure occurrence as the output. A multi-channel
EEG epoch windowed from a long multi-channel EEG signal is considered as a sample, and the
output is the probability that a seizure occurs in the epoch. When all EEG epochs from the long
EEG signal are applied to the seizure detection algorithm, the output is the sequence of seizure
probabilities of individual epochs. Subsequently, the probability sequence is fed to the onset-offset
detector to indicate the seizure onset and offset of each individual seizure in the long EEG signal.

5.1 Classifier
For a binary classification problem, let D = X×Y be a space of pairs (xi, yi) where X and Y = {0, 1}
are vector spaces of all inputs and outputs, respectively. Formally, in the probabilistic view point,
there is a joint probability distribution fxy(x, y) over D, and (xi, yi) is drawn from the distribution
fxy. In machine learning, there exists an actual function that maps every input sample xi ∈ X
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Figure 6: Scheme of the problem containing two statements: epoch-based seizure detection and
onset-offset detection.

to its label yi ∈ Y. So, the major goal is to find a mapping function called a classifier h, also
called a hypothesis or a learner, in a hypothesis space H that approximately behaves like the actual
function: h(xi) ≈ yi,∀(xi, yi) ∈ D [FHT01].

A loss function L is a non-negative-valued function that is used to observe how accurate the
classifier is from the difference between the predicted and the actual values. For instance, a 0-1 loss
function, which disregards a correct classification but absolutely focuses on an incorrect result, is
defined as

L(h(xi), yi) =

{
0, h(xi) = yi,

1, otherwise.
(5)

The true error, also called the expected risk and the Bayes risk, is defined as the expected value
of the loss function to measure the overall error of the results from the classifiers:

Rtrue(h) = E[L(h(x), y)]. (6)

Since Y contains only discrete elements, the true error is

Rtrue(h) =

∫ ∑
y∈Y

fxy(x, y)L(h(x), y)dx. (7)

The main problem is to find the optimal learner h∗ in the hypothesis space H such that it minimizes
Rtrue(h):

h∗ = argmin
h∈H

Rtrue(h). (8)

The optimal hypothesis h∗ is formally called the Bayes optimal classifier, and the minimum error
Rtrue(h

∗) is named as the Bayes error rate. In addition, it is well-known that, by exploiting the
Bayes’ theorem, the best decision for the 0-1 loss function is made from the class of which the
posterior probability is highest, meaning that

h∗(x) =

{
1, P (y = 1|x) > P (y = 0|x),
0, P (y = 1|x) < P (y = 0|x).

(9)

Note that P (y = 1|xi) = 1− P (y = 0|xi). However, Rtrue(h) cannot be directly obtained from (7)
and it cannot be minimized since fxy(x, y) is practically unknown. Hence, the empirical error as
the measure of the true risk using data in D is employed as the estimation of Rtrue(h):

Remp(h) =
∑

(x,y)∈D

P (x, y)L(h(x), y), (10)

where P (x, y) is the hypothetical joint probability. Nevertheless, P (x, y) is also generally unknown.
It is, therefore, assumed to 1/|D| where |D| is the number of samples in set D:

Remp(h) =
1

|D|
∑

(x,y)∈D

L(h(x), y). (11)
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The optimal learner h∗ is, therefore, obtained by minimizing Remp(h):

h∗ = argmin
h∈H

Remp(h). (12)

In what follows, we omit to use ∗ for more convenience of comprehension.
In the binary classification, there are many classifiers to mimic the actual function and loss

functions to evaluate the classifiers. Several hypothesis spaces are also employed in the binary
classification problem. For example, a linear classifier is the simplest classifier that works well
when input features are linearly separable. A polynomial classifier is extended from the linear
classifier to classify samples with a nonlinear decision boundary. SVM is commonly used to classify
samples into groups using separating hyperplanes. Moreover, by exploiting a kernel function, RBF
for example, the SVM can be improved to classify data that are not linearly separable. Recently, the
use of neural networks has been popularized, especially in classification problems, because of their
ability to universally approximate any real-valued function [HSW89]. Furthermore, approaches
of deep learning are also widely developed and explored since deep learning networks are able
to extract low-level and high-level features by themselves [LBH15]. In this research, we mainly
concentrate on designing deep learning models to differentiate ictal patterns from raw EEG signals.

Moreover, many loss functions have been used to suit specific purposes. For instance, a binary
cross entropy is one of the most popular loss function for this problem. The binary cross entropy
is the measure of dissimilarity between the probability distributions of the label and the predicted
output. Simply derived from the log of the probability mass function of a Bernoulli distribution, it
is defined as

L(h(x), y) = −y log f(x)− (1− y) log(1− f(x)), (13)
where f(x) is the output of the model, which is the probability that y = 1 given the input x in
the case of neural networks for example, and h(x) = Θ(f(x) − 0.5) where Θ(x) is the Heaviside
step function. In other words, h(x) = 1 when f(x) > 0.5 and h(x) = 0 when f(x) < 0.5. The
square loss function finding the difference between y and h(x) is also used in the classification and
regression problems. It is defined as

L(h(x), y) = (y − h(x))2 (14)

This study does not specifically decide yet which loss function is mainly used because we will see
in Section 9 that a common loss function like the binary cross entropy is unsuitable when the data
are extremely imbalanced.

5.2 Onset-offset detector
Seizure onset is a time point at which the seizure begins and seizure offset is time when the seizure
terminates. A seizure onset-offset detection is the process of determining the beginning and the
ending of a seizure. Therefore, the main purpose of this process is to imply when the seizure starts
and ends in a long EEG signal from all detection outputs from the classifier. Since an epileptic
seizure activity should appear with some period, a classification result of a single EEG epoch
cannot, however, sufficiently imply an occurrence of the seizure. In fact, it requires a sequence of
classification results from adjacent, both before and after, epochs in identifying the seizure event.
Therefore, the sequence of classification results is required to determine the seizure onset and offset.

Suppose that zi = h(xi) is the result of classification when xi is the input. We denote ŷ =
(ŷ1, ŷ2, . . . , ŷn) and z = (z1, z2, . . . , zn) as the vectors of predicted class, and classification output
of all sequential epochs, respectively, where each element refers to the result of each epoch and n is
the number of epochs in the long EEG signal as visualized in Figure 7. This process initially uses
a function denoted as g : [0, 1]n → {0, 1}n to modify the vector of classification output z, depicted
in Figure 7a, to obtain the new classification vector ŷ, shown in Figure 7b, that is then used to
determine the seizure onset and offset:

ŷ = g(z) (15)
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(a) Output from the epoch-based seizure detection.
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(b) Output of the onset-offset detection.

Figure 7: Illustration of determining the onset and offset. A onset-offset detector is a function g
that transforms z to ŷ.

The seizure onset is determined from the time value of index k for which ŷk = 1 (referred to ictal)
and ŷk−1 = 0 (referred to normal). Similarly, the index k implies the seizure offset when ŷk = 1
and ŷk+1 = 0.

6 Research methodology
This section explains the study plan depicted in Table 3 and the methodology of this research by
items as follows:

Table 3: Study plan.

Item Semester
1 2 3 4 5 6 7 8

Review literature
Collect online data
Write and submit a review journal
Propose and verify method for the proposal
Prepare proposal examination
Present method to detect seizure onset and offset
Study abroad
Conclude the thesis and prepare the examination

• Review literature on data collection, pre-processing, feature extraction, classification, and
process of determining the seizure onset and offset in EEG signals.

• Propose a method to detect seizure activities based on each epoch using a machine learning
tool and present a technique to indicate the seizure onset and offset.

• Collect data from several subjects where each subject has many records. There must be at
least one record of each subject containing at least one seizure activity.

• Train a classifier on EEG segments where the training set must contain at least one seizure
event. Verify results from classification on a test set collected from the same patient.
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• Apply an onset-offset detector model to the classification results of EEG epochs to determine
starting and ending points of seizure events. Compare the results of the onset-offset detection
and the classification results by using the same metrics and the same practically reasonable
conditions.

• Conclude the detection performances, limitations, and future work.

7 Proposed method
This section discusses the proposed method for the automated epileptic seizure detection, and the
seizure onset and offset determination. The entire process consisted of 3 steps, including epoch-
based seizure detection, onset-offset determination, and evaluation, as illustrated in Figure 8. As
explained above, the classifier was used to determine an occurrence of seizure in each small epoch
from a long EEG signal. In this proposal, a deep CNN was developed as the epoch-based seizure
detector and the raw EEG segment was considered as an input to the model. Subsequently, results
of the CNN model were applied to the onset-offset detector to identify the seizure onset and offset.
The outcomes of the onset-offset detector were then compared to the results of the CNN model.
The comparisons were assessed by common types of metrics: epoch-based metrics, event-based
metrics, and the onset and offset latency.

Onset-offset 
detector

Evaluation

CNN model

Sequence of seizure 
probabilities

Onset 
and offset

Multi-channel 
EEG

Performance

Figure 8: Scheme of the proposed method consisting of three steps: epoch-based classification,
onset-offset detection, and evaluation.

7.1 Classification
We employed a deep CNN model to extract features instead of handful-engineering features, and
to classify a raw EEG epoch. Figure 9 illustrates a design of CNN block. The deep CNN model
contained blocks of layers including convolutional, normalization, activation, and max pooling layers
as shown in Figure 9a. Every block had the same sequence of layers but hyperparameters of some
layer were changed to serve a physical meaning. For example, some block had a one-dimensional
max-pooling layer to down sampling feature maps in the temporal domain only, whereas a two-
dimensional max-pooling layer was used to reduce the dimensions temporally and spatially.

In the design of the convolutional layer to suit this problem, the size of EEG epoch was taken
into consideration. Suppose that a raw EEG epoch was expressed as a matrix of size m×N , where m
is a number of channels, N is a number of temporal samples in the epoch, and, practically, m≪ N .
So, in this problem, the convolutional layer was designed to capture temporal information, EEG
pattern, rather than spatial characteristics and dispersion of electric field. Therefore, the width of
the filter was larger than its height. Moreover, we exploited the concept of filter decomposition to
reduce a model complexity and to overcome an overfitting problem [SVI+16]. A two-dimensional
filter was decomposed into two one-dimensional filters as shown in Figure 9b. The first filter in
Figure 9b could be physically interpreted as a feature extractor in temporal domain, and the other
was to find a relationship of a feature between channels. Next, a batch normalization layer was
added to reduce an internal covariate shift [IS15]. Following the normalization layer, the ReLU
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(a) Block of CNN containing convolutional, one batch normalization, one activation,
and one pooling layers.

= *

(b) Example of filter factorization from a three-by-two filter into three-by-one and
one-by-two filters. The first filter aims to extract a temporal feature and the second
filter indicates a spatial relationship.

Figure 9: Design of CNN block. In the blue box, the two-dimensional filter is factorized into two
one-dimensional filters.

function was used as an activation function to fasten the learning procedure [NH10]. Subsequently,
a max-pooling layer was used to draw the most active values of features. The number of blocks
was set to appropriately extract high-level useful features. Finally, dropout layer were applied to
reduce overfitting problems, and fully-connected layers were exploited in the last layers to classify
each EEG epoch into a specific class (normal/seizure).

7.2 Seizure onset-offset determination
The method in the indication of seizure onset and offset is important and can further improve the
classification performances. As mentioned, the seizure onset is a time point at which the seizure
begins and the seizure offset is time when the seizure terminates. However, it is not practical
to ingenuously use the above statements in the epoch-based detection. Particularly, the seizure
activities do not occur for only a few seconds and then suddenly vanish [RT03]. This means that
classifying each epoch independently as epileptic or normal is unreasonable since consecutive epochs
are dependent. We will show in Section 9 that detecting each epoch separately can unfortunately
produce considerable false positive rates and numerous declarations of seizure onset and offset.
Moreover, it is practical to combine some close adjacent epileptic seizure events into one and ignore
the gap of normal activity between them. In this case, the seizure onset and offset are reported
only once. To certainly handle the above issues, we simply used a criteria-based method to modify
the epoch-based classification outputs so that the final result is practically more reasonable.

In this step, the outputs from classification are processed to identify the seizure onset and
offset if available in the long EEG signal. Figure 10 illustrates an example of the onset-offset
detection. Consider the sequence of epochs that are obtained from the classification step as shown
in Figure 10a. All epochs that had been predicted as epileptic, denoted as z = 1, are covered
with a rectangular window of size 2l + 1 where the epoch is located at the window center visually
interpreted in Figure 10b. All epochs in those windows are pre-labeled as epileptic and the window
is named a seizure window. Subsequently, if there are at least p consecutive overlaps or contacts
from adjacent seizure windows, these seizure windows are finally declared as seizure. On the other
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(c) Results of the onset-offset detector. The onset and offset are the first and last epoch of the predicted
event.

Figure 10: Example of the seizure onset-offset detection process where l = 2 and p = 3. The solid
windows are finally treated as ictal (ŷ = 1), and the dashed windows are regarded as normal (ŷ=0).

hand, the other seizure windows that consecutively have overlaps or contacts less than p epochs
are eventually labeled as normal. In other words, if there exists at least p consecutive seizure
epochs that any two adjacent epochs are apart less than 2l epochs, all epochs between those epochs
including l epochs before the first seizure epoch and l epochs after the last seizure epoch are
combined to be a seizure event. The other epochs that do not meet this condition are treated as
normal (ŷ = 0). Finally, the seizure onset is declared as the first epoch of the predicted event, and
the seizure offset is determined from the last epoch of the event. The outcome of the onset-offset
detector is displayed in Figure 10c.

7.3 Evaluation
In the problem of binary classification, detection performances are calculated from a confusion
matrix containing the numbers of true positive (TP), false positive (FP), false negative (FN), and
true negative (FN). With these values, many metrics are established for specific purposes. For
example, common metrics such as accuracy (Acc), sensitivity (Sen), and specificity (Spec) are
defined as

Acc =
TP+ TN

TP+ FP + FN+ TN
× 100%, (16)

Sen =
TP

TP + FN
× 100%, (17)

Spec =
TN

TN+ FP
× 100%. (18)

The accuracy is used to indicate the overall performance of the classification, while the sensitivity
and specificity are indicators determining the performance of correctly classifying outputs as ictal
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and normal, respectively. Moreover, F1, also known as F-measure is the measure of classification
performance that takes an imbalance of the data into account [Pow11]. It is calculated from a
harmonic mean of precision, or positive predictive value, and recall, or sensitivity. In other words,
F1 can also be calculated as follows:

F1 =
2TP

2TP + FN+ FP
× 100%. (19)

Recently, Two groups of metrics, namely epoch-based and event-based metrics, have been used in
evaluating the automatic epileptic seizure detection [TTM+11b]. Moreover, a latency, a time delay
between the predicted and actual time points, is normally applied as a time-based indicator.

Epoch-based metrics are used to perform an evaluation of the detection performance when each
epoch is regarded as a data sample. The calculations of the epoch-based metrics are related to the
confusion matrix evaluated on all samples. For instance, many studies has reported the performance
as accuracy, ssensitivity, and specificity [ASS+13, GRD+10, AWG06]. The epoch-based metrics can
also imply how well the classifier is when a duration is concerned. However, it is hardly said that
high values of the epoch-based metrics are clinically referred to good detection performance. For
example, the epoch-based metrics is still incredibly high even though the detector misses one whole
short seizure activity since other epochs are correctly classified.

Event-based metrics, on the other hand, are used to evaluate a classifier based on seizure events
in long EEG signals. In this case, the true positive is counted when there is an overlap between
detected epoch as ictal and the annotation, the false positive is declared when a detected period
of EEG signal does not overlap an actual seizure period, and the false negative is indicated when
there is no detected epoch as ictal during a seizure activity. Note that there is no true negative for
the evaluation by an event. Two common metrics, good detection rate (GDR) and false positive
rate per hour (FPR/h) calculated based on the intersection of detection results and annotations
are also used in this application [VI17, SG10a, SLUC15]. Here, GDR, or event-based sensitivity, is
also defined as (17). FPR/h, also called false detection rate per hour, is the proportion of events
declared as a seizure without any intersection with the annotations in one hour:

FPR/h =
FP

record duration (20)

A higher GDR indicates a higher number of correctly detected seizure events, while a small FPR/h
refers to having a lower number of wrongly recognized seizure events. However, care is required
with these high event-based metrics to avoid being misled into a conclusion of a correct detection
when a duration is considered. For example, declaring an occurrence of seizure at the last second of
an actual seizure event is still counted as good detection even though the detection system nearly
misses the whole seizure event.

A latency is a measure of identifying the difference between actual and detected time points.
Unfortunately, there is no exact calculation of the latency since many studies have previously
defined the latency differently [OCDL16, CUFK19]. Therefore, in this study, the latency is defined
as a time delay of a detected seizure when an actual seizure is set to be a reference. Positive
and negative onset/offset latencies refer to the declarations of onset/offset after and before the
annotation, respectively.

The means of evaluating the automatic epileptic seizure detection is essential to compare the
performances of each model. Since our purpose is to detect seizure events and their onset and offset,
using a validation scheme that supposes that each epoch is an individual sample is not suitable
because we cannot determine the onset and offset if the results is not sequential. In this case,
leave-one-record-out cross-validation [SEC+04], as illustrated in Figure 11, was used to validate
the proposed method. Suppose that each subject has k records divided into two groups: training
set and validation set. The training set contains k − 1 records, and the excluded one is in the
validation set. In particular, the training set must include seizure and non-seizure activities so that
the network can potentially learn to differentiate ictal and non-ictal patterns. The model is then
trained on the training set, and validated on the validation set. This process repeats until every
record was in the validation set.
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Figure 11: Scheme of leave-one-record out cross validation. The green records are for training, and
the blue record for testing.

In this proposal, to reveal the detection performances of every aspects, we used accuracy,
sensitivity, specificity, and F1 as epoch-based metrics, FPR/h and GDR for event-based metrics,
and seizure onset and offset latencies. We also computed absolute latencies to ignore the sign and
obtain the actual delay. In addition, if the onset-offset detector detected many seizure events during
only one actual seizure activity, the onset latency was defined as the latency from the first seizure
event, and the offset latency was determined from the last event. For each patient, the average of
each performance metric was collected. However, using only the mean value, which is influenced
by outliers, is sometimes misleading. Therefore, we also reported the median of each performance
metric of each patient to overcome the problem. In addition, we compared the differences of the
metrics between before and after the onset-offset detection.

8 Data collection
This section describes scalp EEG databases that are publicly available online. As stated in Sec-
tion 2.2, we focus on using multi-channel scalp EEG signals. Furthermore, the scalp EEG signals
annotated with all seizure onset and offset are required to train and test the proposed model.
Hence, there are currently two online databases which are the CHB-MIT Scalp EEG and Tem-
ple University Hospital EEG Seizure (TUSZ) databases that have the desirable requirements. An
overview of the databases are illustrated in Table 5. The descriptions of these databases are issued
in the following sections.

Table 4: Summary of the CHB-MIT Scalp EEG and TUSZ databases.

Information CHB-MIT TUSZ
Number of cases 24 314
Number of files 686 2,997
Number of seizures 198 2,012
Number of files containing seizures 129 703
Record length per file 1-4 hours less than one hour
Total duration (hour) 982.37 500.02
Total seizure duration (hour) 3.28 42.08
Electrode placement 10-20 international system 10-20 international system
Montage bipolar montage referential montage
Sampling frequency (Hz) 256 250
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8.1 CHB-MIT Scalp EEG database
The database comprises of EEG recordings of 24 cases collected from 23 subjects at the Children’s
Hospital Boston [GAG+00]. Every signal was recorded at the sampling frequency of 256 Hz with
resolution of 16 bit. The international 10-20 system was exploited to locate electrodes on the scalp
and both referential and bipolar montages were used. In summary, there are 686 long EEG records
which include 129 records containing 198 seizures in this database. Total duration and numbers
of seizure activities from each case are concluded in Table 5. All records are publicly and freely
downloaded from PhysioNet (https://physionet.org/physiobank/database/chbmit/).

Table 5: Summary of the CHB-MIT Scalp EEG database.

Cases Number of records Total duration (sec) Number of seizures Total seizure duration (sec)
chb01 42 145,988 7 449
chb02 36 126,959 3 175
chb03 38 136,806 7 409
chb04 42 561,834 4 382
chb05 39 140,410 5 563
chb06 18 240,246 10 163
chb07 19 241,388 3 328
chb08 20 72,023 5 924
chb09 19 244,338 4 280
chb10 25 180,084 7 454
chb11 35 123,257 3 809
chb12 24 85,300 40 1,515
chb13 33 118,800 12 547
chb14 26 93,600 8 177
chb15 40 144,036 20 2,012
chb16 19 68,400 10 94
chb17 21 75,624 3 296
chb18 36 128,285 6 323
chb19 30 107,746 3 239
chb20 29 99,366 8 302
chb21 33 118,189 4 203
chb22 31 111,611 3 207
chb23 9 95,610 7 431
chb24 22 76,640 16 527
sum 686 3,536,540 198 11,809

8.2 Temple University Hospital (TUH) EEG Seizure database
The TUH EEG Seizure Corpus [SvWL+18] is part of the TUH EEG Corpus [OP16] containing sev-
eral EEG recordings for specific purposes. This TUH EEG Seizure Corpus contains EEG recordings
of training and evaluation sets similarly distributed in terms of gender and age of subjects, and the
duration of records to reinforce research in artificial intelligence. In total, there are 2,997 record-
ings pruned to be less than one hour with 2,012 seizure events. The total duration of all records
is 500 hours, and the total seizure duration is approximately 42 hours. Every signal was recorded
using the international 10-20 system with a sampling frequency of 250 Hz. Referential montages
using two different references –averaged reference and linked ear– were applied to collect the data.
However, none of patients are included in both training and evaluation sets. The summary of
this database is demonstrated in Table 6 The full database is available on TUH EEG resources
(https://www.isip.piconepress.com/projects/tuh_eeg/).
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Table 6: Summary of the TUSZ database.

Information Train Test Total
Number of files 1,984 1,013 2,997
Number of sessions 579 238 817
Number of patients 264 50 314
Number of files with seizure 417 286 703
Number of sessions with seizure 197 108 305
Number of patient with seizure 130 39 169
Number of seizure 1,327 685 2,012
Total seizure duration (sec) 90,464.09 61,036.84 151,500.9
Total duration (sec) 1,186,842 613,232 1,800,074

9 Experiment
In this section, we provide the detailed description of the experiment. This experiment was designed
to evaluate and compare the performances of two seizure detection models using (i) only a classifier,
and (ii) the same classifier followed by an additional onset-offset detector. According to the scope,
the CHB-MIT Scalp EEG database was used in the experiment since, in the TUSZ database,
there is no subject from the training set included in the development set. In the experimental
setting, we describe the CNN network configuration and the intuition behind it. We also report the
performances of each subject by mean and median for the quantitative and quantitative analysis.

9.1 Experimental setting
In this proposal, all EEG records from every subject in the CHB-MIT Scalp EEG database were
applied in this proposal. Since a montage of each long EEG signal was not consistent, i.e., both
referential and bipolar montages were employed even though those EEG signals were from the same
patient, all EEG signals were initially modified so that all montages were bipolar. The channels of
the modified signals were sequentially listed as FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-T3,
T3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, and CZ-
PZ. Then the long modified signals of every channel were jointly segmented into small epochs where
each epoch was defined as one sample to be classified. The epoch size was chosen to be one second
without overlap to reduce model complexity and redundancy between adjacent epochs. Since the
loss was fluctuated while training, we set a stopping criteria based on a number of iteration instead
of the decay of the loss. So the training process was repeated 100 iterations from no considerable
change in a confusion matrix, and the batch size was set to be 100 samples to train the CNN model.

We designed a deep CNN model as illustrated in Figure 12. The model input was a raw EEG
epoch, and the model output was a seizure probability. In Figure 12, each rectangular box represents
a layer, and the description in the box explains the type of the layer. In this case, Conv(h,w, f) is
a convolutional layer containing f h-by-w filters, BN stands for a batch normalization layer, ReLU
is an activation layer using the ReLU function as the activation function, Max(h,w) is an h-by-w
max-pooling layer, Dropout(α) is a dropout layer with the disconnection fraction of α to the input
nodes, and FC(a) is a fully-connected layer with a neurons. The number of filters in each block
and the number of block was modified from our previous work in [BLuCS19a] reducing the number
of parameter while the CNN model tested on the records of the subject chb24 still gave high GDR.
The optimizer called ADADELTA was exploited to train the model because it was robust to noise
and had an adaptive learning rate [Zei12]. Furthermore, the loss function was the binary cross
entropy and the sample was denoted as ictal when the seizure probability was higher than 0.5.

For parameter setting of the onset-offset detection, we chose the window width to be l = 2
epochs. Moreover, there must be p = 3 consecutive epochs that their seizure window intersected
or contacted. These choices were selected based on the shortest seizure activity, which is seven
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seconds long, so that the proposed detection could suitably capture other seizure activities.
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Figure 12: Deep CNN structure used in this proposal. Raw EEG signals from the chosen channels
are together fed to the deep CNN to produce the seizure probability.

9.2 Preliminary results
Overall, Tables 7 and 8 summarize each performance metric evaluated on each individual subject
before and after the onset-offset detection, including the average, minimum, and maximum values
over the cases. Table 9 shows an improvement on the classification performances of the onset-
offset detector from when the mean and median of each patient were compared. In this case, a
positive improvement indicates a better performance, a negative improvement determines a worse
performance, and ‘-’ means the performances of using only the CNN is originally zero. In addition,
Figures 13 to 16 display epoch-based metrics: accuracy, specificity, sensitivity, and F1, and Fig-
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ures 17 and 18 show event-based metrics: GDR and FPR/h to easily compare the differences of
each case. Particularly, Figures 19 to 24 visualize results of using the CNN and the combination of
the CNN and the onset-offset detector. Generally, we can see that seizure probabilities in seizure
events were relatively high compared to probabilities during normal periods.

Table 7: Mean of performance of each subject evaluated on the CHB-MIT Scalp EEG database.
All performance metrics but FPR/h are represented in percentage.

Cases
Before onset-offset detection After onset-offset detection

Event-based Epoch-based Event-based Epoch-based
FPR/h GDR Acc Sen Spec F1 FPR/h GDR Acc Sen Spec F1

chb01 0.65 100.00 99.83 43.12 99.98 35.51 0.00 100.00 99.91 64.79 100.00 75.90
chb02 0.00 66.67 99.81 19.74 100.00 29.07 0.00 66.67 99.88 31.81 100.00 39.95
chb03 0.24 100.00 99.85 51.53 99.99 40.79 0.00 100.00 99.93 76.67 99.99 83.57
chb04 0.00 33.33 99.93 1.33 100.00 2.56 0.00 0.00 99.93 0.00 100.00 0.00
chb05 0.33 100.00 99.90 77.96 99.99 48.20 0.00 100.00 99.95 89.21 100.00 93.05
chb06 0.19 100.00 99.96 54.09 99.99 39.57 0.03 100.00 99.97 87.48 99.98 70.05
chb07 0.30 100.00 99.88 39.82 99.99 31.82 0.05 100.00 99.93 64.69 99.98 73.53
chb08 2.20 100.00 99.12 37.91 99.92 22.24 0.25 100.00 99.36 55.92 99.93 64.15
chb09 1.14 100.00 99.91 79.48 99.94 53.18 0.24 100.00 99.89 91.21 99.90 73.43
chb10 1.74 100.00 99.86 82.83 99.90 38.36 0.10 100.00 99.85 95.77 99.86 87.36
chb11 0.03 100.00 99.61 64.47 100.00 57.66 0.00 100.00 99.78 90.75 99.99 92.85
chb12 17.36 96.92 98.41 53.86 99.34 33.90 0.79 92.31 98.92 72.11 99.52 59.26
chb13 2.36 95.83 99.57 22.33 99.92 15.80 0.24 70.83 99.62 37.80 99.91 36.49
chb14 0.77 100.00 99.87 42.53 99.98 25.85 0.00 85.71 99.94 68.39 100.00 73.03
chb15 2.87 100.00 99.05 57.17 99.65 35.53 0.20 92.86 99.29 72.79 99.66 65.17
chb16 0.21 83.33 99.88 22.76 99.99 24.77 0.05 45.83 99.89 36.39 99.99 39.17
chb17 2.48 66.67 99.63 20.39 99.93 7.74 0.00 66.67 99.77 36.96 100.00 46.62
chb18 0.81 100.00 99.79 36.80 99.96 37.63 0.06 100.00 99.83 60.14 99.95 60.27
chb19 0.33 100.00 99.89 54.42 99.99 34.67 0.00 100.00 99.94 73.99 100.00 84.56
chb20 0.68 58.33 99.66 14.15 99.93 11.00 0.07 50.00 99.69 22.20 99.94 22.75
chb21 2.98 100.00 99.75 6.83 99.92 4.84 0.06 25.00 99.82 6.40 99.98 8.16
chb22 0.42 100.00 99.90 52.50 99.99 24.89 0.03 100.00 99.94 74.07 99.99 81.10
chb23 1.18 100.00 99.68 43.56 99.93 26.45 0.11 100.00 99.77 71.48 99.91 71.14
chb24 8.45 91.67 99.23 36.50 99.68 25.17 0.27 91.67 99.56 58.50 99.86 57.48
max 17.36 100.00 99.96 82.83 100.00 57.66 0.79 100.00 99.97 95.77 100.00 93.05
min 0.00 33.33 98.41 1.33 99.34 2.56 0.00 0.00 98.92 0.00 99.52 0.00
mean 1.99 91.36 99.66 42.34 99.91 29.47 0.11 82.81 99.77 59.98 99.93 60.79

Focusing on using a mean to evaluate the performances in Table 7, we found that accuracy
and specificity achieved by the CNN model were almost 100% from every case. Good detection
rates from all cases except chb04 were also high, which were 91.36% on average from all subjects.
However, without the onset-offset detector, the CNN model obtained low sensitivity and F1. The
CNN model obtained average sensitivity of 42.34%, and the minimum of 1.33%, and the maximum of
82.83%. The average, minimum, and maximum of F1 were 29.47%, 2.56%, and 57.66%, respectively.
This means that the CNN model yields bad epoch-based classification results. Furthermore, the
CNN model produced several false positives in many cases, resulting the FPR/h of 1.99 on average
and of 17.36 in the extreme case. In the case of using a median, as shown in Table 8, accuracy and
specificity were also high, and both the averages and ranges of sensitivity and F1 were low. On
the other hand, GDRs were higher in many cases, and the average was 94.79%. Additionally, the
CNN model obtained zero FPR/h in almost all cases but a high FPR/h was achieved in only the
chb12 case. As a result, it means that many FP occur in a few records, and there is normally no
FP in other records; the CNN model alone is, therefore, inconsistent across patients. With high
FPR/h and Spec, this implies that some individual and separated normal epochs are unfortunately
detected as ictal. Moreover, the CNN model may effectively find a seizure event in the record but
is ineffective in determining the whole seizure event because the GDR was high but the sensitivity
was intermediate.
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Table 8: Median of performances of each subject evaluated on the CHB-MIT Scalp EEG database.
All performance metrics but FPR/h are represented in percentage.

Cases
Before onset-offset detection After onset-offset detection

Event-based Epoch-based Event-based Epoch-based
FPR/h GDR Acc Sen Spec F1 FPR/h GDR Acc Sen Spec F1

chb01 0.00 100.00 100.00 31.71 100.00 42.42 0.00 100.00 100.00 60.98 100.00 75.76
chb02 0.00 100.00 100.00 14.63 100.00 25.53 0.00 100.00 100.00 20.73 100.00 34.34
chb03 0.00 100.00 100.00 46.15 100.00 43.48 0.00 100.00 100.00 83.33 100.00 90.91
chb04 0.00 0.00 100.00 0.00 100.00 0.00 0.00 0.00 100.00 0.00 100.00 0.00
chb05 0.00 100.00 100.00 85.34 100.00 67.04 0.00 100.00 100.00 95.04 100.00 97.46
chb06 0.00 100.00 99.97 61.54 100.00 43.96 0.00 100.00 99.99 85.71 100.00 88.00
chb07 0.00 100.00 100.00 39.58 100.00 26.00 0.00 100.00 100.00 70.14 100.00 82.45
chb08 0.50 100.00 99.97 34.30 99.99 0.00 0.00 100.00 100.00 64.91 100.00 74.46
chb09 0.00 100.00 100.00 83.08 100.00 60.27 0.00 100.00 100.00 89.23 100.00 92.31
chb10 0.50 100.00 99.99 83.33 99.99 0.00 0.00 100.00 100.00 98.59 100.00 96.30
chb11 0.00 100.00 100.00 52.17 100.00 67.71 0.00 100.00 100.00 100.00 100.00 97.06
chb12 8.98 100.00 99.36 65.07 99.72 40.74 0.00 100.00 99.60 88.65 100.00 68.25
chb13 0.00 100.00 100.00 20.14 100.00 6.06 0.00 83.33 100.00 26.39 100.00 29.55
chb14 0.00 100.00 99.97 47.06 100.00 0.00 0.00 100.00 100.00 88.24 100.00 93.75
chb15 0.50 100.00 99.92 73.08 99.99 16.67 0.00 100.00 100.00 86.59 100.00 80.06
chb16 0.00 100.00 100.00 26.13 100.00 29.17 0.00 37.50 100.00 29.16 100.00 42.29
chb17 0.00 100.00 99.97 14.61 100.00 0.00 0.00 100.00 100.00 39.33 100.00 56.45
chb18 0.00 100.00 100.00 38.92 100.00 42.95 0.00 100.00 100.00 66.90 100.00 67.50
chb19 0.00 100.00 100.00 53.85 100.00 34.40 0.00 100.00 100.00 75.61 100.00 86.11
chb20 0.00 75.00 100.00 10.16 100.00 0.00 0.00 50.00 100.00 15.00 100.00 0.00
chb21 0.00 100.00 100.00 5.81 100.00 0.00 0.00 0.00 100.00 0.00 100.00 0.00
chb22 0.00 100.00 100.00 46.58 100.00 0.00 0.00 100.00 100.00 65.33 100.00 79.03
chb23 0.50 100.00 99.98 39.13 99.99 18.24 0.00 100.00 100.00 72.81 100.00 73.71
chb24 1.00 100.00 99.43 35.08 99.97 32.00 0.00 100.00 99.72 62.41 100.00 73.44
max 8.98 100.00 100.00 85.34 100.00 67.71 0.00 100.00 100.00 100.00 100.00 97.46
min 0.00 0.00 99.36 0.00 99.72 0.00 0.00 0.00 99.60 0.00 100.00 0.00
mean 0.50 94.79 99.94 41.98 99.98 24.86 0.00 86.28 99.97 61.88 100.00 65.80

When the onset-offset detector was exploited, sensitivity and F1 substantially increased, and
FPR/h significantly decreased. As demonstrated in Table 9, the onset-offset detector could po-
tentially improve the sensitivity, F1, and FPR/h. When using the mean value to observe the
overall performance, we discovered that the sensitivity positively increased at least 14% and the
F1 also grew up more than 37%. This means the onset-offset detector can considerably improve
the performances by 137.68% in F1 and 50.75% in sensitivity on average. For instance, Figure 19
demonstrates the seizure probability, epoch-based decision, and output from the onset-offset detec-
tor tested on the sample chb01_04, where Figures 19a and 19b show the results of the whole record
and during the seizure activity, respectively. Another example validated on the sample chb05_06
with a longer epileptic seizure is depicted in Figure 20. As we expected, the CNN did not provide
high seizure probabilities to all epochs in the duration. Therefore, the decision made based on
the probability of individual epochs is not sufficiently reasonable, and an onset-offset detector is
needed. Figures 19b and 20b show that our proposed onset-offset detector could potentially prevent
incorrectly detected epochs during the seizure activities. We found that the epochs classified as
normal during the activities were changed to be ictal. In addition, FPR/h was absolutely reduced
by at least 75% in every case except in chb02 and chb04 cases because there was no FPR/h in
these cases. As shown in Figure 21, all false positives were annihilated so that the FPR/h was
reduced.

Nevertheless, applying the onset-offset detection does not always provide favorable results. We
discovered that these undesirable results are caused by two stages: epoch-based classification and
onset-offset detection. For example, if the CNN produces too many consecutive false positives or
few true positives, the final results can be misinterpreted. Figure 22 shows that consecutive false
positives cannot be eliminated by the onset-offset detection and those false positives still occur in
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Table 9: Overall improvements of the onset-offset detector. A positive sign presents an improvement
of using the onset-offset detector, a negative value means the onset-offset detector decreases the
detection performances, and ‘-’ means the reference is originally zero. Every metrics is expressed
in percentage.

Cases
Mean Median

Event-based Epoch-based Event-based Epoch-based
FPR/h GDR Acc Sen Spec F1 FPR/h GDR Acc Sen Spec F1

chb01 100.00 0.00 0.08 50.25 0.02 113.75 - 0.00 0.00 92.31 0.00 78.57
chb02 - 0.00 0.08 61.17 0.00 37.46 - 0.00 0.00 41.67 0.00 34.51
chb03 100.00 0.00 0.08 48.78 0.00 104.86 - 0.00 0.00 80.56 0.00 109.09
chb04 - -100.00 0.00 -100.00 0.00 -100.00 - - 0.00 - 0.00 -
chb05 100.00 0.00 0.05 14.44 0.01 93.03 - 0.00 0.00 11.36 0.00 45.37
chb06 85.46 0.00 0.02 61.73 0.00 77.02 - 0.00 0.02 39.29 0.00 100.18
chb07 82.94 0.00 0.05 62.44 -0.01 131.11 - 0.00 0.00 77.19 0.00 217.11
chb08 88.64 0.00 0.25 47.53 0.01 188.42 100.00 0.00 0.03 89.22 0.01 -
chb09 79.31 0.00 -0.02 14.76 -0.04 38.06 - 0.00 0.00 7.41 0.00 53.16
chb10 94.25 0.00 -0.01 15.63 -0.04 127.76 100.00 0.00 0.01 18.31 0.01 -
chb11 100.00 0.00 0.17 40.76 0.00 61.03 - 0.00 0.00 91.67 0.00 43.35
chb12 95.45 -4.76 0.52 33.88 0.18 74.78 100.00 0.00 0.24 36.24 0.28 67.53
chb13 89.74 -26.09 0.05 69.23 -0.01 130.95 - -16.67 0.00 31.03 0.00 387.61
chb14 100.00 -14.29 0.07 60.79 0.02 182.50 - 0.00 0.03 87.50 0.00 -
chb15 93.03 -7.14 0.24 27.32 0.01 83.45 100.00 0.00 0.08 18.50 0.01 380.35
chb16 75.00 -45.00 0.01 59.88 0.00 58.14 - -62.50 0.00 11.58 0.00 44.98
chb17 100.00 0.00 0.14 81.30 0.07 502.23 - 0.00 0.03 169.23 0.00 -
chb18 93.10 0.00 0.04 63.41 -0.02 60.15 - 0.00 0.00 71.86 0.00 57.14
chb19 100.00 0.00 0.05 35.97 0.01 143.89 - 0.00 0.00 40.42 0.00 150.32
chb20 89.83 -14.29 0.03 56.88 0.00 106.90 - -33.33 0.00 47.66 0.00 -
chb21 97.97 -75.00 0.07 -6.25 0.07 68.37 - -100.00 0.00 -100.00 0.00 -
chb22 92.31 0.00 0.04 41.08 0.00 225.80 - 0.00 0.00 40.27 0.00 -
chb23 91.09 0.00 0.09 64.10 -0.02 168.96 100.00 0.00 0.02 86.06 0.01 304.04
chb24 96.77 0.00 0.33 60.25 0.18 128.37 100.00 0.00 0.29 77.90 0.03 129.49
max 100.00 0.00 0.52 81.30 0.18 502.23 100.00 0.00 0.29 169.23 0.28 387.61
min 75.00 -100.00 -0.02 -100.00 -0.04 -100.00 100.00 -100.00 0.00 -100.00 0.00 34.51
mean 92.95 -11.94 0.10 40.22 0.02 116.96 100.00 -9.24 0.03 50.75 0.02 137.68

the final result. So the onset-offset detector can only group individual false positives into one and
reduce FPR/h intermediately. Another case of a few true positives is depicted in Figure 23. In
this case, only a few epochs detected as ictal were ignored, and consequently the GDR was de-
creased. As shown in 18, the GDRs evaluated on the subjects chb04 and chb16 were significantly
reduced from 33.33% and 83.33% to 0% and 45.83%, respectively. Therefore, it is obvious that if
epoch-based results are obviously unacceptable, the onset-offset detector cannot give satisfactory
outcomes as well. On the other hand, the onset-offset detection sometimes unfortunately gives un-
desirable results even though the epoch-based classification results seem to be useful. For instance,
Figure 24 visualizes the result assessed on the record chb11_99 was not reliable since the onset-
offset detector predicts that there are many seizure activities during one actual event. Figure 24b
shows that several epochs during the actual seizure event are detected as seizure. However, they are
inadequately close so that the onset-offset detector groups them into the separate seizure events.

Since the CNN model can not provide promising results when the duration is considered, it is
unreasonable to compare onset and offset latencies between our two models. Moreover, as reviewed
in Section 4.3, Orosco et al. [OCDL16] and Chandel et al.[CUFK19] computed means of positive
and negative latencies, the final results were definitely unclear whether the reported latencies were
potentially usable. Additionally, the data used in their works were not clearly described. For
example, these two works both declared to apply the same criteria, i.e., all records must have the
same montage, to choose EEG records. However, these studies eventually selected different subjects
and different records. Therefore, we can only compare and discuss the ranges of the latencies
including the positive and negative cases. In addition, the absolute onset and offset latencies were
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included to validate the variation of the latencies of the onset and offset.

Table 10: Comparisons of onset and offset latencies. Absolute latencies from our work are also
reported. All latencies are represented in second. ‘-’ in other works indicates that those records
were excluded in the experiments.

Case Onset Offset Absolute onset Absolute offset
Our work [OCDL16] [CUFK19] Our work [OCDL16] [CUFK19] Our work Our work

chb01 7.43 6.70 0.29 -12.00 14.00 0.71 7.71 12.00
chb02 5.50 - 1.33 -37.00 - 5.33 5.50 37.00
chb03 2.86 10.70 1.29 -5.71 2.40 29.86 4.86 6.29
chb04 - - 8.00 - - 17.50 - -
chb05 0.60 14.40 7.60 -5.60 22.60 0.80 1.80 6.40
chb06 1.10 - - -0.20 - - 2.10 0.80
chb07 5.33 2.00 2.00 -30.00 -2.00 -6.00 6.00 30.00
chb08 7.20 -11.60 3.00 -62.80 13.30 5.80 7.20 62.80
chb09 1.75 5.60 1.50 -2.25 -0.50 -1.50 2.75 2.25
chb10 -1.71 - 2.86 -2.29 - -5.71 1.71 2.57
chb11 -2.00 -9.30 -9.67 -8.00 -9.40 0.67 2.00 8.67
chb12 0.83 -2.00 - -5.94 0.60 - 3.51 7.66
chb13 4.38 8.20 - -16.00 60.60 - 4.38 16.50
chb14 0.43 5.30 - -5.29 7.60 - 0.43 5.86
chb15 4.32 - - -13.63 - - 5.68 14.79
chb16 -0.50 2.00 - -2.00 -3.50 - 0.50 2.00
chb17 20.00 7.20 0.33 -23.50 -1.20 7.00 20.00 23.50
chb18 7.67 -28.00 -4.50 -8.17 -13.70 52.67 9.00 8.17
chb19 10.67 3.40 9.67 -8.33 -24.00 -1.33 11.33 8.33
chb20 10.50 -7.80 7.63 -11.25 -24.20 10.38 10.50 11.25
chb21 1.00 -22.00 -4.50 -36.00 11.30 13.50 1.00 36.00
chb22 18.33 6.30 3.00 -0.33 -4.40 2.00 18.33 0.33
chb23 8.14 -6.10 -10.00 -8.86 43.30 16.57 8.43 9.14
chb24 5.00 - 5.50 -8.27 - -0.88 5.93 8.53
mean 5.17 -0.20 1.41 -13.63 4.00 8.19 6.12 13.95
min -2 -28.00 -10.00 -62.8 -24.20 -6.00 0.43 0.33
max 20 14.40 9.67 -0.2 60.20 52.67 20 62.8

Table 10 shows a comparison of the average onset and offset latencies in our and the best meth-
ods of others studies where the cells filled with ‘-’ means the study did not perform on those cases.
Since our onset-offset detector could not detect any seizure activities from the case chb04, the onset
and offset latencies were not found. In our study, onset latencies from almost all subjects were pos-
itive ranging from −2.00 to 20.00 seconds, and offset latencies were negative in the range of −62.80
to 0.20 seconds, respectively, when using our proposed onset-offset detector. Moreover, the onset
and offset latencies were close to the absolute onset and offset latencies regardless the sign. This
indicates that there is only a small amount of cancellation between positive and negative latencies.
Consequently, it implies that the onset-offset detector mostly predicts the seizure activities inside
the actual seizure. On the other hand, onset and offset latencies from other works were highly
fluctuated. Many positive and negative latencies occurred in each subject independently. For ex-
ample, the maximum and minimum onset latencies from [OCDL16] were 14.40 and -28.00 seconds,
where as the maximum and minimum offset latencies were 60.20 and -24.20 seconds, respectively.
It is possible that, in each case, some positive and negative latencies are neutralized. Although
the latencies from other studies were unclear, ranges of the onset and offset latencies in our work
were not far the ranges in other works. Moreover, we used all records from every patient instead of
chosen records, making the data more imbalanced. It is well-known that highly imbalanced data
can reduce classification performances significantly [JK19]. Therefore, it can be concluded that our
proposed model can potentially detect onsets and offsets better than the existing models.
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Figure 13: Mean and median of accuracy obtained from before and after the onset-offset detection.
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Figure 14: Mean and median of specificity obtained from before and after onset-offset detection.
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Figure 15: Mean and median of sensitivity obtained from before and after the onset-offset detection.
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Figure 16: Mean and median of F1 obtained from before and after the onset-offset detection.
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Figure 17: FPR/h obtained from before and after the onset-offset detection.
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Figure 18: GDR obtained from before and after the onset-offset detection.
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Figure 19: Results of the seizure onset-offset detection process tested on chb01_04. The first row
shows the annotation, the second row displays the seizure probability, the third one presents the
decision of each epoch, and the last one demonstrates the result after the onset-offset detection.
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Figure 20: Results of the seizure onset-offset detection process tested on chb05_06. All normal
epochs during the seizure event are converted to epochs containing seizures.
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(a) Tested on chb12_09.
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(b) Tested on chb24_04.

Figure 21: Examples of using the seizure onset-offset detection process. The output of the onset-
offset detector has tremendously less false positives than that of the CNN, extremely reducing
FPR/h.
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(a) Tested on chb09_06.
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(b) Tested on chb24_01.

Figure 22: Examples of using the seizure onset-offset detection process. Even though the final
result is improved from applying the onset-offset detection, the final result is still unsatisfactory if
the classification output is terrible.
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Figure 23: Examples of using the seizure onset-offset detection process. There are only few TP
appearing. So the GDR is reduced in this case because there are few epochs correctly detected as
ictal. Those epochs are neglected by the onset-offset detector.
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Figure 24: Results of the seizure onset-offset detection process tested on chb11_99. The onset-offset
detector gives an unreliable output.
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10 Conclusion and future work
This thesis aims to provide a detection method of epileptic seizures and the onsets and offsets in
multi-channel EEG signals. The whole detection process consisted of two steps: epoch-based clas-
sification and onset-offset determination. First, we exploited a deep CNN model as a classifier to
detect the seizures of epochs from the EEG signals. The deep CNN was designed to capture tempo-
ral and spatial information in multi-channel EEG segments. In a convolutional layer, the concept
of filter decomposition was employed to extract features along the temporal dimension and observe
feature connections between channels. Second, an onset-offset detector was proposed to indicate
the onsets and offsets of the seizure events. The sequence of the epoch-based detection output
was simply modified based on knowledge of epilepsy that the seizure clinically appears for some
period. The CHB-MIT Scalp EEG database was used to evaluate the classification performances.
All records of every subject were modified to have the same montage applied to the model.

As a result, the onset-offset detector could potentially reduce FPR/h and significantly increase
sensitivity and F1 while maintaining specificity and accuracy. The results obtained from the output
of the onset-offset detection were more reasonable than the results from the epoch-based detection
output. Moreover, with more imbalanced data set, our proposed model could determine the seizure
onset and offset with ranges of latencies similar to that in other studies.

However, there are some limitations of this work. First, when the CNN model is not well-
performed enough, as shown in Section 9.2, the onset-offset detector cannot improve, or sometimes
reduce, the performances. From the design of the CNN, we tried to reduce the number of model
parameters while maintaining the performance evaluated on chb24. It is possible that the model fit
to this case may not be suitable in other cases. So, in the future work, we need to explore another
deep learning model that is more suitable in this application or apply a technique for imbalanced
data set. Second, the onset-offset detector is criteria-based but not adaptive; it requires well-
adjusted parameters. This criteria-based scheme is not practical in clinic since conditions are
varied depending on each subject. Therefore, we will establish the onset-offset detector based on a
machine learning technique that can be adjusted regarding the patient, and mathematically analyze
the technique.
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