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Introduction 
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Introduction 
 

Why solar forecasting is important? 
 
• As in Alternative Energy Development Plan (AEDP) 2015, 

the government of Thailand plans to increase the 
proportion of solar energy. 

• Variability in solar power has made the generation 
system difficult to manage. 
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Introduction 
 

Very short-term forecasting (Intraday) 
 
• Provide a better management of electrical power 

production 
• Increases stability of electrical power systems 
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Introduction 
 

There are many method used to predict the future solar power. 
• AR, ARMA, ARIMA 
• Artificial neural network (ANN) 
• Support vector regression (SVR) 
• Random Forest (RF) 
• k-nearest neighbors (kNN) 
Several input features:  
• Previous solar power  
• Previous irradiance 
• Temperature 
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Objectives 
 

• To study the relevant variables of intraday solar irradiance    
forecasting. 

• To apply SVR models and RF models to forecast solar 
irradiance. 

• To compare results of forecasting performance between SVR 
models and RF models. 

• To compare the computational complexity between the 
models 

 
 
 



8   Features selection : Partial Correlation 

• Partial correlation coefficient  is a measure of the strength 
and direction of the linear relationship between two 
variables after “adjusting” for linear relationships involving 
all the other variables 
 
 The partial covariance of              given       is defined as    

Where                is the estimate of        from 



9   Features selection : Partial Correlation 

• Partial correlation coefficient  is a measure of the strength 
and direction of the linear relationship between two 
variables after “adjusting” for linear relationships involving 
all the other variables 
 
 The partial correlation coefficient is the scaled partial covariance 



10   

Features selection : Stepwise linear regression  
 
 • Stepwise linear regression is a method of fitting linear 

regression models in which the choice of predictive 
variables is carried out by an automatic procedure. 

 
• Stepwise linear regression is a strategy for selecting 

variables for prediction model 
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Prediction model 
 
 



12   Support vector regression [Vapnik,1995] 

The SVR is a supervised learning machine in the framework of 
statistical learning theory which can solve the non-linear 
regression 
 
Principle of SVR is to map input data     into new space then 
apply linear regression with incentive loss function in the new 
space to find the estimate of      from the following function : 
 
 



13   Support vector regression [Vapnik,1995] 

Source : Smola, Alex J., and Bernhard Schölkopf. "A 
tutorial on support vector regression." 
 
 
 

Incentive loss function 



14   Support vector regression [Vapnik,1995] 

 
 
 

We can find threshold value (    ) and regression coefficient 
vector (     ) by solving the constrained optimization problem 
as follow: 
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Random forest [Tin Kam Ho, 1995]  

Random forest is an ensemble classifier/regressor that consists 
of many decision/regression trees. 
 
 

Source : Afriz Chakure 
Random forest regression 
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Regression tree 

Process of building a regression tree 
1. We divide the predictor space  

(the set of possible values for 𝑋1,  𝑋1 , … , 𝑋𝑝) 

into distinct and non-overlapping region, 𝑅1,  𝑅2 , … , 𝑅𝐽 

2. For every observation that falls into region 𝑅𝐽 

We make the same prediction, which is simply the mean of the 
response values for the training observations in 𝑅𝐽  
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Regression tree 

Unfortunately, it is computationally infeasible to consider  
Every possible partition of the feature space into J boxes. 
In practical, we use recursive binary splitting to split a region. 
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Regression tree : Recursive binary splitting   

Example : 2-Dimensional predictor space  
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Random forest [Tin Kam Ho, 1995]  

Random forest is an ensemble regressor that consists of many 
regression trees. 
- Feature Random selecting 

For each node of the tree, 
randomly choose m variables (m < p). 
Calculate the best split based on 
these m variables in the training set. 
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Plan 
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Plan   
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Persistence 
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regression 
models 

Model quality improvement 
1. Removing outlier 
2. Piecewise models 

Preparing model for other station 
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Model quality improvement 
1. Piecewise SVR,RF models 
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Plan  
 
Model comparison 
1. Prediction model (Irradiance) 

-  Baseline, SVR, RF, ANN 
2. Power converting model (Irradiance to power) 
3. Computational complexity 
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Preliminary result 
Feature selection 

 
 



25   

Feature candidates  
  Target : I(t+1) 
• Previous solar irradiance values : 

- I(t), I(t-1), I(t-2) ,  ... 

- I(d-1) (t+1) 

• Temperature : T(t) 

• Wind speed : WS(t) 

• Relative humidity : RH(t) 

• Ultraviolet Index  : UV(t) 

• Cosine of solar zenith angle : cos(θ(t+1)) 

 
Data set : EECU data 2017- 2018  
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Feature selection : Result 

Features that have significant relationship with : I(t+1) 

• Previous solar irradiance values :  
 - I(t), I(t-3), I(t-5), I(t-6), I(t-7)  

 - I(d-1) (t+1) 

• Relative humidity : RH(t) 

• Ultraviolet Index  : UV(t) 

• Cosine of solar zenith angle : cos(θ(t+1)) 
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Preliminary result 
Prediction model 
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Experiment setting 

Goal: predict solar power with the horizon of 4 hours every 30 
minutes 
          𝐼 (t+1), 𝐼 (t+2), …. , 𝐼 (t+8) 

Time of forecast values : 6:00 - 18:00: Forecast every 30 min 
Execution time :  5:30 - 17:30 
 
 
 
 
 

6:00 18:00 6:30 7:00 

I(t) 

7:30 8:00 

𝐼 (t+1) 

𝐼 (t+2) 
𝐼 (t+3) 

𝐼 (t+4) 

8:30  …. 5:30 
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Data augmentation 

Data set : EECU data 2017- 2018  
Training set (80%) : 
- feature selection 
- fitting model 
Validation set (10%) : 
- hyper-parameter tuning 
Testing set (10%) : 
- testing prediction model 
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Forecasting Performance Evaluation Measures 

1. Root Mean Square Error (RMSE) 

RMSE =
1

𝑁
 𝑥 𝑡 − 𝑥 𝑡 2

𝑁

𝑡=1

  

 

2.    Mean Bias Error (MBE) 

MBE =
1

𝑁
 𝑥 𝑡 − 𝑥 𝑡

𝑁

𝑡=1
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Prediction model : Support vector regression 

Data-preprocessing :  
Standardize the “input” features by removing the mean and 
scaling by standard deviation of the training samples 
 
Experiment setting for SVR : 
 Train 8 models separately to forecast 𝐼 (t+n) ; n = 1,2,...,8 
 
Input features :  
• I(t), I(t-1), I(t-2) ,  ..., I(t-7) ,I(d-1) (t+n) 

• cos(θ(t+n)), 
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Prediction model : Random Forest 

   

Target :  𝐼 (t+1), 𝐼 (t+2), …. , 𝐼 (t+8) 

 
Input  
• I(t), I(t-1), I(t-2) ,  ..., I(t-7)  

• I(d-1) (t+1), I(d-1) (t+2), …, I(d-1) (t+8) 

• cos(θ(t+1)), cos(θ(t+2)) , …, cos(θ(t+8)) 

• Hour stamp : HR(t) 
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Prediction model 

   

RMSE of solar irradiance forecast in each prediction horizon 
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Prediction model 

   

RMSE of 1-step solar irradiance forecast in each prediction time 
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Prediction model 

   

Histogram of error distribution in each models 
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Q/A 
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Thank you 
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Backup slide 
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Introduction 
 

Distribution of studies with respect to the technique used 
 
 
 
 

Source : J. Antonanzas (2016) : 
Review of photovoltaic power forecasting  
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Features selection : Stepwise linear regression  
 
 



41   Matlab : Stepwiselm function (1)  



42   Matlab : Stepwiselm function (2)  



43   Support vector regression [Vapnik,1995] 

 
 
 

After we solve dual form of those constrained optimization 
problem, the estimate function is correspondingly converted 
into :  
 
 
 Where               is the kernel function which can be any of the 
following : 



44   Support vector regression [Vapnik,1995] 

The architecture of SVR 
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Random forest :  Hyper parameter  
 
• The number of tree in the forest 
• The number of features (m) 
• The maximum depth of the tree 
• The minimum number of 

samples required to split 
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Feature selection : Correlation  
 
Result from  
correlation coefficient  
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Feature selection : Partial correlation 

Result from  
partial correlation 
coefficient  
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Feature selection : Stepwise linear regression 

Result from Stepwise linear regression 
 
 
  
 
 
 


