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Introduction

« articles on brain connectivity
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Source : C. Pawela and B. Biswal, “Brain Connectivity : A New
P I I Journal Emerges,” Brain Connectivity, vol. 1, no. 2, 2011.



Learning causality applied
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BaCkg rou nd : EEG Models




There are many mathematical models that describe EEG signals. One can

be generally described by linear Autoregressive (AR) model.

y(t)

p
z Apx(t —k) + u(t)
k=1

Lx(t) + v(t)

X : Sources (not measured)

y : Measurement
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In this project, we focus on only two Granger causality tests :

GC test for AR model

p
y(O) = ) Ayt =1 +u(®)
k=1

According to Pruttiakaravanich (2016), If Y; does not cause Y,

it can be shown that

(Ag)ij =0



GC test for state space model (Seth, 2015)

z(t + 1) = Az(t) + w(t)
y(t) = Cz(t) + v(t) (Full model)
y () = CRz(t) + v(t) (Reduced model)

To remove Y; is to remove jth column of C
Let Z,ZR as prediction error covariance of full model and reduced model,

respectively.

R

Tyj—>yi| all othersy — log y..
11

In general, prediction error of Y; in reduced model is bigger prediction error of

Y; in full model. If Eﬁ = 2jj, it means Yj does not cause Y;



Methodology n

Stochastic
Subspace

Stochastic Subspace
Identification (Overschee and De Moor, 1996)

A
O; = Y£|:2i—1/Y{}|i—1 — Yf/YP

Identification

Null (BT}
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(A, C, W, V)

Methodology

Granger causality on Set structure
State space model for —| Reduced model
GC test
State space model (full model)
(A, I,W) (A, I7,W)
zZ(t+1) = Az(t) + w(t)

y(t) = Cz(t) + v(t)

Y. estimation error

State space model (reduced model) covariance of full model

Z(t -+ 1) — cﬂz(t) + W(t) »R. e.stimation error
y(t) = CRZ(t) + U(t) covariance of reduced model




(A, ILW)

Methodology

Granger causality on K Soﬁhli;{i
State space model D

We find estimation error covariance : ¥
2. = COV (Z — ZA) for full model and
ZRfor reduced model.

Where Z is an optimal estimation of Z which observed by using Kalman filter

A A —1 A
Zeg1)t = AZye—q + z:1:|t—1CT(Czt|t—1CT + R) (Yt — CZt|t—1)
= c/QZA1:|t—1 + K(y: — yt|t—1)



Methodology

Granger causality on
State space model

By assumption, we can solve steady state
Kalman filter which satisfies DARE

Y =ASAT + W — AZCT(CZCT)1CEAT

Then, Seth (2015) suggest to determine the

time-domain Granger causality shown as

K

Coefficient
CAFK

xj—x;| all others x — log

solve solve
DARE DARE
T
Examine
GC test(F;;) R
F
YR
L

Lij
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Preliminary Results

There are two experiments in this semester

Equivalence of GC test on AR GC test on estimated state

and state space model space model

Hypothesis: If ground truth is AR, the result of GC Hypothesis: If EEG signals are generated based on AR

test on state space model is the same result as GC TRl e Ul er C lsa o ESUmEiEe Sl

test on AR model space model is the same result as GC test on AR

model



Preliminary Results

Equivalence of GC test

gen_sparseAR.m
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Preliminary Results

We format state space model from ground truth AR model

z(t+1) = Az(t) + w(t)
y(t) = Cz(t) + €(t)

A1 4, p i u(t)

0
A R &
0 0 0. | 0

e(t)

(b)Y




Preliminary Results

sparsity of AR coefficients

>> F

0.5207
0.2412
0.0000

>> F_r

0.5207
0.2412
0.0000

oNoNe

oNolNe)

GC test on AR model

-0016 0.0000
-4073 0.1417
-0282 0.1385

GC test on state space model

-0016 0.0000
-4073 0.1417
-0282 0.1385



Preliminary Results

GC test on estimated state space model
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Preliminary Results

>> F GC test on AR model

sparsity of AR coefficients F =

0.5207 0.0016 0.0000
0.2412 0.4073 0.1417
0.0000 0.0282 0.1385

>> F_ss GC test on estimated state space model

F ss =

0.2162 0.2033 0.6843
0.2532 3.1890 0.7549
0.2575 0.9480 1.4804
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Simulated Response Comparison

y_real (y1)
— — — -y Hat: 70.72%
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Backup

Cc/lng coefficeints

We showed that the coefficient from GC test on AR model have same structure

to the coefficient from GC test on state space based on ground truth AR model

Let K as gain solved from steady state Kalman filter

K =AxC"(CzC" + V)™
=AlET, =T, .. L]z
Because the solution of DARE remains only 214
K=dAll 0 0 0]
=[4 1 0 o0]"



Backup

Cc/lng coefficeints

Given state observer gain A, = A — KC , we have

A, =

Then, multiply by C on the left hand side and K on the right hand side

CAYK =[I 0

0]

0 A,
0 0

L0

|

Ap
0

0.

-k

[A7

I 0 0]



Backup

Cc/lng coefficeints

0 A, A"

cakk =11 o - olf? P = Yf@al 1 oo o
0 I O

The result showed that

When k = 0 CK = A4

When k =1 CAK = A,

When k = 2 CcﬂgK = A3

Whenk=p—1 CAY 'K =4,
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