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Figure 1: Number of publications in the PubMed database using the search term in "5-year increments".
[1]

1 Introduction
Nowadays, there has been a growing interest in learning brain connectivity. According to number

of brain connectivity publications indexed by PubMed (https://www.ncbi.nlm.nih.gov/pmc/),
the number of publications are likely to be an exponential growth since 1969 [1]. Because the measure
with associated signal processing are probably bring relevant information about the activity from acti-
vated network and also disrupted network that associated with tumors [2]. There are many methods
to analyze how a group of neurons affects to the others, such as Dynamic causal modeling (DCM)
and Granger causality (GC) [3]. One of widely-used method to analyze brain connectivity is Granger
causality via Autoregressive (AR) model which is easy to explain.

y(t) = A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p) + e(t) (1)

where y is output signal, e is measurement noise and Ai is matrix explains relationship between signal
in the past. However, time series data for actual EEG data may have Moving average (MA) component
so that pure AR modeling may not be sufficient for EEG signals [4]. According to [5] , the result of
Granger causality test on model (1) explain only causality relationship between output signal but the
real objective is to find causality relations between sources in brain.

This project focuses on identifying EEG sources in state space model which can be described
not only AR model but also Autoregressive Moving Average with Exogenous input (ARMAX) model.
State space model has sufficient component of actual EEG data. With this advantage, we can analyze
brain connectivity by using Granger causality on state space model so that we can learn causality relation
between each source. In fact, we do not have information about parameters in state space model. The
only information that we know is EEG time series data. For this reason, our study will also focus
on subspace identification to identify system matrices for state space model. Subspace identification
is a tool which is used for estimating state sequence and system matrices of model. This method is
very useful because we can estimate all unknown state space variables and parameters with only prior
knowledge (time series data).

2 Objectives
The objective of this study are the following

1. To estimate linear EEG model described by state space model using subspace method.

2. To learn brain connectivity for EEG signal by using Granger causality test on state space model.
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3 Background

3.1 EEG Model

Located at the brain and spine, Central Nervous System (CNS) is the place where neural activities
occurred. This happened by potential at gap between Axon and Dendrite called Synapse by stimulated
to surround environment. An electroencephalogram (EEG) is one of tools to measure brain rhythms by
measuring ionic current voltage fluctuations from electrodes placed on the scalp in special position [6]
that specified using international 10-20 system. Each position is labeled with a letter and a number.
The letter means area that electrode lied [7]. For example, F7 means node number 7 at Frontal lobe
area.

Figure 2: Electrode locations of International 10-20 system for EEG recording. The letters F,T,C,P and
O stand for frontal, temporal, central, parietal, and occipital lobes, respectively.

From Fig.3, time series data is the data of 100 single-channel EEG segments of 4097 samples (23.6
seconds duration) dependence on recording region and brain state.
From the raw data, EEG are spontaneously non-stationary because statistical properties of the brain

Figure 3: Raw data of EEG time series with awake state with eyes open (a) and eyes closed (b). The
others were recorded during seizuring interval (c),(d) and during seizure activity (e) [8]

processes vary over time. Also, dynamical parameters of EEG are sensitive to time scales that involved
in the process to get an insight in the working of brain [9]. By using EEG to analyze human brain
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activity, there are many mathematical model that describe EEG model. One can be generally described
by linear Autoregressive (AR) model, which expressed as [10] :

x(t) =
p∑

k=1
A(k)x(t− k) + u(t) (2a)

y(t) = Lx(t) + v(t) (2b)

where x ∈ Rn is sample of brain source with n nodes at time t , y ∈ Rm is an EEG measurement (result
show in terms of time series model from Figure 3) contains m sources at time t , Ak ∈ Rn×n denotes
parameters of past data , L ∈ Rm×n means the lead field matrix that their magnitude are depend on
head model, thickness of scalp and also volume conductor [11] , u and v are noise from source and noise
from measurement, respectively and noise covariance matrix are given by :[

Q S
ST R

]
= E

{[
u(t)
v(t)

] [
u(t)
v(t)

]ᵀ}
(3)

3.2 Granger causality

Granger causality is a tool used for analyzing a brain connectivity. This tool is commonly expressed in
terms of prediction error. The result of Granger causality for EEG indicates data from one part of the
brain cause or does not cause to another part data. There are many approaches to examine GC Test.
In this project, We focus on only two Granger causality test : GC test on AR model and GC test on
state space model.

Granger causality on AR model. For linear AR model, Granger causality are performed after we
estimate the system matrices of AR model shown as the following diagram.

AR Model
Least
Square

Estimation

Examine
GC test

y(t) (Â1, Â2, . . . , Âp)

For example, x1(t), x2(t) and x3(t) in AR model have relation shown as:

x1(t) =
p∑

k=1
akx1(t− k) +

p∑
k=1

bkx2(t− k) +
p∑

k=1
ckx3(t− k) + ε1(t)

x2(t) =
p∑

k=1
dkx1(t− k) +

p∑
k=1

gkx2(t− k) +
p∑

k=1
hkx3(t− k) + ε2(t)

x3(t) =
p∑

k=1
mkx1(t− k) +

p∑
k=1

nkx2(t− k) +
p∑

k=1
rkx3(t− k) + ε3(t)

(4)

with covariance of noise as Σ =

Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

 = Cov(ε).

Then, we assume that x2(t) is not a cause for x1(t) so the new model will be reduced and remain only
x1(t) and x3(t)

x1(t) =
p∑

k=1
a′kx1(t− k) +

p∑
k=1

c′kx3(t− k) + ε′1(t)

x3(t) =
p∑

k=1
m′kx1(t− k) +

p∑
k=1

r′kx3(t− k) + ε′2(t)
(5)
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with noise covariance of reduced model ΣR =
[
ΣR

11 ΣR
13

ΣR
31 ΣR

33

]
= Cov(ε′).

After that, we examine if x2(t) has causality relation to x1(t) by determining log ratio of residual error
of x1(t) for each model [12].

Fx2→x1 | x3 = log ΣR
11

Σ11
(6)

In general, ΣR
11 > Σ11 because variance is minimized when data is added. From (6), if Fx2→x1 | x3 = 0,

it means ΣR
11 = Σ11. Therefore, x2(t) is not cause x1(t). On the other hand, x2(t) cause to x1(t) when

Fx2→x1 | x3 > 0 because x1(t) in full model usually have more fitting than x1(t) in reduced model so
that ΣR

11 always more than Σ11. Also, the result of GC test on AR model can be derived as (Ak)ij = 0
and examine which xj is not a cause for xi.

Granger causality on state space model. In case of state space model Granger causality test, state
space equation is

z(t+ 1) = Az(t) + w(t) (7a)
y(t) = Cz(t) + v(t) (7b)

In this Granger causality test, we examine if yj is a cause for yi by removing yj from the model. To
remove yj from the model, we force jth column of C from (7) be zero so that full model become reduced
model. Then, determine residual error of both models. Finally, we determine log ratio of residual error
of xi for each model [13].

Fyj→yi | All others y = log |Σ
R
ii |
|Σii|

(8)

where |ΣR
ii | and |Σii| are prediction error covariance of xi for reduced model and full model, respec-

tively. Also, both ΣR
ii and Σii are calculated from optimal mean-squared error estimation which is

derived by Kalman filter (further details in section 5.2). The result of Granger causality test : when
Fyj→yi | All others y > 0 because yi(t) in full model usually have more fitting than yi(t) in reduced model
and F = 0 means ΣR

ii = Σii. Therefore, yj(t) does not cause yi(t).

4 Problem statement
In this project, There are two main problems as follows.

• Problem 1 : We estimate the system matrices of state space (7) with free parameters from time-
series data by using subspace method because only measurement variable (y) are given and signal
source (z) are not measured. The assumptions for parameters are that (A, C) are observable,
(A,W ) are controllable and noise covariance is positive definite.

• Problem 2 : We examine Granger causality test from any estimated state space model (7) which
are estimated by using subspace method from the problem 1. The test result from (8) (F) is real
source (x). The result from GC test can refer to brain connectivity.

5 Methodology
In this project, we estimate system matrices of state space model without structure from (7). We
choose state space model to examine Granger causality. The scheme of model estimation is shown in
the following diagram :
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Stochastic
Subspace

Identification

Set structure
for

GC test

solve
DARE

Reduced model

solve
DARE

Examine
GC test(Fij)

Coefficient
CAk

c K

Statistical
Test

Statistical
Test

(A, C, W, V )

(A, I, W ) (A, IR, W )

P R

P

K

F

zero pattern
zero pattern

y(t)

Our scheme starts with time-series data y(t) which is the only data we know. y(t) is generated based
on Autoregressive ground truth model. From (7), we do not know sources : x(t) and internal noise :
u(t) which is problem to compute system matrices since we want to estimate A. No parameters are
known. The variables and parameters describe in the following table.

Table 1: Variables and parameters in this project

Variables Parameters
Measured Unknown Known Unknown

y(t) x(t) A
u(t) C

W,V

We use subspace method to identify all system matrices (A, C and noise covariance). Then, set the
estimated structure for Granger causality test by letting C = I for full model and forced jth column of
full model C for reduced model, denoted as CR or IR for C that remove jth column. There are two
method to examine Granger causality test. First, solve discrete Riccati equation for both model that
the solution is covariance of prediction error and compare the covariance of prediction of reduced model
to full model by using Granger causality test (8), the result (F have to be verified by statistical test to
make sure that the zero pattern of model is satisfy. Another method is to solve gain matrix from DARE
(K) and examine coefficient CAk

cK. The result which verified by statistical test is also zero pattern of
model.
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5.1 Stochastic subspace method

We estimate sources and system matrices (in this case : A, C,W ,V ) by using stochastic subspace
method. The estimation process starts by estimating sources. Since, EEG linear model have no input
so that the estimation will use stochastic subspace method. In this method we focus on estimate
state sequence first. The process starts by dividing data by time to obtain past data and future data.
Then, project the future output (Yf ) onto the past output (Yp) space with zero initial state (X̂0 =[
0 . . . 0 . . . 0

]
) [14].

Oi
∆= Yi | 2i−1/Y0 | i−1 = Yf/Yp (9)

where Oi is the oblique projection and Y0 | i−1 is measurement data from t = 0 to t = i− 1. After that,
compute the state from single value decomposition (SVD) factorization.

Oi =
[
U1 U2

] [Σn 0
0 0

] [
V T

1
V T

2

]
= U1ΣnV

T
1 (10)

Since Oi = ΓiX̂i [15] and there are some non-singular matrix T that Γi = U1Σ1/2
n T so that we obtain

X̂i = Γ†iOi (11)

Then, estimate system matrices in least-square sense by forming the equation[
X̂i+1
Yi |i

]
=
[
A
C

]
X̂i +

[
ρw

ρv

]
[
Â

Ĉ

]
=
[
X̂i+1
Yi | i

]
X̂†i

(12)

with noise covariance as [
Ŵ Ŝ

ŜT V̂

]
= (1/j)

[
ρw

ρv

] [
ρw

ρv

]T

(13)

5.2 Granger causality test on estimated state space model

This process happens after structured system matrices are solved. We use Granger causality test to
examine brain connectivity of estimated model. In this process, Before the process starts, we assume
that there is no measurement noise and u(t) is also uncorrelated. In this process, we examine Granger
causality test in two models : full model and reduced model. For full model, we assume y(t) has the
same dimension as x(t). That means we force number of measurement sources equals to number of
brain sources. This means we let C = I. To reduce the full model, we assume each Cj = 0 (column
j of C) which means we assume that value xj does not cause all others x (since we assume that
y(t)j = x(t)j for all j) . Therefore, y(t) is linear combination of all x except for xj .

Full model : z(t+ 1) = Az(t) + w(t) , y(t) = Cz(t) (14a)
Reduced model : z(t+ 1) = Az(t) + w(t) , y(t) = CRz(t) (14b)

where C = I and CR is reduced matrix that the jth column of C is zero.
After that, we find estimation error covariance : Σ = Cov(z − ẑt | t−1) of both model. To obtain
optimal prediction error covariance, we estimate ẑ by using minimum mean square error because with
this method, the error from noise is minimized. Therefore, we will get x̂ = E{xt | x−t−1}where y−t−1 is
all output data from the past up to time t− 1 and x̂ = E{xR

t | xR−
t−1} for reduced model. After this, we

calculate estimation error covariance by using Kalman Filter [16] because of optimal method in linear
model form :

x̂t+1 | t = Ax̂t | t−1 +AΣt | t−1C
T (CΣt | t−1C

T +R)−1(yt − Cx̂t | t−1)
= Ax̂t | t−1 +K(yt − ŷt | t−1)

(15)
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where K = AΣt | t−1C
ᵀ(CΣt | t−1C

T + V )−1 is Kalman gain K from (7) and wt can be expressed by
yt − ŷt | t−1 where ŷ is estimated by MMSE (ŷ = E{yt | y−t−1}) and for reduced model we will get εR

from yR
t −E{yR

t | yR−
t−1}. From (15), time update gives a recursive solution. Therefore, we can express

measurement and time update of Σ as Riccati recursion [16].

Σt+1 | t = AΣt | t−1AT +W −AΣt | t−1C
T (CΣt | t−1C

T + V )−1CΣt | t−1AT

= AΣt | t−1AT +W −AΣt | t−1C
T (CΣt | t−1C

T )−1CΣt | t−1AT

(Assume that V is zero)
(16)

From (16) , this equation is the optimal way to find state prediction error covariance [17]. However,
we assume observation noise covariance is positive definite, (A, C) are observable and (A,W ) are
controllable so that we can solve steady state Kalman filter instead. The estimation of steady state
Kalman filter satisfies Discrete Algebaric Riccati Equation (DARE) :

Σ = AΣAT +W −AΣCT (CΣCT )−1CΣAT (17)

There are two methods to examine Granger causality. The first method is to find log ratio of covarience
of prediction error (Σ from solving of Riccati equation). Then, we suggest to determine the time-domain
Granger causality shown as : [13]

Fxj→xi | All others x = log |Σ
R
ii |
|Σii|

(18)

where |ΣR
ii | and |Σii| is estimation error covariance of xi for reduced model and full model, respectively.

In general, ΣR
ii is usually larger than Σii because variance is minimized when data is added. If the result

is zero, it means |ΣR
ii | = |Σii|. Therefore, xj does not affect xi conditioning to all others x. Otherwise,

the value is always positive because reduced model is come up with more covariance magnitude.

After we solve (17) the solution of DARE remains only W when we assume no measure noise and
u(t) is uncorrelated. (See Appendix 8.1). Another method to examine Granger causality is to find the
coefficient CiAk

cKj when k = 0, 1, . . . , p−1. Denote Ac as state observer closed loop observer gain, the
results of coefficient are Ak+1 for all k which have same structure. Therefore, Ac yields the necessary
and sufficient condition by the Cayley-Hamilton Theorem. (See Appendix 8.2)

6 Preliminary results
In this section, We performed experiments for GC test after we have studied subspace method for
estimating state space model, GC test for describing brain connectivity and MATLAB codes for the
proposed schemes. The first experiment is to show equivalence of GC tests on AR model and state
space model. After that, we applied the result of the first experiment to verify estimated state space
model by using subspace method in the second experiment. Both experiments are conducted from the
same ground truth AR model from (2).

6.1 Equivalence of Granger causality tests

The object of this experiment is to show the equivalence of GC tests on AR model and state space model
where ground truth model is AR model. Since we know that the result of GC test from AR model (6)
can be derived as (Ak)ij = 0 (that means xj(t) does not cause xi(t)), the expected outcome of GC test
on state space model based on ground truth AR model should be the same as the result from AR model.
In this experiment, ground truth AR model is generated from MATLAB file : gen_sparseAR.m [18].
The process of this experiment starts with format state space model from ground truth AR model.

z(t+ 1) = Az(t) + w(t) (19a)
y(t) = Cz(t) + ε(t) (19b)
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where

A =


A1 A2 . . . Ap

I 0 . . . 0
. . . . . . ...

0 . . . I 0

 , C =
[
L 0 . . . 0

]
, w(t) =


u(t)

0
...
0

 and ε(t) =


v(t)

0
...
0


Then, we set state space system matrices for GC test by given y(t) = x(t). Therefore, C for GC test in
this experiment becomes C =

[
I 0 . . . 0

]
for full model. For reduced model, the structure of CR

for reduced model is C for full model which jth column is removed. Moreover, we let measurement noise
(ε(t)) to be zero and signal noise are uncorrelated for GC test. After that, we solve Riccati equation for
both model so that we obtained residual error for both models. Finally, we examine GC test from (18).
The process of this section shown as follow :

gen_sparseAR.m
System matrices

for
GC test

solve
DARE

Reduced model

solve
DARE

Examine
GC test(Fij)

A

(A, C, W ) (A, CR, W )

ΣR

Σ

Given the structure of linear AR model shown as Fig. 4. The result from Ganger causality based on AR

sparsity of AR coefficients

Figure 4: The sparsity for each Ai that generated from gen_sparseAR.m

model from (6) is (Ak)ij = 0. That means xj does not cause xi. From figure 4, A13 and A31 is zero
so that x3 does not cause x1 and x1 does not cause x3. The expected result of this experiment is the
result of GC test on state space model that should be the same structure as GC test from AR model.
From the MATLAB code, denoted F as GC test from ground truth AR model and Fr as GC test from
state space.
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>> F

F =

0.5207 0.0016 0.0000
0.2412 0.4073 0.1417
0.0000 0.0282 0.1385

>> F_r

F_r =

0.5207 0.0016 0.0000
0.2412 0.4073 0.1417
0.0000 0.0282 0.1385

It was found that the result of GC test from state space model based on ground truth model (Fr)
has the same structure as GC test from AR model (F). The element of F and Fr shows the same value.
This means Granger causality test on AR model is the special case for GC test on state space model
since general state space have free parameters but state space model from AR has a fixed structure.

6.2 GC Test of estimated state space model

After we verified that GC test from state space models with ground truth AR model give the same result
as GC test on AR model, we perform GC test for any estimated state space models in this experiment.
The expected result of GC test on estimated state space model in this experiment is the same result as
GC test on AR model. The estimated state space models were obtained by using subspace method with
time series data from gen_EEG_sources.m based on system matrices from (19) which were generated
from gen_sparseAR.m and lead field matrix L is random with normal distribution. In procedure of
subspace method, we use subspace identification toolbox in MATLAB called n4sid which is one of the
subspace methods to determine system matrices and also noise variance in terms of innovation form
[19] [20].

x(t+ 1) = Ax(t) +Ke(t) (20a)
y(t) = Cx(t) + e(t) (20b)

We assume that the dimension of estimated state space matrices are the same as dimension of all
system matrices from (19). After subspace method were done, we obtained all system matrices (Â, Ĉ
with covariance of noise). Then, we set state space model for GC test (14). Finally, we examine GC
test from (18). The process of this section shown as follow :

10



gen_sparseAR.m gen_EEG_sources.m

Stochastic
Subspace

Identification

Set structure
for

GC test

Perform
GC test

A

y(t)

(Â, Ĉ)
with covariance

of noise

(Â, I)
with covariance

of noise

F

We compared Granger causality test result between Autoregressive model (F) and estimated state space
model (Fss). For estimated state space model, we choose np order because there is the same dimension
as state space model with Autoregressive ground truth model.

>> F

F =

0.5207 0.0016 0.0000
0.2412 0.4073 0.1417
0.0000 0.0282 0.1385

>> F_ss

F_ss =

0.2162 0.2033 0.6843
0.2532 3.1890 0.7549
0.2575 0.9480 1.4804

The results showed that F from state space model that estimated from subspace identification
are not the same value and not the same structure as AR model GC test result. The result implies
contradiction to our hypothesis that F have to be same structure for AR model and estimated state
space model based on ground truth AR model. The reason can be probably in the subspace identification,
the fitting of estimated model (ŷ) is not high enough compared to actual data. The comparison of time
series data are shown in figure 5
We generated 4097 data points in this experiment. As we look closer at the estimated time series data,
the estimated data (ŷ) followed the actual data (y) until reach 40 datas in which ŷ amplitude started
to be unchanged follow to y
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Figure 5: Comparison of simulated time series data with the data that we estimate from subspace
identification at first 100 points
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7 Project overview

7.1 Scope of work

The scope of this project are as follow :

1. We consider a comparison of Granger causality test

2. We consider linear time invariant model only and using estimation method based on least square.

3. Experimental results are mainly consist of

(a) Show performance of Granger causality test from Autoregressive model compare to state
space model on simulated data set.

(b) Learn brain connectivity of real EEG data sets from healthy person and epilepsy person.

7.2 Expected outcomes

1. Schemes for estimating state space models that describe brain relationship of variables from time
series.

2. MATLAB codes for the proposed scheme.

3. Comparison results of brain connectivity learned from two groups of EEG time series.

7.3 Project plans

2017 2018

Aug Sep Oct Nov Dec Jan Feb Mar Apr May

75% completeLiterature Review on Granger causality

Exploration on generated EEG data

55% completeSubspace Identification on generated data

Improvement on model estimation compare with real data

Analysis on estimated model

Analysis on brain connectivity in two conditions

Report summary

Figure 6: Gantt chart of the project

In the first semester, we reviewed on Granger causality on AR model and state space model.
Moreover, we studied on MATLAB code that generate EEG data. Also, we studied subspace identifi-
cation for estimating system matrices from simulated time series data. We decided to choose N4SID
[19] as the method for subspace identification. However, we have to examine further about subspace
identification toolbox MATLAB code because the result of an experiment did not satisfy GC test for AR
model.

In the second semester, we will continue review on Granger causality. In this section, we will
prove that with EEG data, Granger causality test for state space model are perform better than GC
test for AR model. Moreover, after we study further about subspace identification, we will improve
estimated model to analyze data from two groups of EEG time series : healthy person and person with
epilepsy. Then, we analyze brain connectivity in two conditions.
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8 Appendices

8.1 Simplification of DARE applied to AR model

For AR model case, we examine GC test that xj(t) causes or does not cause xi(t) by comparing
noise covariance of reduced model (ΣR

ii : Noise covariance when we remove xj from the model.) and
full model by (6). When we determine GC test on state space model based on AR model (19), noise
covariance can be calculated by using steady state Kalman filter that satisfies discrete Riccati equation
(17). In this section, we demonstrate that the solution of discrete Riccati equation can be simplified

to Σ =
[
Σ11 Σ12
ΣT

12 Σ22

]
=
[
W1 0
0 0

]
We can simplify Σ that we solve from into more similar form (17) by

given
(
W ∈ Rnp×np and W =


W1 0 . . . 0

0 . . . 0
... . . . ...
0 0


)

Given A =
[
A1 A2 . . . Ap−1

]
and Σ ∈ Rnp×np are in formation as :

 U V

V T R

 where Uij ∈

Rp×p denote the (i, j)th block of U
From

Σ = AΣAT +W −AΣCT (CΣCT )−1CΣAT

we simplify in each term

AΣAT =


A Ap

I 0


 U V

V T R


 AT I

AT
p 0



=


AUAT +ApV

TAT + AV AT
p +ApRA

T
p AU +ApV

T

UAT + V AT
p U

...


(21)

AΣCT =


A Ap

I 0


 U V

V T U



I

0

0



= First block column of


AU +ApV

T

U



=



p∑
i=1

AiΣi,1

Σ11
Σ21

Σp−1,1



(22)

CΣAT = (AΣCT )T =
[ p∑

i=1
Σ1,iA

T
i Σ11 Σ12 . . . Σ1,p−1

]
(23)

CΣCT = Σ11 (24)

15



Then, combine all above terms (21), (22), (23) and (24) into DARE U V

V T R

 =


AUAT +ApV

TAT + AV AT
p +ApRA

T
p AU +ApV

T

UAT + V AT
p U



+


W1 0 . . . 0

0 . . . 0
... . . . ...
0 0

−


p∑
i=1

AiΣi,1

Σ11
Σ21
...

Σp−1,1


(Σ11)−1

[ p∑
i=1

Σ1,iA
T
i Σ11 Σ12 . . . Σ1,p−1

]

(25)

From (21)

UAT + V AT
p =


Σ11 Σ12 . . . Σ1,p−1

Σ21
. . . Σ2,p−1

... . . . ...
Σp−1,1 Σp−1,p−1



AT

1
AT

2
...

AT
p−1

+


Σ1,p

Σ2,p
...

Σp−1,p

AT
p

=



p∑
i=1

Σ1,iA
T
i

p∑
i=1

Σ2,iA
T
i

...
p∑

i=1
Σp−1,iA

T
i



(26)

Determine Σ21 Σ21 = (First row blocks of UAT + V AT
p )− Σ11(Σ−1

11 )
p∑

i=1
Σ1,iA

T
i

=
p∑

i=1
Σ1,iA

T
i −

p∑
i=1

Σ1,iA
T
i = 0

For the others i,Σ2,i = Σ1,i − Σ11(Σ1,1)−1Σ1,i = 0. This means Σ2,i = 0 for all i = 1, 2, . . . , p

Determine Σ31 Σ31 = (Second row blocks of UAT + V AT
p )− Σ21(Σ−1

11 )
p∑

i=1
Σ1,iA

T
i

=
p∑

i=1
Σ2,iA

T
i = 0 (Σ2,i = 0 for all i)

For the others i,Σ3,i = Σ2,i − Σ21(Σ11)−1Σ2,i = 0 where i = 2, 3, . . . , p. This means Σ3,i = 0 for all
i = 1, 2, . . . , p
Consequently, Σi,j = 0 for all i = 1, 2, . . . , p, j = 1, 2, . . . , p except for Σ11

Determine Σ11 Σ11 = A1Σ11A
T
1 +W1 −A1Σ11(Σ11)−1Σ1,1A

T
1

= W1

The result of Riccati equation remains only block Σ11 = W1. Therefore, it satisfies that Σ = W
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8.2 CAk
c K coefficients

The results of GC test on AR model (6) can be derived as coefficient (Ak)ij = 0,∀k which means xj(t)
does not cause xi(t). Meanwhile, the results of GC test on state space model (8) can also be measured
by CAk

cK coefficient [13]. When CiAkKj = 0,∀k, i = 1, . . . , n − 1, it means xj(t) does not cause
xi(t) In this section, we showed that the coefficient from GC test on AR model have same structure to
the coefficient from GC test on state space based on ground truth AR model.

Coefficient of GC test on AR model : (Ak)ij = 0 , ∀k (27a)
Coefficient of GC test on state space model : CiAkKj = 0 , ∀k, i = 1, . . . , n− 1 (27b)

First, we determine K from (15) based on ground truth AR model shown as :

K = AΣCT (CΣCT + V )−1

= A
[
ΣT

11 ΣT
12 . . . ΣT

1p

]T
Σ−1

11

Because only Σ11 is nonzero matrix

= A
[
I 0 . . . 0

]T
=
[
AT

1 I 0 . . . 0
]T

(28)

Given state observer closed loop observer gain Ac = A−KC. From (19) we have

Ac = A−KC

=


0 A2 . . . Ap

0 0 . . . 0
. . . . . . ...

0 . . . I 0

 (29)

Then, multiply by C on the left hand side and K on the right hand side :

CAk
cK =

[
I 0 . . . 0

]


0 A2 . . . Ap

0 0 . . . 0
. . . . . . ...

0 . . . I 0


k

A1
I
0
...
0

 (30)

when k = 0 CK = A1
when k = 1 CAcK = A2
when k = 2 CA2

cK = A3
...

...
when k = p− 1 CAp−1

c K = Ap

Because A1 , A2 , . . . , Ap have the same structure so that if we assume (A1)ij = 0 that means
(Ac)12 = 0. Therefore, Ac = A−KC yields the necessary and sufficient condition CiAk

cKj = 0 by the
Cayley-Hamilton Theorem.
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8.3 MATLAB functions in this project

• gen_sparseAR.m [18] : This function generates structure of each Ai in AR model. To activate
this function, state space dimension (n), number of AR order (p) and density is defined by user.

gen_sparseAR.m
n, p, density A

• gen_EEG_sources.m : This function generates time series data (y) from A that are generated
from gen_sparseAR.m with lead field matrix L are random with normal distribution

gen_EEG_sources.m
A, L y(t)

• gen_timeseries.m : This function generates EEG time series data that are calculated as the
source from EEG later in gen_EEG_sources.m. "Num" is number of points for time series
data.

gen_timeseries.m
A, Num x

• GCTest.m : This function calculate Riccati equation for both full model and reduced model.
Then, calculate Granger causality function (F) and also coefficient CAk

cK. The state space
structure for GC test is required so that we have to set C = I before activate this function.

GCTest.m
A, C,W, V, S F , CAk

cK
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