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Abstract

Studies of brain connectivity can bring relevant information about the activity from activated
network using Autoregressive model is one of widely-used methods to analyze brain connectivity.
However, this model do not completely describe EEG data components because EEG time series
data may be consisted of Moving average (MA) component. In this project, we consider state-space
model of EEG signals by using subspace identification and learn brain connectivity by using Granger
causality. System matrices of state-space model were estimated to fit time series. Granger causality
was used for learning brain connectivity from state-space model. We also used H2-norm, H∞-
norm and pole position classified EEG signal into data in normal condition or in seizure condition.
Because these features can indicate system frequencies and system output response which different
in both conditions. All experiments conducted by using EEG data from the Children’s Hospital of
Boston. The results showed that when we estimated EEG data on AR model, Baysian Information
Citerion tended to choose order 2. Moreover, fitting of time series from estimated state-space
model is approximately 12.2% in average, comparing to actual EEG time series. This result caused
unrealiability of EEG classification. Despite the fact that pole of seizure data have similar distribution
compared to pole of normal data and system norm of seizure data had more energy than system
norm of normal data. In addition, EEG model estimation caused the result of brain connectivity
which we learned by using Granger causality test on state-space model and AR model.
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Figure 1: Number of publications in the PubMed database using the search term in "5-year increments".
[1]

1 Introduction
Nowadays, there has been a growing interest in learning brain connectivity. According to number

of brain connectivity publications indexed by PubMed (https://www.ncbi.nlm.nih.gov/pmc/),
the number of publications is likely to be an exponential growth since 1969 [1] because the measure with
associated signal processing are probably bring relevant information about the activity from activated
network and also disrupted network that associated with tumors [2]. There are many methods to analyze
how a group of neurons affects to the others, such as Dynamic causal modeling (DCM) and Granger
causality (GC) [3]. One of widely-used method to analyze brain connectivity is Granger causality via
Autoregressive (AR) model.

y(t) = A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p) + e(t) (1)

where y is output signal which is EEG signal, e is measurement noise and Ai is matrix explains
relationship between signal in the past. However, time series data for actual EEG data may have Moving
average (MA) component so that pure AR modeling may not be sufficient for EEG signals [4]. According
to [5] , the result of Granger causality test on model (1) explain only causality relationship between
output signal (y) but indeed the objective is to find causality relations between sources generating in
the brain which are cannot be directly measured cover through AR model.

This project focuses on identifying EEG sources in state space model which can be described
not only AR model but also Autoregressive Moving Average with Exogenous input (ARMAX) model. A
state space model have sufficient components of actual EEG data. With this advantage, we can analyze
brain connectivity by using Granger causality on state space model so that we can learn causality
relation between sources (x), not scalp signals that explore GC on the surface (y). A state-space model
we represent in this project are shown in (2)

x(t+ 1) = Ax(t) + w(t) (2a)
y(t) = Cx(t) + v(t) (2b)

In fact, we do not have information about parameters in state space model. The only information that
we know is EEG time series data. For this reason, our study will also focus on subspace identification
to identify system matrices for state space model. Subspace identification is a tool which is used for
estimating state sequence and system matrices of model. This method is very useful because we can
estimate all unknown state space variables and parameters with only prior knowledge (time series data).
Moreover, system parameters of state-space can be used for classifying EEG data in two conditions which
are normal condition and seizure condition because system parameters indicate system characteristics,
such as system frequencies, magnitude of output response and peak gain of system.
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2 Project Overview

2.1 Objectives

The objective of this study are the following

1. To estimate linear EEG model described by state space model using subspace method.

2. To learn brain connectivity for EEG signal by using Granger causality test on state space model.

2.2 Scope of Work

The scope of this project are as follow :

1. We consider a brain connectivity comparison of Granger causality test

2. We consider linear time invariant model only and using estimation method based on least square.

3. Experimental results mainly consists of

(a) Show performance of Granger causality test from Autoregressive model compare to state
space model on simulated data set.

(b) Learn brain connectivity of real EEG data sets from two conditions : normal and seizure.

2.3 Expected Outcomes

1. Schemes for estimating state space models that describe brain relationship of variables from time
series.

2. MATLAB codes for the proposed scheme.

3. Comparison results of brain connectivity learned from two groups of EEG time series.

3 Methodology
In this project, we estimate of EEG time series to system matrices of state space model in terms of (2)

where x ∈ Rn is brain source with n nodes at time t , y ∈ Rm is an EEG measurement contains
m sources at time t which is only data we know , A ∈ Rn×n denotes parameters explains relationship
of brain sources in the past , C ∈ Rm×n is unknown parameters describe relationship between EEG
measurement and brain sources , w(t) and v(t) are internal noise from source and noise from measure-
ment, respectively and w(t) = Kv(t) where K ∈ Rn×m is state disturbance matrix. The variables and
parameters describe in the following table.

Table 1: Variables and parameters in this project

Variables Parameters
Measured Unknown Known Unknown

y(t) x(t) A
v(t) C

K

We use subspace method to estimate state space model since only EEG measurement (y) are known
and brain source (x) are not measured. The assumptions for parameters are that (A, C) are observable,
(A,K) are controllable and noise covariance is positive definite. After that, we examine Granger
causality test from any estimated state space model. The result from GC test can refer to brain
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connectivity.

Moreover, we focus on finding differences of EEG data in two conditions (normal and seizure condition).
We observe estimated parameters from state space. System norm shows energy of the system. We can
also observe parameters by calculating pole position of systems. Pole position gives information about
system oscillation.

3.1 Stochastic subspace method

We estimate sources and system matrices (in this case : A, C,W ,V ) by using stochastic subspace
method. The estimation process starts by estimating sources. Since, EEG linear model have no input
so that the estimation will use stochastic subspace method. In this method we focus on estimate
state sequence first. The process starts by dividing data by time to obtain past data and future data.
Then, project the future output (Yf ) onto the past output (Yp) space with zero initial state (X̂0 =[
0 . . . 0 . . . 0

]
) [6].

Oi
∆= Yi | 2i−1/Y0 | i−1 = Yf/Yp (3)

where Oi is the oblique projection and Y0 | i−1 is measurement data from t = 0 to t = i− 1. After that,
compute the state from single value decomposition (SVD) factorization.

Oi =
[
U1 U2

] [Σn 0
0 0

] [
V T

1
V T

2

]
= U1ΣnV

T
1 (4)

Since Oi = ΓiX̂i [7] and there are some non-singular matrix T that Γi = U1Σ1/2
n T so that we obtain

X̂i = Γ†iOi (5)

Then, estimate system matrices in least-square sense by forming the equation[
X̂i+1
Yi |i

]
=
[
A
C

]
X̂i +

[
ρw
ρv

]
[
Â

Ĉ

]
=
[
X̂i+1
Yi | i

]
X̂†i

(6)

with noise covariance as [
Ŵ Ŝ

ŜT V̂

]
= (1/j)

[
ρw
ρv

] [
ρw
ρv

]T
(7)

After process finished, we obtained Â, Ĉ, Ŵ and V̂ . Finally, we calculated state disturbance matrix K
by using relation between Ŵ and V̂ : Ŵ = KV̂ KT . After we obtained all system parameters, we used
them for learning brain connectivity by using Granger causality on state space model.

3.2 Granger causality test on state space model

This process happens after structured system matrices are solved. We choose state space model to
examine Granger causality. We use Granger causality test to examine brain connectivity of estimated
model. In this process, Before the process starts, we assume that there is no measurement noise and
w(t) is also uncorrelated. In this Granger causality test on state space, we examine if yj is a cause for
yi by removing yj from the model. To remove yj from the model, we force jth row of C from (2) be
zero so that full model become reduced model. Then, determine residual error of both models. Finally,
we determine log ratio of residual error of xi for each model [8].

Fyj→yi | All others y = log |Σ
R
ii |
|Σii|

(8)
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where |ΣR
ii | and |Σii| are prediction error covariance of xi for reduced model and full model, respectively.

Also, both ΣR
ii and Σii are calculated from optimal mean-squared error estimation which is derived by

Kalman filter.
The result of Granger causality test : when Fyj→yi | All others y > 0 because yi(t) in full model usually
have more fitting than yi(t) in reduced model and F = 0 means ΣR

ii = Σii. Therefore, yj(t) does not
cause yi(t).

In this process, we examine Granger causality test in two models : full model and reduced model. For full
model, we assume y(t) has the same dimension as x(t). That means we force number of measurement
sources equals to number of brain sources. This means we let C = I. To reduce the full model, we
assume each Cj = 0 (column j of C) which means we assume that value xj does not cause all others
x (since we assume that y(t)j = x(t)j for all j) . Therefore, y(t) is linear combination of all x except
for xj .

Full model : z(t+ 1) = Az(t) + w(t) , y(t) = Cz(t) (9a)
Reduced model : z(t+ 1) = Az(t) + w(t) , y(t) = CRz(t) (9b)

where C = I and CR is reduced matrix that the jth row of C is zero.
After that, we find estimation error covariance : Σ = Cov(z − ẑt | t−1) of both model. To obtain
optimal prediction error covariance, we estimate ẑ by using minimum mean square error because with
this method, the error from noise is minimized. Therefore, we will get x̂ = E{xt | x−t−1}where y−t−1 is
all output data from the past up to time t − 1 and x̂ = E{xRt | xR−t−1} for reduced model. After this,
we calculate estimation error covariance by using Kalman Filter [9] because of optimal method in linear
model form :

x̂t+1 | t = Ax̂t | t−1 +AΣt | t−1C
T (CΣt | t−1C

T +R)−1(yt − Cx̂t | t−1)
= Ax̂t | t−1 +K(yt − ŷt | t−1)

(10)

where K = AΣt | t−1C
ᵀ(CΣt | t−1C

T + V )−1 is Kalman gain K from (2) and wt can be expressed by
yt − ŷt | t−1 where ŷ is estimated by MMSE (ŷ = E{yt | y−t−1}) and for reduced model we will get εR

from yRt −E{yRt | yR−t−1}. From (10), time update gives a recursive solution. Therefore, we can express
measurement and time update of Σ as Riccati recursion [9].

Σt+1 | t = AΣt | t−1AT +W −AΣt | t−1C
T (CΣt | t−1C

T + V )−1CΣt | t−1AT

= AΣt | t−1AT +W −AΣt | t−1C
T (CΣt | t−1C

T )−1CΣt | t−1AT

(Assume that V is zero)
(11)

From (11) , this equation is the optimal way to find state prediction error covariance [10]. However,
we assume observation noise covariance is positive definite, (A, C) are observable and (A,W ) are
controllable so that we can solve steady state Kalman filter instead. The estimation of steady state
Kalman filter satisfies Discrete Algebaric Riccati Equation (DARE) :

Σ = AΣAT +W −AΣCT (CΣCT )−1CΣAT (12)

There are two methods to examine Granger causality. The first method is to find log ratio of covarience
of prediction error (Σ from solving of Riccati equation). Then, we suggest to determine the time-domain
Granger causality shown as [8]:

Fxj→xi | All others x = log |Σ
R
ii |
|Σii|

(13)

where |ΣR
ii | and |Σii| is estimation error covariance of xi for reduced model and full model, respectively.

In general, ΣR
ii is usually larger than Σii because full model contains more information than reduced

model so that the estimation error covariance of xi is small when it has more information. If the result
is zero, it means |ΣR

ii | = |Σii| implying xj does not affect xi conditioning to all others x. Otherwise,
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the value is always positive because reduced model is come up with more covariance magnitude.

Another method to examine Granger causality is to find the coefficient [8]

CiAkcKj where k = 0, 1, . . . , p− 1 (14)

Denote Ac as state observer closed loop observer gain. Therefore, Ac yields the necessary and sufficient
condition by the Cayley-Hamilton Theorem. (See Appendix 7.2)

3.3 System norm calculation

We determine systems which are time-invariant, linear and causal. Given H as transfer function of the
system so that we can formulate the systems as time-domain convolution.

y = H ∗ u (15)

where H(z) = C(zI −A)−1B
The system norm is energy of dynamical system which can be calculated either ‖H‖2 or ‖H‖∞. ‖H‖2‖
gives root mean square of impulse response of system. In this case, ‖H‖2 are given by [11]

‖H‖2 =
√

1
2π

∫ π

−π
Trace[H(ejω)GH(ejω)] dω (16)

The other system norm is calculated by ‖H‖∞ which is peak amplitude of bode plot of H.
Since system norm depends on magnitude, we use system norm for classifying EEG data into 2 conditions
in Figure (2)
EEG signal at seizure condition have more magnitude than EEG signal at normal condition so in
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(a) Sample of EEG signal in normal condition
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EEG signal in seizure condition
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(b) Sample of EEG signal in seizure condition

Figure 2: Example of EEG time series data

the following experiment, we expected that peak amplitude or system gain of seizure EEG signal are
significantly more than normal EEG signal. In this project, we determined system gain by using both
H2-norm and H∞-norm. We use MATLAB function norm to compute H2-norm and use MATLAB
function hinfnorm to compute H∞-norm.
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4 Data description
The data that we use in this project are collected at the Children’s Hospital of Boston. Each case
contains one hour of digitized signals. All signals were sampled at 256 samples per second with 16-bit
resolution. There are 23 channels by the International 10-20 system of EEG electrode positions. Each
position is labeled with a letter and a number. The letter means area that electrode lied [12]. For
example, F7 means node number 7 at Frontal lobe area [13].

Figure 3: Electrode locations of International 10-20 system for EEG recording. The letters F,T,C,P and
O stand for frontal, temporal, central, parietal, and occipital lobes, respectively.

Before the experiments started, we had to observe each case of EEG data. The case we selected for all
experiments have to satisfy the following conditions.

1. The case contained both normal data with parts of data in seizure condition.

2. Normal data and seizure data in each case had obvious time series dynamic.

3. Normal data had little disturbances (the amplitude of normal data are not large as seizure data)

One of tools to observed EEG data is MATLAB program called biosig of which user interface are shown
as Figure 4. Once the cases are chosen, some of project experiments required only a part of data or data

Figure 4: User interface of biosig on MATLAB

with only an interval so that we had to divded data in each case into trials. Each trial are 4 seconds long
with 1024 time points and contains only one condition of signal (either normal data or seizure data)
and there are 20 trials for each condition.
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5 Experimental results

5.1 Model estimation of EEG signals

In this section, we assumed data from ground truth model as EEG signals. Then, we estimated the
data into two forms; state-space model and linear time series model. Before the estimation starts, we
divided EEG data into trial. Each trial contains 4 seconds (1024 data points) of EEG data. Also, each
trial contains EEG signal only one condition (normal condition or seizure condition). We expect that
the result of the estimation are likely to be nearly the same as ground truth model data in terms of
model characteristic and model fitting.

State-space model In each trial, we used subspace method to estimate system parameters. We used
n4sid function on MATLAB. This function creates a plot which suggest suitable model order. The
plot contains Hankel singular values for models with various order. Moreover, we forced stability on
estimated parameters so that we can calculate system gain in next experiment (otherwise, system gain
is infinity). From n4sid function, most of trials choose order 25 so that we choose system order 25 for
each trial. After we obtained system parameters, we plotted estimated time series. Then, we compared
time series data with EEG data. The following figures are the comparison of EEG data estimation
results. Both Figures (5) and (6) contain first 9 trials from the same channel and each trial contains
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Figure 5: Fitting results of using state-space models on EEG data in normal condition (Line: EEG data,
Dashed: estimated data)

first 200 data points.
The result showed that data from state-space with estimated parameters converged to zeros for both
conditions. Estimated time series are likely to be more oscillate in seizure data results. The average
fiiting for state-space model is 12.2%

Autoregressive model In each trial, we used maximum likelihood estimation to determine AR
coefficients and AR order. First, we assumed that EEG data can be written as Autoregressive model
with various order. After that, we selected model order by using Baysian Information Citerion (BIC).
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Figure 6: Fitting results of using state-space models on EEG data in seizure condition (Line: EEG data,
Dashed: estimated data)

BIC = −2L+ d logN (17)

where L is log-likelihood objective function value. For AR model order p with n sources, d is number
of parameters which is n2p and N is complexity of model which is n2.
Finally, we compare estimation results of EEG data comparing to AR model with chosen order.
After we used maximum likelihood estimation to all trials, we plotted BIC scores shown in Figure (7)
Each point in Figure (7) means BIC score for each trial when we assumed trial as AR(p).The resulted

1 1.5 2 2.5 3 3.5 4 4.5 5

AR order (p)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

B
IC

 S
c
o

re

10
5 BIC Scores of AR(p) model

Figure 7: BIC scores of AR(p)
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show that AR(2) gives the best BIC scores for the most of trials. Next, we estimate all trials as AR(2).
After that, we plotted estimated time series data and compared with actual EEG data. Both Figures
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Figure 8: Fitting results of using AR models on EEG data in normal condition (Line: EEG data, Dashed:
estimated data)

(8) and (9) contain first 9 trials from the same channel and each trial contains first 200 data points.
Moreover, we compare fitting results of using AR model by using the same trials and same channel as
we compare fitting on state space model.
The average fiiting for AR model is 31.8%

Discussion: The estimated EEG signals from state-space model are poor in terms of fitting. We
presume that compare function in MATLAB that compare estimated model and EEG data is likely to
not efficient. That because the result from estimated model are always deterministic and we do not
know that the estimated model is accurate or not. Another reason is both functions have well fitting, if
ground truth model have deterministic input. (See Appendix 7.3) The estimated EEG signals from AR
model have higher fitting than one from state-space model but the estimation are still poor in terms
of fitting. We presume that EEG signals are contained not only AR components but also have other
component, such as MA component.

5.2 Classification of EEG data in normal and seizure condtion

The purpose of these experiments is to classify EEG data into two types : normal condition and seizure
condition. For both experiments, We divided EEG data for each case into number of trials. Also, in
each case, it contains EEG data with both conditions (Normal data with seizure interval). After that,
we estimated each trial by using subspace identification so that we obtained state-space model. We
used estimated state-space model for classifying EEG data. From EEG time series in figure (2), seizure
data have more magnitude and contain only one frequency and normal data have less magnitude with
higher multiple freqencies. Therefore, we used system norm to determine magnitude of the system and
we used pole position to determine system frequencies.
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Figure 9: Fitting results of using AR models on EEG data in seizure condition (Line: EEG data, Dashed:
estimated data)

Our hypothesis is EEG data can be classified by differencing of pole position and by differencing of
transfer function between noise and EEG data via H2-norm.

Results on differences of pole position In dynamical systems, pole represents rate of decay and
oscillation in time domain. In this experiment, we used estimated state-space model for determining
pole position (There is no zero because of no input data). These state-space model are from divided
EEG time series data. In each condition, we plotted pole position for each subtrial in the same figure
so that we observed distribution of pole which tells characteristic of data. Then, we compared pole
position between normal condition and seizure condition. From (2), we got relationship between EEG
signal data (y) and brain sources (x) as

y(t) = CAtx(0) +
t−1∑
n=0

At−n−1w(n) + v(t) (18)

Since EEG signal data depend on A, pole position which is eigenvalue of A gives our information about
decay rate and rate of oscillation. Decay rate can be observed by using magnitude of eigenvalue and
oscillation rate can be observed by using angle between imaginary part and real part of eigenvalue. We
expected that pole of seizure data show more oscillation compared to normal data which means pole
of seizure data have more angle than pole of normal data. From figure 10, most of pole are located at
unit circle. Distribution of pole location are similar in both conditions.

Results on differences of H2-norm In dynamical system, H2 gives a root mean square of system im-
pulse response. This process starts after finishing state-space parameters estimation. In each condition,
we calculated H2 in each trial which means the power of output response. Then, we compared system
norm between normal condition and seizure condition. We expected to see the differences of system
gain frequency location since normal condition have lower output response than seizure condition.
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(a) Pole of EEG data at normal condition
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(b) Pole of EEG data during seizure

Figure 10: Pole position of EEG data

Figure 11: Histogram of H2-norm for each trial

Results on differences of H∞-norm Another feature to calculate system gain is H∞-norm which
means the largest value of the frequency response magnitude. We compared peak gain between system
of normal condition and seizure condition. We expected to see that system of seizure condition have
maximum gain at higher frequency than seizure condition maximum system gain.

Discussion: For pole position, most of poles from both conditions are located on the right bound of
unit circle and pole distribution are similar for both condition. Therefore, we cannot classify EEG data
by using pole position. For H2-norm differences, Figure 11 shows that portion of trials that have higher
output response are mostly from seizure data. From Figure 12, most of system of seizure data peak
gain are higher than system of normal data peak gain but portion of trials that have higher peak gain
is not obviously discriminate between two conditions. That because we use the system that estimated
in terms of state space which are inaccurate from previous experiment. Therefore, we cannot confirm
that differences of pole placement and differences of peak gain are inefficient.
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Figure 12: Histogram of H∞-norm for each trial

5.3 Granger causality test on normal EEG data

In this section, we performed Granger causality on EEG data. We chose EEG data in normal condition.
After finishing the experiments, we were able to know brain connectivity. There are three experiments
in this section

1. We performed Granger causality test of y(t) on state-space model. The result shows brain con-
nectivity between EEG signal.

2. We performed Granger causality test of x(t) on state-space model. The result shows brain con-
nectivity between brain sources.

3. We performed GC test of y(t) on estimated AR model. The result shows brain connectivity
between EEG signal.

After we performed all three experiments, we discuss the results as the following :

1. Differences between Granger causality test of EEG sources y(t) and brain sources x(t).

2. Differences in terms of dynamic of Granger causality test on state-space model and the test on AR
model. We expected that Granger causality test on state-space model gives result that captures
more system dynamics than Granger causality test on AR model.

Granger causality test of y(t) on state-space model In this experiment, we learned Granger causal-
ity test of EEG signal on state-space model. The process starts after we calculated state-space system
parameters. First, we learned Granger causality on state-space model for each trial. For each trial, we
observed F . If Fij is less than 10−3, we assume that EEG signal yj are not cause yi. After we assumed
causality of EEG signal, we repeated the process until we did every trials. For every element of Fij , we
count number of trials that we assumed yj causes yi and plotted pairwise quantities on color map grid.
The results of Granger causality test shown in Figure (13) where y1, y2, . . . , y21 refer to EEG channel.
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GC test on y(t) of state-space model

1 2 3 4 5 6 7 8 9 101112131415161718192021

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

11

12

13

14

15

16

17

18

19

20

21

Figure 13: Granger causality test of y(t) on state-space model

The cell (i, j) which is filled in black means yj strongly causes yi. That means the cell which is white
filled means yj slightly causes yi.

Granger causality test of x(t) on state-space model In this experiment, we learned brain connec-
tivity of brain sources on state-space model. The process starts after we calculated state-space system
parameters. From (2), the relationship between states is written as first order autoregressive model.
Therefore, to performed GC test of x(t) on state-space model is to performed GC test of x(t) on AR
model. For each trial, we observed F by using pairwise-conditional time-domain causality with prior
information of autocovariance sequence. If Fij is less than 10−3, we assume that EEG source xj are
not cause xi. After we assumed causality of EEG sources, we repeated the process until we did every
trials. For every element of Fij , we count number of trials that we assumed xj causes xi and plotted
pairwise quantities on color map grid.
The results of Granger causality test shown in Figure (14) where x1, x2, . . . , x25 refer to brain sources.
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GC test on x(t) of state-space model
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Figure 14: Granger causality test of x(t) on state-space model

Granger causality test of y(t) on AR model In this experiment, we learned Granger causality test
of EEG sources on AR model. The process starts after we calculated coefficient of Ai for each trial.
From previous experiments, we choose AR order 2 because of the best BIC scores. From GC test on
AR model, if yj is not cause yi then [14],

(Ak)ij = 0 for all k = 1, 2, . . . , p (19)

For each trial, we observed (Ak)ij . We performed statistical test by using pairwise-conditional time-
domain causality with prior information of autocovariance sequence. If (Ak)ij = 0, we assume that EEG
source yj are not cause yi. After we assumed causality of EEG sources, we repeated the process until
we did every trials. For every element of (Ak)ij , we count number of trials that we assumed yj causes
yi and plotted pairwise quantities on color map grid.
The results of Granger causality test shown in Figure (14)
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GC test on y(t) of AR model
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Figure 15: Granger causality test of y(t) on AR(2) model

Discussion: For Granger causality test on state-space model, each Fij element of GC test of y(t)
shows less causality relation. That means there are some EEG channel which does not cause each
others. In contrast, Fij element of GC test of x(t) shows more causality relation. That means most of
brain sources causes each others. The reasons that causality relation are differences in two variables are
probably that the EEG sources are measured on the surface of scalp so that signals can be corrupted
by noise which may be affected distortion of causality relation. Moreover, the number of sources is not
equal to number of EEG channel so that we cannot interpret the causality relation of x(t). (We cannot
find true position of brain sources)

6 Conclusions
This project aims to estimate EEG model described by state-space model and to learn brain connectivity
for EEG signal by using Granger causality test. EEG data that we use are from the Children’s Hospital
Boston. We choose only the data with a little noise and obviously classify as normal data and seizure
data. Moreover, we removed some channels that dependent to other channel. After we obtained satisfied
EEG data, we divide the experiments into three parts. First, we estimate EEG data by using state-space
model and by using AR model. The result showed that the estimated model are not accurate in fitting
compare to real data. One of causes are the MATLAB function that compare simulated response are
not accurate by using compare function in MATLAB. We use infer function instead. However, infer
function works for univariate AR model which is not in our scheme. For AR model, the estimated
model is AR order 2 according to BIC scores. The fitting of estimated AR model is slightly higher than
estimated state-space model but it stills low in terms of fitting. That because EEG signals may also have
other component, such as MA component. Second part is to classify EEG data into two types; normal
condition and seizure condition. We divided EEG data into number of subtrials. We computed system
from estimated state-space model from previous part. Then, we plot pole placement of system and also
find peak gain (H2-norm) of the system. The result showed that both pole position of normal data are
similar to seizure data but system output response of normal data are obviously less than seizure data.
It means seizure data has more magnitude than normal data but we cannot confirm that both algorithm
are not suitable for classify EEG data since the estimated data are not accurate. The final part is to
learn brain connectivity by using Granger causality test in 3 types. First, we learned brain connectivity of
EEG signals (y(t)) on state-space model. Second, we learned brain connectivtiy of EEG sources (x(t))
on state-space model. Third, we learned brain connectivity of EEG signals (y(t)) on AR model.
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7 Appendices

7.1 Simplification of DARE applied to AR model

For AR model case, we examine GC test that xj(t) causes or does not cause xi(t) by comparing
noise covariance of reduced model (ΣR

ii : Noise covariance when we remove xj from the model.) and
full model by (??). When we determine GC test on state space model based on AR model (??), noise
covariance can be calculated by using steady state Kalman filter that satisfies discrete Riccati equation
(12). In this section, we demonstrate that the solution of discrete Riccati equation can be simplified

to Σ =
[
Σ11 Σ12
ΣT

12 Σ22

]
=
[
W1 0
0 0

]
We can simplify Σ that we solve from into more similar form (12) by

given
(
W ∈ Rnp×np and W =


W1 0 . . . 0

0 . . . 0
... . . . ...
0 0


)

Given A =
[
A1 A2 . . . Ap−1

]
and Σ ∈ Rnp×np are in formation as :

 U V

V T R

 where Uij ∈

Rp×p denote the (i, j)th block of U
From

Σ = AΣAT +W −AΣCT (CΣCT )−1CΣAT

we simplify in each term

AΣAT =


A Ap

I 0


 U V

V T R


 AT I

ATp 0



=


AUAT +ApV

TAT + AV ATp +ApRA
T
p AU +ApV

T

UAT + V ATp U
...


(20)

AΣCT =


A Ap

I 0


 U V

V T U



I

0

0



= First block column of


AU +ApV

T

U



=



p∑
i=1

AiΣi,1

Σ11
Σ21

Σp−1,1



(21)

CΣAT = (AΣCT )T =
[ p∑
i=1

Σ1,iA
T
i Σ11 Σ12 . . . Σ1,p−1

]
(22)

CΣCT = Σ11 (23)
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Then, combine all above terms (20), (21), (22) and (23) into DARE U V

V T R

 =


AUAT +ApV

TAT + AV ATp +ApRA
T
p AU +ApV

T

UAT + V ATp U



+


W1 0 . . . 0

0 . . . 0
... . . . ...
0 0

−


p∑
i=1

AiΣi,1

Σ11
Σ21
...

Σp−1,1


(Σ11)−1

[ p∑
i=1

Σ1,iA
T
i Σ11 Σ12 . . . Σ1,p−1

]

(24)

From (20)

UAT + V ATp =


Σ11 Σ12 . . . Σ1,p−1

Σ21
. . . Σ2,p−1

... . . . ...
Σp−1,1 Σp−1,p−1



AT1
AT2
...

ATp−1

+


Σ1,p
Σ2,p
...

Σp−1,p

ATp

=



p∑
i=1

Σ1,iA
T
i

p∑
i=1

Σ2,iA
T
i

...
p∑
i=1

Σp−1,iA
T
i



(25)

Determine Σ21 Σ21 = (First row blocks of UAT + V ATp )− Σ11(Σ−1
11 )

p∑
i=1

Σ1,iA
T
i

=
p∑
i=1

Σ1,iA
T
i −

p∑
i=1

Σ1,iA
T
i = 0

For the others i,Σ2,i = Σ1,i − Σ11(Σ1,1)−1Σ1,i = 0. This means Σ2,i = 0 for all i = 1, 2, . . . , p

Determine Σ31 Σ31 = (Second row blocks of UAT + V ATp )− Σ21(Σ−1
11 )

p∑
i=1

Σ1,iA
T
i

=
p∑
i=1

Σ2,iA
T
i = 0 (Σ2,i = 0 for all i)

For the others i,Σ3,i = Σ2,i − Σ21(Σ11)−1Σ2,i = 0 where i = 2, 3, . . . , p. This means Σ3,i = 0 for all
i = 1, 2, . . . , p
Consequently, Σi,j = 0 for all i = 1, 2, . . . , p, j = 1, 2, . . . , p except for Σ11

Determine Σ11 Σ11 = A1Σ11A
T
1 +W1 −A1Σ11(Σ11)−1Σ1,1A

T
1

= W1

The result of Riccati equation remains only block Σ11 = W1. Therefore, it satisfies that Σ = W
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7.2 CAkcK coefficients

The results of GC test on AR model (??) can be derived as coefficient (Ak)ij = 0,∀k which means
xj(t) does not cause xi(t). Meanwhile, the results of GC test on state space model (8) can also be
measured by CAkcK coefficient [8]. When CiAkKj = 0,∀k, i = 1, . . . , n − 1, it means xj(t) does
not cause xi(t) In this section, we showed that the coefficient from GC test on AR model have same
structure to the coefficient from GC test on state space based on ground truth AR model.

Coefficient of GC test on AR model : (Ak)ij = 0 , ∀k (26a)
Coefficient of GC test on state space model : CiAkKj = 0 , ∀k, i = 1, . . . , n− 1 (26b)

First, we determine K from (10) based on ground truth AR model shown as :

K = AΣCT (CΣCT + V )−1

= A
[
ΣT

11 ΣT
12 . . . ΣT

1p

]T
Σ−1

11

Because only Σ11 is nonzero matrix

= A
[
I 0 . . . 0

]T
=
[
AT1 I 0 . . . 0

]T
(27)

Given state observer closed loop observer gain Ac = A−KC. From (??) we have

Ac = A−KC

=


0 A2 . . . Ap
0 0 . . . 0

. . . . . . ...
0 . . . I 0

 (28)

Then, multiply by C on the left hand side and K on the right hand side :

CAkcK =
[
I 0 . . . 0

]


0 A2 . . . Ap
0 0 . . . 0

. . . . . . ...
0 . . . I 0


k

A1
I
0
...
0

 (29)

when k = 0 CK = A1
when k = 1 CAcK = A2
when k = 2 CA2

cK = A3
...

...
when k = p− 1 CAp−1

c K = Ap
Because A1 , A2 , . . . , Ap have the same structure so that if we assume (A1)ij = 0 that means
(Ac)12 = 0. Therefore, Ac = A−KC yields the necessary and sufficient condition CiAkcKj = 0 by the
Cayley-Hamilton Theorem.
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7.3 Estimation of time series data from state-space model

We estimated EEG signals from state-space model

z(t+ 1) = Az(t) +Bu(t) +Kv(t) (30a)
y(t) = Cz(t) +Du(t) + v(t) (30b)

From (30), we created all system matrices (A,B,C,D,K) and assume noise v(t) as Gaussian distribution
with zero mean and unit variance. Then, we obtained time series data from state-space. After that,
we use time series data to perform subspace identification into estimated system matrices. In this
experiment, we will use N4SID algorithm to calculate estimated system matrices with ground-truth model

We generated output data (y) from ground truth model with 4 conditions. First, the output data without
deterministic input and noiseless. Second, the output data with deterministic input and noiseless. Third,
the output data with only noise and the output data with both noise and detrministic output. As shown
in Figure 16
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Figure 16: Time series data with all conditions

In N4SID algorithm, we divided into 2 cases. First, we performed N4SID from time series with deter-
ministic input.
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Figure 17: Time series data generated from ground truth state space model with deterministic input
(Red line : with noise , Blue dash : without noise)

Then, we performed N4SID to the time series data. We choose time series data with noise and choose
second order estimated model that is the same order as ground truth state space model. The result is
shown in Figure 18.
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Figure 18: Comparison between time series data with noise and time series data from estimated state
space model.

The result showed that N4SID can estimate time series data properly. Comparing to Figure 17, the
estimated time series data is nearly the same as time series data from ground truth model without noise.
Moreover, when we observed eigenvalues of ground truth model and estimated model. It shows that
some modes of estimated model are near ground truth state space model.
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In the second case, we performed the same method but we set B from ground truth state space model

to zero
(
B =


0
0
0
0

)
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Figure 19: Time series data generated from ground truth state space model (Red line : with noise ,
Blue dash : without noise)

From Figure 19, time series data remains only noise despite nonzero initial state. Next, we use time
series data with noise to estimate state space model by using N4SID method.
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Figure 20: Comparison between time series data with noise and time series data from estimated state
space model.
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For eigenvalue of estimated model, it is obvious that eigenvalues of estimated model are different from
eignevalues of ground truth state space model.

7.4 MATLAB function in this project

• Data preparation: We use this function for dividing a case of EEG data into trials, we have to
defined data point that seizure condition occur and also defined duration for each trial.

1 % Deve loped by : Satayu Chunnawong
2 % F a c u l t y o f Eng i n e e r i ng , Chu la l ongko rn U n i v e r s i t y
3 %% Div ideData : D i v i d e EEG data i n a ca se i n t o t r i a l .
4

5 % Inpu t − s t r u c t u r e v a r i a b l e type tha t c o n t a i n s
6 % r e c − a c t u a l EEG r e c o r d s
7 % s t a r t _ s e i z u r e − data p o i n t t ha t s e i z u r e o c c u r s
8 % sta r t_no rma l − normal EEG data p o i n t t ha t u s e r s e l e c t s
9 % e n d _ s e i z u r e − data p o i n t t ha t s e i z u r e ends

10 % window_time − t ime o f EEG data f o r each t r i a l
11 % Output −
12 % NormalData − Data wi th l e n g t h depends on window t ime .
13 % Se i zu r eData − EEG s e i z u r e data wi th l e n g t h depends on window t ime .
14 % NoOfTr ia l − Number o f t r i a l t h a t a l r e a d y d i v i d e d .
15 % NoOfRecord − Number o f data f o r each t r i a l .
16

17 f u n c t i o n [ NormalData , Se i zu reData , NoOfTr ia l , NoOfRecord ] = Div ideData ( Sample )
18

19 t = Sample . window_time ;
20

21 % NoOfSubTria l depends on s e i z u r e l e n g t h and window s i z e so tha t we
22 % count s u b t r i a l f o r s e i z u r e ca s e .
23

24 t r a c k = 0 ;
25

26

27 % D i v i d e s e i z u r e data
28 % A f t e r data a r e d i v i d e d , we n e g l e c t 1 second data a f t e r each t r i a l .
29 f o r i = Sample . s t a r t _ s e i z u r e : t +1: Sample . e n d _ s e i z u r e
30 t r a c k = t r a c k +1;
31 Se i zu r eData ( : , : , t r a c k ) = Sample . r e c ( : , i ∗256 : ( i+t ) ∗256) ;
32 end
33

34 %D i v i d e normal data by u s i n g the same number o f Se i zu r eData t r i a l s .
35 %A f t e r data a r e d i v i d e d , we n e g l e c t 1 second data a f t e r each t r i a l .
36 f o r i = 1 : t r a c k
37 NormalData ( : , : , i ) = Sample . r e c ( : , Sample . s t a r t_no rma l +( i −1)∗ t ∗256 : Sample .

s t a r t_no rma l+i ∗ t ∗256) ;
38 end
39 NoOfTr ia l = t r a c k ;
40 NoOfRecord = t ∗256+1;
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• State space model and AR model estimation: After we completed preparing data, we use data
from each trial to determine state space and AR model. For state-space model, we use n4sid
function to estimate state space and use varm.estimate to determine AR(p) order of EEG
model.

1 % Deve loped by : Satayu Chunnawong
2 % F a c u l t y o f Eng i n e e r i ng , Chu la l ongko rn U n i v e r s i t y
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % State −space model e s t i m a t i o n
5 % Output − c e l l which c o n t a i n s s t a t e space e s t i m a t i o n f o r each t r i a l
6 f u n c t i o n [ NormIddata , S e i z u r e I d d a t a , NormalModel , Se i zu r eMode l ] = EEG_EstMdlSS (

NormalData , Se i zu reData , NoOfTr ia l , NoOfRecord )
7

8 f o r i = 1 : NoOfTr ia l
9 u = z e r o s (21 , NoOfRecord ) ;

10 %We n e g l e c t EEG channe l 19 and 23 becuase depend on o t h e r c h a n n e l s
11 NormDat = NormalData ( 1 : 1 8 , : , i ) ;
12 NormDat = [ NormDat ; NormalData ( 2 0 : 2 2 , : , i ) ] ;
13 Se i zDat = Se i zu r eData ( 1 : 1 8 , : , i ) ;
14 Se i zDat = [ Se i zDat ; Se i zu r eData ( 2 0 : 2 2 , : , i ) ] ;
15 yNormal = i d d a t a ( NormDat ’ , u ’ , 1/256 ) ;
16

17 NormIddata { i , 1} = yNormal ;
18 y S e i z u r e = i d d a t a ( Se izDat ’ , u ’ , 1 /256 ) ;
19 S e i z u r e I d d a t a { i , 1} = y S e i z u r e ;
20

21 % We e n f o r c e s t a b i l i t y on N4SID
22 opt = n 4 s i d O p t i o n s ( ’ E n f o r c e S t a b i l i t y ’ , t r u e ) ;
23 [ EstMdl , x0 ] = n 4 s i d ( yNormal , 2 5 , opt ) ;
24 [ EstMdlSe iz , x 0 S e i z ] = n 4 s i d ( ySe i zu r e , 2 5 , opt ) ;
25

26 NormalModel { i } = EstMdl ;
27 Se i zu r eMode l { i } = EstMdlSe i z ;
28 end
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1 % Deve loped by : Satayu Chunnawong
2 % F a c u l t y o f Eng i n e e r i ng , Chu la l ongko rn U n i v e r s i t y
3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % AR E s t i m a t i o n
5 f u n c t i o n [ NormAR , SeizAR , SIGNorm , S IGSe i z ] = EEG_EstMdlAR( NormIddata ,

S e i z u r e I d d a t a , NoOfTr ia l , p )
6 % Determine BIC s c o r e s
7 l ogL = z e r o s (23 ,5 ) ;
8 f o r i = 1 : NoOfTr ia l
9 yM = ( NormIddata { i , 1 } . y ) ’ ;

10 f o r j = 1 :5
11 Mdl = varm (21 , j ) ;
12 [ ~ , ~ , l ogL ( i , j ) ] = e s t i m a t e ( Mdl , yM’ ) ;
13 end
14 end
15

16 % Eva lua t e AIC and BIC s c o r e s f o r AR model
17 T = 21∗1025;
18 f o r i = 1 :23
19 numParam = z e r o s (5 , 1 ) ;
20 f o r j =1:5
21 numParam( j ) = 21∗21∗ j ;
22 end
23 [ a i c ( : , i ) , b i c ( : , i ) ] = a i c b i c ( l ogL ( i , : ) ’ , numParam ,T∗ ones (5 , 1 ) ) ;
24 end
25

26 % Determine AR c o e f f i c i e n t o f model
27 f o r i = 1 : NoOfTr ia l
28 yM = ( NormIddata { i , 1 } . y ) ’ ;
29 [ NormAR{1 , i } , SIGNorm {1 , i } ,ENorm{1 , i } ] = tsdata_to_var (yM, p ) ;
30 end
31 f o r i =1: NoOfTr ia l
32 yM = ( S e i z u r e I d d a t a { i , 1 } . y ) ’ ;
33 [ SeizAR {1 , i } , S IGSe i z {1 , i } , ESe i z {1 , i } ] = tsdata_to_var (yM, p ) ;
34 end
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• State space model generation: We use this function for generating ground truth state space
model which is asymptotically stable. We have to defined number of state variables, number of
output variables and number of input variables.

1 % Deve loped by : Satayu Chunnawong
2 % F a c u l t y o f Eng i n e e r i ng , Chu la l ongko rn U n i v e r s i t y
3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % F i r s t , we d e f i n e p o l e o f A ( e i g e n v a l u e o f A)
5 % There a r e complex e i g e n v a l u e when number o f s t a t e i s more than 3
6 % Otherwise , a l l e i g n v a l u e s a r e r e a l number .
7 % For example ,
8 % the system tha t has 5 s t a t e s c o n t a i n one p a i r o f complex e i g e n v a l u e s .
9 % and the system wi th 6 s t a t e s c o n t a i n s two p a i r s o f complex

10 % e i g e n v a l u e s
11

12 % We choose e i g e n v a l u e s between −0.9 to 0 .9 because we want to avo i d
13 % o s c i l l a t i o n p o l e s .
14 f u n c t i o n [A, B, C ,D, x0 ] = GenStateSpace ( Num_State , Num_input , Num_output )
15

16 PoleA ( 1 : Num_State ) = 0 ;
17 PoleA (1) = 1.8∗ rand ( ) − 0 . 9 ;
18 i f Num_State ~= 1
19 PoleA (2) = 1.8∗ rand ( ) − 0 . 9 ;
20 end
21 f o r i = 3 : Num_State
22 i f mod( i , 2 ) == 0
23 c o n t i n u e
24

25 % Since we want c o e f f i c i e n t o f t r a n s f e r f u n c t i o n be a l l r e a l number
26 % So we make s u r e tha t number o f s t a t e a r e even
27 % Otherwise , the l a s t e i g e n v a l u e i s r e a l number
28 e l s e i f mod( i , 2 ) == 1 && i ~= Num_State
29 r = 0 .9∗ rand ( ) ;
30 t h e t a = 180/ p i ∗ rand ( ) ;
31 PoleA ( i ) = complex ( r ∗ cos ( t h e t a ) , r ∗ s i n ( t h e t a ) ) ;
32 PoleA ( i +1) = complex ( r ∗ cos ( t h e t a ) , r ∗ s i n (− t h e t a ) ) ;
33 e l s e
34 PoleA ( i ) = 1 .8∗ rand ( ) −0.9;
35 end
36 end
37 P = d iag ( PoleA ) ;
38 Q = RandOrthMat ( Num_State ) ;
39 % Since t h e r e a r e some e i g e n v a l u e s which a r e complex number , we have to
40 % re fo rm mat r i x i n t o e q u i v a l e n t mat r i x w i th a l l r e a l number component
41 [Q, P ] = c d f 2 r d f (Q, P) ;
42 Q= RandOrthMat ( Num_State ) ;
43 % Trans fo rmat i on from d i a g o n a l mat r i x to f u l l ma t r i x
44 A = Q’∗P∗Q;
45

46 B = rand ( Num_State , Num_input ) ;
47 C = randn ( Num_output , Num_State ) ;
48 D = rand ( Num_output , Num_input ) ;
49 x0 = randn ( Num_State , 1 ) ;
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• Granger causality test: After we completed estimating state space model, we defined system
parameters. Then, calculate Granger causality function (F) and also coefficient CAkcK.

1 % This MATLAB f u n c t i o n i s deve l oped by Nattaporn Plub−i n
2 % ( c ) 2018 , F a c u l t y o f Eng i n e e r i ng , Chu la l ongko rn U n i v e r s i t y
3 %==========================================================================
4 %
5 % This f u n c t i o n f o r computing Granger c a u s a l i t y (GC) f o r s t a t e −space
6 % model as
7 %
8 % x ( t +1) = Ax( t ) + w( t ) w ~ N(0 ,W)
9 % y ( t ) = Cx ( t ) + v ( t ) v ~ N(0 ,V)

10 %
11 % PARAMETERS
12 % A, C ,W,V = System m a t r i c e s
13 % FR = Granger c a u s a l i t y v i a paramete r r e d u c t i o n method
14 % FCBK = Granger c a u s a l i t y v i a C(A−KC)K c o n d i t i o n [ BaS : 1 5 ]
15 %
16 %==========================================================================
17

18 f u n c t i o n [ FR ,FCBK] = GC_SS(A, C ,W,V)
19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−− F u l l model −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 [ P , ~ ,K] = dare (A’ , C ’ ,W,V) ; % s o l v e RICCATI f o r f u l l model
21 K = K ’ ;
22 Sigma = C∗P∗C ’ ;
23 diagSigma = d iag ( Sigma ) ; % c o l l e c t S igma_i i o f f u l l model
24 diagSigma ( diagSigma==0) = 1 ; % imputed a l l z e r o s i n Sigma to avo i d i n f and

NaN
25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−− Reduced model −−−−−−−−−−−−−−−−−−−−−−−−−−−
26 %%
27 %−−−−−−−−−−−−− s o l v e RICCATI f o r a l l r educed model −−−−−−−−−−−−−−−−−−−−−
28 [m, ~ ] = s i z e (C) ;
29 f o r j =1:m % reduce j t h paramete r
30 i nd = 1 :m;
31 Creduce = C ;
32 Vreduce = V;
33 Creduce ( j , : ) = [ ] ; % f o r c e j t h row o f C to be z e r o
34 Vreduce ( j , : ) = [ ] ; % f o r c e j t h row o f v to be z e r o
35 Vreduce ( : , j ) = [ ] ; % f o r c e j t h column o f V to be z e r o
36 [ Preduce , ~ , ~ ] = dare (A’ , Creduce ’ ,W, Vreduce ) ;
37 SigmaR = Creduce ∗Preduce ∗Creduce ’ ;
38 diagSigmaR = d iag ( SigmaR ) ; % c o l l e c t S igma_i i o f r educed model
39 diagSigmaR ( diagSigmaR==0) = 1 ; % imputed a l l z e r o s i n Sigma to avo i d

i n f and NaN
40 F( j , j ) = 1 ; % Diagona l o f GC s e t to be 1
41 i nd ( j ) = [ ] ;
42 F( ind , j ) = diagSigmaR . / d iagSigma ( i nd ) ;
43 end
44 %%
45 FR = l o g (F) ; % GC from paramete r r e d u c t i o n method
46 FCBK = C∗(A−K∗C) ∗K; % GC from C(A−KC)K c o n d i t i o n
47 end
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