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Notations

Variable Meaning Unit

I Solar irradiance W/m2

Isc Solar constant W/m2

I0 Extraterrestrial solar irradiance W/m2

Iclr Solar irradiance from clear sky model W/m2

Î Predicted solar irradiance W/m2

T Temperature ◦C

RH Relative humidity %

WS Wind speed m/s

WD Wind direction ◦

UV UV index −

tcc Total cloud cover −

cos θ Cosine of solar zenith angle −

k̂ Predicted clear sky index −

P Electrical solar power kW

P̂ Predicted electrical solar power kW

Variable symbols

• The variable x(t) means the actual value of the measured variable and the variable x̂(t)

means the predicted value of the measured variable.

• The variable ÎA(t) means the predicted solar irradiance from the method A.

• The notation x(t) denote the variable x at time t and if the index of day is also used,
then we use the notation x(d)(t) to refer x of day d at time t.



CHAPTER I

INTRODUCTION

Recently, the awareness of high dependence of electricity generation by natural gas in
Thailand has been raised. Therefore, the government of Thailand plans to reduce the de-
pendency of natural gas and finds new electricity sources. As in Power Development Plan
(PDP) 2015, at year end 2036 the proportion of renewable energy will increase to 27.9% of
installed generating capacity of Thailand and solar power plant has the largest proportion
about 30.5% of a renewable energy type. However, Photovoltaic (PV) cells cannot generate
stable power due to large solar irradiance fluctuations and this problem can reduce the power
system reliability and stability. To deal with this problem, solar irradiance forecasting is
necessary for operators in order to prepare the generation and voltage of the power system
before problems occur. Moreover, solar irradiance forecasting can also be used in planning
purpose to decrease the operating cost of conventional power plants. Typically, solar irradi-
ance forecasting and solar power forecasting can be separated into three types by forecasting
horizon, i) nowcasting (a minute up to an hour ahead), ii) very short-term (1 up to 6 hours
ahead), and iii) short-term (6 hours up to several days ahead). In this work, we focus only
in horizon of one day ahead to serve the planning of power plant for the next day.

Literature on solar forecasting can be found in many review articles recently [3–5].
Common techniques for solar irradiance forecasting and solar power forecasting in short-term
horizon (or day-ahead) are statistical methods, physical methods, and hybrid methods [3].
The statistical methods use the historical data of the local weather measurements for modeling
the forecasting model such as time series and machine learning. The physical methods use
equations derived from physics to predict the weather variables and the most popular method
is Numerical Weather Prediction (NWP). NWP models employ partial differential equations
in order to model dynamics of Earth’s atmosphere and the equations are solved to obtain
the predicted weather variables [6]. Combinations of two or more existing methods for solar
irradiance forecasting and solar power forecasting are called hybrid methods. There are
various methods to predict solar irradiance and solar power, however, the popular methods for
the day-ahead applications are physical methods and hybrid methods [4,5]. According to [4,5],
they reported that there were a few studies that used NWP variables for intra-hour forecasts
but there were many studies that used NWP variables for day ahead forecasts. Moreover, the
hybrid methods which were the combination of NWP variables and neural networks usually
outperformed the other methods because the hybrid methods use an advantage of one method
to reduce a disadvantage of the other method. Besides, they also reported that if the forecast
horizon is longer than one day, the NWP variables are recommended to use as inputs of the
forecasting models. The benefit of NWP is that NWP can provide the future meteorological
trends which are useful for explaining solar irradiance and solar power in day-ahead horizon.

However, the predicted solar irradiance from NWP models may contain some biases
and its magnitudes is not significantly small. In [7], the various NWP models were used to
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predict the solar irradiance from 1 day up to 7 days and the performance of global NWP
models were better than regional NWP models. RMSE of the predicted solar irradiance one
day in advance from global NWP models was about 90 to 140 W/m2 and RMSE of regional
NWP models was about 160 W/m2. Therefore, some post-processing methods are needed.
The post-processing method widely used to refine the predicted solar irradiance from NWP
models is Model Output Statistics (MOS) [2]. MOS is a regression model that explains a
variable of interest by relationships between the variable of interest and the weather variables.
According to [8], MOS is used to refine the predicted wind speed from NWP and it can reduce
the prediction error by half. Moreover, MOS can be used as a bias correction of the predicted
solar irradiance from NWP [9, 10]. However, a disadvantage of MOS is that the regression
coefficients are fixed and it may provide high forecasting error due to seasonality. Therefore,
if a model needs local measurement data to adjust the parameters of MOS, then the Kalman
filter (KF) can be used to serve this purpose. The implementation of KF based on MOS is
called MOS+KF. In [11,12], MOS+KF was used to predict the solar irradiance and the results
showed that MOS+KF models outperformed the persistence forecast and the predicted from
NWP by 15 % of RMSE.

There are two goals for this work. The first goal is to refine the predicted solar irradi-
ance from NWP by local weather measurements (MOS+KF method). However, MOS+KF
models should include only the important variables to solar irradiance. From the previous
studies, there is no attempt to considers the inputs of the model. Therefore, we use the
statistical methods to identify the important variable to solar irradiance. We then include
the relevant variables to the forecasting models. The second goal is to provide the predicted
solar power from 7.00 to 16.00 hrs of the next day by 13.00 hrs daily. This goal is used to
serve the Short-term Operation Planning Section (SOPS), Generation Operation Planning
Department, Electricity Generating Authority of Thailand for dispatching the power plant
of the next day in the afternoon. Though all our knowledge, the previous studies did not
take this practical constraint into account for forecasting solar irradiance. Therefore, the
contributions of this thesis is to present the solar irradiance forecasting models with take two
goals in consideration into account. The proposed models can be separated into two types,
the first type is hourly-step models which time index evolves in an hourly manner and the
second types is daily-step models which time index evolves in daily manner. Hourly-step
models have only one model but daily-step models consist of many sub-models which are
equal to the number of hour of interest. Therefore, the daily-step models have more com-
plexity than hourly-step models. Both hourly-step and daily-step models consist of MOS and
MOS+KF methods to predict the solar irradiance. The inputs of all models are selected by
statistical methods which are partial correlation, stepwise regression, and subset regression
and are used in both hourly-step and daily-step models. In the forecasting procedure, MOS
models just require the outputs from NWP models to provide the predicted solar irradiance
but MOS+KF models require both the outputs from NWP models and the measured data
to update the parameters and provide the predicted solar irradiance. As the constraint, we
provide the predicted data by 13.00 hrs, therefore, the measured data between 14.00 to 16.00
hrs are still not available. We then modify the equations of Kalman filter for updating the
parameters by relying on the MMSE estimator. The best forecast values are the conditional
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mean of the value on the next day given the information of the previous day. The details of
all proposed models are described in Chapter 7.

This thesis is organized as follows. The objective, scope of work, research methodology,
and expected outcome of this thesis are described in Chapter 2. The basic knowledge about
solar irradiance forecasting and the electrical equivalent circuit of PV cells are presented
in Chapter 3. Common techniques for solar irradiance forecasting are described in Chap-
ter 4. In Chapter 5, we present the post-processing methods that are widely used to refine
the predicted weather variables from NWP models. The problem statement derived from
practical goals and constraints of this work are presented in Chapter 6. The details of the
proposed models that take into account the practical constraints are expressed in Chapter 7.
In Chapter 8, we describe the sources of the data that we use in this thesis. Experimental
results and discussion of this work are described in Chapter 9. Conclusion and suggestion of
this work are summarized in Chapter 10.



CHAPTER II

THESIS OVERVIEW

2.1 Objective

This thesis aims to improve Photovoltaic (PV) power forecasting from Numerical
Weather Prediction (NWP) in order to guide the Short-term Operation Planning Section,
Generation Operation Planning Department, Power System Control and Operation Division,
Electricity Generating Authority of Thailand for power plant dispatching of the next day.

2.2 Scope of work

1. The two PV sites with installed capacity of 8 and 15 kW and local weather measurements
that used in this work are located at Electrical Engineering Building, Chulalongkorn
University.

2. This work provide hourly forecasts with one-day horizon.

2.3 Research methodology

1. Review the background of solar irradiance and previous works of solar irradiance fore-
casting.

2. Collect and analyze the data from Chulalongkorn University’s Building Energy
Management System (CUBEMS) and Numerical Weather Prediction (NWP).

3. Improve the accuracy of predicted solar irradiance from Numerical Weather Prediction
by regression models with time-varying coefficients.

4. Convert the refined predicted solar irradiance into Photovoltaic power using existing
methods such as physical models or Artificial Neural Networks.

5. Analyze and compare the results between this work and the previous works with dis-
cussion about advantages and disadvantages.

2.4 Expected outcome

1. Forecasting models for improving hourly Photovoltaic power forecasts for one day in
advance.

2. Computer codes of forecasting algorithms.



CHAPTER III

BACKGROUND ON SOLAR FORECASTING

This chapter describes about background of solar irradiance forecasting which are as-
tronomical variables, geographical variables, clear sky model, forecasting performance, and
solar irradiance to PV power conversion. Solar irradiance under clear sky conditions (Iclr),
clear sky index (k), cosine of solar zenith angle (cos θ) and performance indices are calculated
from the equations in this chapter. These variables are used to refine the predicted solar
irradiance from NWP in Chapter 5.

3.1 Astronomical and geographical variables

The solar irradiance is related to a location of interest and the Sun’s position. The Sun’s
position always change due to rotation of the Earth and the Earth orbit around the Sun.
Therefore, the necessary variables for calculating clear sky model are latitude, declination
angle, hour angle, and zenith angle which can be calculated as follows.

• Latitude (ϕ) is a latitude of a location of interest [13]. The latitude range is between
−90◦ 6 ϕ 6 90◦ where positive and negative sign stand for upper and lower equator
respectively.

• Declination angle (δ) is degree angle between the Sun and equator plane at noon [13].
The declination angle range is between −23.45◦ 6 δ 6 23.45◦ where positive and
negative sign stand for north and south of equator plane respectively. Declination
angle is defined by

δ = 0.006918− 0.399912 cos θ0 + sin θ0 − 0.006759 cos 2θ0 + 0.000907 sin 2θ0 (3.1)
− 0.002697 cos 3θ0 + 0.00148 sin 3θ0,

where θ0 is the Sun’s position angle which depends on day of the year (dn) and θ0 =

2π(dn − 1)/365.

• Hour angle (ω(t)) is degree angle of the Sun’s position east or west due to rotation of
the Earth which is changed 15◦ per hour. ω is negative values in the morning, positive
values in the afternoon, and equal to 0◦ at noon [13]. Hour angle is defined by

ω(t) = 15◦|12− LAT|, (3.2)

where LAT is the local apparent time (hour) determined by the local standard time in
hour (LST), the equation of time in minutes (ET), the geographical longitude of the
site in degrees (LS), and standard meridian in degrees (LSM) for the time zone:

LAT = LST +
ET
60

± LSM − LS
15

. (3.3)
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The positive sign in the last term is for places west of Greenwich and the negative sign
is for places east of Greenwich. The equation of time is defined by

ET = 9.87 sin(2f)− 7.53 cos(f)− 1.5 sin(f), (3.4)

where f = 2π(n− 81)/364, n is Julian day.

Zenith angle (θ(t)) is degree angle between the Sun’s position and vertical line at time t [13]
as shown in Figure 3.1 defined by

cos θ(t) = cosϕ cos δ cosω(t) + sinϕ sin δ. (3.5)

Figure 3.1: Solar zenith angle.

3.2 Solar irradiance

Solar irradiance is power in the form of electromagnetic from the Sun represent in
W/m2. A unit area of surface that perpendicular to the solar irradiance outside the Earth’s
atmosphere at mean Sun-Earth distance called solar constant (Isc) = 1,367 W/m2. A unit
area of surface that perpendicular to the solar irradiance outside the Earth’s atmosphere at
any Sun-Earth distance called extraterrestrial solar irradiance (I0(t)) [13]. The Sun-Earth
distance ratio change with day of the year defined by

R

R
=

1

1− 0.033 cos(2πdn/Y )
, (3.6)

where R = 1.49× 1011 m is the mean value of the Sun-Earth distance, R is the actual Sun-
Earth distance, dn is day of the year, and Y is the total day of year. Then, I0(t) is expressed
as

I0(t) =

(
R

R

)2

Isc cos θ(t). (3.7)

Solar irradiance can be classified into two categories, short wavelength (0.3− 3µm) and long
wavelength (> 3µm) [14]. PV cells generate electricity energy from short wavelength of solar
irradiance only because the power in long wavelength of solar irradiance is not enough to
stimulate the electrons of PV cell across the band gap as shown in Figure 3.2.
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Figure 3.2: Spectral distribution of extraterrestrial solar radiation and spectral response of a
silicon solar cell.

Source: Solar engineering of thermal processes [14]

According to [3], when solar irradiance incident on the Earth’s atmosphere, it distinct
into two parts as shown in Figure 3.3. The first part, Direct Normal Irradiance (DNI) is solar
irradiance come in a straight line from the Sun. The second part, Diffuse Horizontal Irradiance
(DHI) is scattering of solar irradiance by the Earth’s atmosphere and the surroundings.
Global Horizontal Irradiance (GHI) is the total irradiance from the Sun on a surface of
interest and it is defined as

I(t) = GHI(t) = DHI(t) + DNI(t)cosθ(t). (3.8)

Figure 3.3: Solar irradiance components.
Source: http://bdewilde.github.io/blog/blogger/2012/10/26/

classification-of-hand-written-digits-3/

http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3/
http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3/
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The power of solar irradiance is reduced due to reflection and scattering of particles,
gases, and fluid in the Earth’s atmosphere until reach the Earth surface. The parameters
that usually used for explaining the impact from the Earth’s atmosphere are air mass and
Linke turbidity. Both air mass and Linke turbidity are also necessary parameters for clear
sky model which are described as follows.

Air mass (AM(t)) is the ratio of distance of solar irradiance reaching the Earth’s sur-
face [13]. The shortest distance occurs when the Sun’s position is at vertical line and provide
maximum value (AM(t)=1). AM(t) is defined as

AM(t) =
1

cos θ(t) + 0.15(93.885− θ(t))−1.253
. (3.9)

Linke turbidity (TL(t)) is a coefficient to indicate the atmospheric turbidity. The coef-
ficient is high when the atmospheric pollution is high. According to [15], Linke turbidity is
defined as

TL(t) =

(
11.1 ln(bIsc/DNIclr)

AM(t)

)
+ 1, (3.10)

where b = 0.664 + 0.163eh/8000 is a coefficient, h is altitude of site in meters, and DNIclr is
clear sky direct normal irradiance. The summary of the relevant variables to solar irradiance
irradiance forecasting are shown in Table 3.1.

Table 3.1: Relevant variables in solar forecasting.

Variables Spatial Temporal Constant

Latitude (ϕ) −90◦ 6 ϕ 6 90◦

Declination angle (δ) −23.45◦ 6 δ 6 23.45◦

Hour angle (ω(t)) change 15◦ per hour

Zenith angle (θ(t)) 0◦ 6 θ(t) 6 90◦

Solar constant (Isc) 1,367 W/m2

Extraterrestrial solar
irradiance (I0)

depend on Sun-Earth
distance

Air mass (AM(t)) 1 6 AM(t)

Linke turbidity (TL(t)) 1 6 TL(t)

3.3 Clear sky model

Clear sky model is a mathematical equation to calculate solar irradiance on the Earth’s
surface under clear sky conditions (Iclr(t)) [3]. There are various proposed clear sky models
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and each clear sky model requires different meteorological variables such as altitude, gases,
vapor, and Linke turbidity. For example, Kasten clear sky model [15] can be calculated by

Iclr(t) = 0.84I0(t) cos(90− θ(t))e−0.027(f1+f2(TL−1))AM(t), (3.11)

where h is height above mean sea level (in meters) at measured position, f1 = e−h/8000 and f2

= e−h/1250 (f1 and f2 are coefficients related to altitude of measured position). Kasten clear
sky model depends more on AM(t), so Iclr(t) is underestimate when AM(t) is high. In order
to correct Iclr(t), the new clear sky model was proposed called Ineichen clear sky model [15].
Ineichen clear sky model is defined as

Iclr(t) = a1I0(t) cos(90− θ(t))e−a2(f1+f2(TL−1))AM(t), (3.12)

where a1 = 5.09 × 10−5h + 0.868, a2 = 3.92 × 10−5h + 0.0387. Ineichen clear sky model
provides accurate Iclr(t) than Kasten clear sky model when AM(t) is high. Iclr(t) is also used
to calculate clear sky index. Moreover, Iclr(t) and clear sky index are also used for persistence
forecast.

Clear sky index (k(t)) is a ratio between measured solar irradiance and solar irradiance
from clear sky model. k(t) is defined as

k(t) =
I(t)

Iclr(t)
, (3.13)

when I(t) is solar irradiance at time t, Iclr(t) is solar irradiance from clear sky model at time
t. In addition, we define k̂(t), if the numerator is Î(t). Moreover, the clearness index is also
usually used to calculate persistence forecast.

Clearness index (K(t)) is a ratio between measured solar irradiance and solar constant
corresponding with solar zenith angle. Clearness index is defined as

K(t) =
I(t)

I0(t)
. (3.14)

Iclr(t) is always less than or equal to I0(t) because Iclr(t) takes the turbidity of atmosphere
into account but I0(t) does not. Therefore, k(t) is also always higher than or equal to K(t).

Persistence forecast is a simple forecasting method and is usually used to compare with
other advanced forecasting methods. The predicted solar irradiance from this method can be
calculated by assume that the conditions in the future are the same as the present conditions.
According to [3], there are many ways to predict solar irradiance using persistence forecast
as follows.

1. Persistence forecast using clear sky index: This method assumes that the clear sky
index in the future is the same as the present and it is defined as

k(t+∆t) = k(t). (3.15)

Then, the solar irradiance in the future can be calculated by using (3.13) and (3.15)

Î(t+∆t) = k(t)Iclr(t+∆t). (3.16)
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2. Persistence forecast using clearness index: This method assumes that the clearness
index in the future is the same as the present and it is defined as

K(t+∆t) = K(t). (3.17)

Then, the solar irradiance in the future can be calculated by using (3.14) and (3.17)

Î(t+∆t) = K(t)I0(t+∆t). (3.18)

3. Persistence forecast using current solar irradiance: This method assumes that the solar
irradiance in the future is the same as the present and it is defined as

Î(t+∆t) = I(t). (3.19)

3.4 Forecasting performance index

Forecasting performance index is used to evaluate the forecast models. The forecasting
models that provide low forecasting error will also provide forecasting performance index
close to zero. Common forecasting performance indices for evaluating the solar irradiance
forecast model are summarized as follows.

1. Mean Absolute Error (MAE): MAE is used to evaluate the forecasting performance by
mean of accumulated prediction error thus we can see the overall prediction error from
MAE.

MAE =
1

N

N∑
t=1

∣∣∣Î(t)− I(t)
∣∣∣ . (3.20)

2. Mean Absolute Percentage Error (MAPE): MAPE is MAE in the form of percentage
which can be comparable with other works.

MAPE =
100%
N

N∑
t=1

∣∣∣∣∣ Î(t)− I(t)

I(t)

∣∣∣∣∣ . (3.21)

3. Mean Bias Error (MBE): MBE is an averaged prediction error and we can see the type
of the prediction error which are overestimate or underestimate.

MBE =
1

N

N∑
t=1

(Î(t)− I(t)). (3.22)

4. Root Mean Square Error (RMSE): RMSE is a kind of performance index which is
penalty more on the large prediction error.

RMSE =

√√√√ 1

N

N∑
t=1

(Î(t)− I(t))2. (3.23)

5. Normalized Root Mean Square Error (NRMSE): NRMSE is RMSE in the form of
percentage. This performance index is used to evaluate the forecasting model and it
can be used to compare the performance to the other works. There are many ways to
calculate NRMSE which can be expressed as follows.
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(a) Normalized by the mean of I(t) [11, 16–19]

NRMSE = 100%

√
1
N

∑N
t=1(Î(t)− I(t))2

1
N

∑N
t=1I(t)

. (3.24)

(b) Normalized by the range between maximum and minimum value of I(t) [20]

NRMSE = 100%

√
1
N

∑N
t=1(Î(t)− I(t))2

Imax − Imin
. (3.25)

(c) Normalized by the standard deviation [21]

NRMSE = 100%

√
1
N

∑N
t=1(Î(t)− I(t))2√

1
N

∑N
t=1(I(t)− Ī)2

. (3.26)

(d) Normalized by installed capacity of the PV site [22–25]

NRMSE = 100%

√
1
N

∑N
t=1(Î(t)− I(t))2

PVcap
. (3.27)

where Î(t) is forecasted solar irradiance at time t, N is the number of data, Ī is mean value
of I data, and PVcap is the installed capacity of the PV site.

3.5 Conversion of GHI into electrical power

This section explains the details of various conversion models for converting GHI to
solar power. The methods can be categorized into two main approaches, i) based on equivalent
circuit models and ii) based on grey-box models such as neural network.

Manufacturer’s datasheet of PV cell

In order to determine the parameters of PV cell, a datasheet from the manufacturer
is needed. The information in the datasheet is obtained under the Standard Test Condi-
tions (STC) as follows: Istc = 1000 W/m2, Tc,stc = 25 ◦C, and AMstc = 1.5 where Tc is a
temperature of PV cell. The important parameters in manufacturer’s datasheet are open-
circuit voltage (voc,stc), short-circuit current (isc,stc), maximum power (Pmax,stc), voltage at
maximum power (vmpp,stc), current at maximum power (impp,stc), temperature coefficient of
open-circuit voltage (Kv), and temperature coefficient of short-circuit current (Ki). More-
over, the i − v and P − v characteristics of PV cell from datasheet are also obtained under
STC. The information in this part will be used to determine the variables and parameters in
equivalent electrical circuit part.

Equivalent electrical circuit

A PV model is used to convert the energy from sunlight into the electricity. Typi-
cally, the PV model is modeled by an equivalent electrical circuit which consists of source,
diode, and resistance. According to [26], the source stands for photocurrent and depends on
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solar irradiance. The diode represents the dark current losses and the effect of generation-
recombination on the space charge region. The resistance is used for modeling the losses of
the PV cell such as heat. To convert the solar power into the electrical power, the equivalent
electrical circuit with single and two diode are usually used as shown in Figures 3.4 and 3.5
respectively. From the equivalent electrical circuit, the generated current from the PV cell
can be calculated by Kirchhoff’s law and the generated current of two- and single-diode mod-
els can be expressed as (3.28) and (3.29) respectively [26]. The generated current of the
two-diode model can be calculated by

i = iph − i01e
v+iRs
Vt1

−1 − i02e
v+iRs
Vt2

−1 − v + iRs

Rp
, (3.28)

where

• i is the terminal current of the PV cell,

• iph is the photocurrent,

• i01 and i02 are the diode reversed saturation current of the diode D1 and D2 respectively,

• v is the terminal voltage of the PV cell,

• Rs is the series resistance and Rp is the parallel resistance,

• Vt1 = A1kbTc/q and Vt2 = A2kbTc/q are the junction thermal voltage of the diode D1
and D2 respectively,

• A1 and A2 are the ideality factor of the diode D1 and D2 respectively,

• kb = 1.38× 10−23 Joule/Kelvin is the Boltzmann constant,

• q = 1.6× 10−19 Coulomb is the elementary charge,

• Tc is the cell temperature.

To simplify the model, one can neglect a diode in the two-diode model and become the
single-diode model. The generated current of single-diode model can be calculated by

i = iph − i0e
v+iRs

Vt
−1 − v + iRs

Rp
. (3.29)

+

-

D

Figure 3.4: The single-diode model equivalent circuit of a PV cell.
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+

-

D1 D2

Figure 3.5: The two-diode model equivalent circuit of a PV cell.

For simplicity, only the single-diode model is explained in this section. According
to (3.29), the general equations to describe current and voltage at the short-circuit, open-
circuit, and maximum power point condition are expressed as follows.

• The equation for short-circuit condition (v = 0): According to the single-diode model
and (3.29), the short-circuit current is calculated by Kirchhof’s law and can be expressed
as

isc = iph − i0e
iscRs
Vt

−1 − iscRs

Rp
, (3.30)

where isc is short-circuit current.

• The equation for open-circuit condition (i = 0): According to the single-diode model
and (3.29), the open-circuit voltage is calculated by Kirchhof’s law and can be expressed
as

0 = iph − i0e
voc
Vt

−1 − voc
Rp

, (3.31)

where voc is open-circuit voltage.

• The equation for maximum power point condition (i = impp and v = vmpp): According
to (3.29), at the maximum power point condition, the relationships between maximum
current and maximum voltage of the single-diode model can be expressed as

impp = iph − i0e
vmpp+imppRs

Vt
−1 − vmpp + imppRs

Rp
, (3.32)

where impp, and vmpp are the current and voltage at the maximum power point respec-
tively.

However, the PV model still requires variables and parameters that are not given in the
manufacturer’s datasheet and need to be determined. From (3.29), the unknown variables
are iph and i0. The unknown parameters are Rs, Rp, and A. These unknown variables and
parameters are described as follows.

• The photocurrent (iph): Typically, iph highly depends on solar irradiance. The general
equation of iph which derived from physics is non-linear in I and Tc. There are also
many proposed equations to calculate iph and the example equations are described as
follows.
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– According to [26–32], iph depends on I and Tc and can be expressed as

iph = (iph,stc +Ki(Tc − Tc,stc))
I

Istc
. (3.33)

– According to [33, 34], iph can be calculated under the open-circuit condition. Ac-
cording to (3.31), iph can be expressed as

iph = i0e
voc
nsVt +

voc
Rp

, (3.34)

where ns is the number of PV cells in series.
– According to [35], iph can be calculated under the short-circuit condition (3.30)

with the assumption that i0 ≡ 0. Therefore, iph can be expressed as

iph ≈ Rp +Rs

Rp
isc. (3.35)

• The diode reversed saturation current (i0): i0 is the diode reversed saturation current
which is the small amount of current flowing in the diode when the reverse bias is
applied on a diode. In addition, the current flowing depends on the depletion region of
the diode and the depletion region also varies according to temperature. Therefore, i0
highly depends on Tc. There are many proposed equations which derived from physics
to calculate i0 and some examples equations are described as follows.

– According to [28,32,36], i0 at any operating point can be expressed as

i0
i0,stc

=

(
Tc

Tc,stc

)3

exp
(

Eg

Astc

(
1− Tc,stc

Tc

))
, (3.36)

where Eg is the band gap energy of the semiconductor, i0,stc and Astc are derived
from physics and can be expressed as follows [28].

i0,stc =

(
isc,stc −

voc,stc
Rp,stc

)
exp−voc,stc

Astc
, (3.37)

Astc =
vmpp,stc + impp,stcRs,stc − voc,stc

log(isc,stc − vmpp,stc
Rp,stc

− impp,stc)− log(isc,stc − voc,stc
Rp,stc

) +

(
impp,stc

isc,stc−
voc,stc
Rp,stc

) .(3.38)

– According to [27], this work aims to improve the equation to get better at explain
i0 in the open-circuit voltage condition based on the equation of i0,stc. This work
uses i0,stc = isc,stc/(exp(voc,n/AVt,stc)−1). The improved equation of i0 is obtained
from the equation of i0,stc by including in the equation the current (Ki) and voltage
coefficients (Kv) and can be express as

i0 =
isc +Ki(Tc − Tc,stc)

exp((voc +Kv(Tc − Tc,stc))/AVt)− 1
. (3.39)

– According to [26], the equation of i0 is inferred from [37] and can be expressed as

i0 = C0T
3
c exp

(
− Eg

kbTc

)
(3.40)

where C0 is a constant depending on material parameters and can be expressed
by

C0 =
i0,stc

T 3
c,stcexp(−Eg/kbTc,stc)

. (3.41)
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For unknown parameters, there are many studies that explore the way to determine the
unknown parameters (Rs and Rp). To determine the unknown parameters, it can be classi-
fied into two approaches, i) derived the equation from the datasheet and ii) obtained from
experimental results.

1. Determination the parameters from derived equations: In [26], this work uses (3.29)
under STC and assumes that Rp → ∞ in order to obtain Rs. A is also obtained by solv-
ing (3.29) and assumes i = 0 under STC, Rp → ∞, and voc,stc = (AkbTc/q) log(iph,stc/i0,stc),
then A is determined by dvoc

dTc
|Tc=Tc,stc ≡ Kv. After that, A has been used to determine

Rp by (3.30). According to [36], this study investigates the effect on i− v curve when
varying the parameters Rs and Rp. The results show that Rs impacts the shape of
i− v curve near the maximum power point (smaller Rs provides higher output power)
and Rs impacts the slope of i − v curve near the short circuit conditions (largeer Rp

provides higher output power). From the impact of Rs and Rp, the slope of i− v curve
is usually used to determine Rs and Rp in many studies as follows. In [28, 38], Rp can
be estimated from (3.29) under the conditions of v → 0, i0 ≪ iphand Rs → Rp. Then,
the i− v curve is assumed as linear and it can be expressed as

i ≈ iph − v

Rp
. (3.42)

From (3.42), the derivative of i respect to v provides:

di

dv

∣∣∣∣
i=isc,stc

= − 1

Rp
. (3.43)

Thus, Rp can be estimated from the slope of i − v curve near short-circuit condition.
Rs is obtained from (3.29) under the conditions of i → 0 and v → voc based on Taylor
series expansion and gives i = iph

Vt
i0Rs

− v
Rs

. Then, they take the derivative of i respect
to v yield:

di

dv

∣∣∣∣
v=voc,stc

= − 1

Rs
. (3.44)

From [32], Rp is obtained from (3.43) by take into account the i0 term, therefore, the
relationships between Rp and Rs can be expressed as

Rp =
Rs

i0 exp(iscRs/A)
. (3.45)

Then, Rs and Rp can be obtained by a numerical method. In [31], Rs and Rp can be
obtained by dP

dv |mpp,stc = 0 and (3.43) respectively, where

dP

dv

∣∣∣∣
mpp,stc

=
d(iv)

dv

∣∣∣∣
mpp,stc

= impp + vmpp
di

dv

∣∣∣∣
mpp,stc

= 0. (3.46)

According to [35], Rs can be obtained from (3.46). A non-linear equation of Rp can
be derived from (3.32) and it is non-linear in Rs. Using (3.35), (3.32), (3.46) and an
optimization method in order to obtained the optimal Rs, Rp, and iph that provide the
lowest sum of square error. In [34], the parameters iph, i0, Rs, and Rp can be estimated
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from (3.46), (3.30) ,(3.31), and (3.32) respectively by Newton method. The parameter
A of this work is adjusted in order to reduce the error between isc,stc from datasheet
and isc from (3.30). Typically, the parameter A is a constant which vary around 1 to
1.5.

2. Determination the parameters from experimental results: According to [30], this work
uses the two-diode model to determine A1 and A2 (ideality factor of diode 1 and diode
2) with neglected Rs and Rp. This study uses (3.39) and (3.28) under open-circuit
condition to derive the equation to determine A2 in terms of A1. Then, the pair of
A1 and A2 are used to find Pmax. After that, the error between imax and imax,stc is
calculated. The optimal A1 and A2 should provide the lowest error between imax and
imax,stc. According to [27], (3.33) and (3.39) are substituted in (3.32) to find impp.
Then, the maximum power can be obtained by Pmax = imppvmpp. The relationships
between Rs and Rp can be derived from equation of Pmax. After that, this study finds
Pmax by varying Rs. The optimal Rs and Rp should provide Pmax = Pmax,stc.

After the five variables and parameters are obtained, one can find the generated power
of the PV cell at any time. However, the power output of PV cell is direct current while
almost electrical appliances are using alternating current. Thus, direct current from PV cell
must be converted into alternating current by inverter. The inverter usually has the efficiency
about 90-95% in order to convert direct current into alternating current. To calculate the
power output of PV cell by equivalent electrical circuit method, it’s always involved the non-
linear equations. Thus, the method of machine learning which usually deal with non-linear
can also be used to determine the unknown variables and parameters and we will explain in
next section.

Machine learning

Machine learning methods such as ANN and genetic algorithm (GA) can also be used
to determine the unknown variables and unknown parameters of PV model, moreover, these
methods can also be used to convert the relevant variables to solar power into the power
output of PV cell. According to [39], this study proposes a model to explain i of PV cell and
uses GA to determine the parameters of the proposed model. The summary of the studies
that investigate the PV model by neural network are summarized in Table 3.3.

Note that, the time parameter (t) in [40] is the value between −0.5 to 0.5 corresponding to
5.00 to 20.00 hrs.

From the literature reviews about PV model, we can conclude that solar irradiance
and temperature are the most important variables to estimate the solar power of PV cells.
Therefore, we use these two variables for modeling the PV conversion model which the details
are described in Chapter 6.
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Table 3.3: Studies of PV model using machine learning methods.

Reference Tool
Hidden layer

Input Target Performance
/nodes

[40] ANN 1/6 I(t), T(t),
WS(t), and
Time parame-
ter (t)

Pmax(t) MAPE of
Pmax(t) < 5%

[41] ANN 2/6, 12 I(t), I(t − 1),
I(t − 2), I(t −
3), I(t−4), and
T(t)

v(t) and i(t) MAE of v(t) <
0.35 Volt and
MAE of i(t) <

0.063 Amp

[42] ANN 1/20 I(t) and T(t) iph(t), i0(t),
Rs(t), Rp(t),
and A(t)

MAPE of
Pmax(t) <

2.1%

[43] RNN 1/4 I(t), T(t), and
WS(t)

P (t) RMSE of P (t)

< 0.3 kW



CHAPTER IV

SOLAR FORECASTING TECHNIQUES

According to [5, 44–46], solar forecasting methods can be classified into three common
methods which are statistical methods, physical methods, and hybrid methods. Statistical
methods aim to find a model that explain relationship between input and forecast values and
to estimate the model parameter from statistical concept. Examples of statistical methods are
time series and machine learning. Physical methods use the equations which are derived from
physics to explain the dynamic of weather variables such as Numerical Weather Prediction
(NWP). The hybrid methods are the combination two or more existing methods in order
to improve the forecasting accuracy. These forecasting methods are categorized as shown
in Figure 4.1 and the detail of each method is described as follows.

ARMA

ARIMA

ARIMAX

SARIMAX

SARIMA

ANN

RNN

GFS

ECMWF

WRF

NAM

NWP+ANN

TS+ANNTime series (TS) NWP

Machine learning

Forecasting Techniques

Statistical methods Physical methods Hybrid methods

Figure 4.1: Solar irradiance forecasting techniques.

4.1 Statistical methods

This methods use the historical data of solar irradiance and relevant variables to solar
irradiance to train the forecasting model. The common methods are Time series models and
Machine learning. These methods are described as follows.

Time series models

Time series models are used to describe the characteristics of solar irradiance from
historical solar irradiance data. The solar irradiance data is always non-stationary and has
periodic cycle. Thus, time series models which usually use for solar irradiance forecasting
is Seasonal Auto-Regressive Integrated Moving Average with exogenous term (SARIMAX)
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models. SARIMAX models are used to deal with non-stationary data in time series due to
seasonal, trends, drift, etc. To solve the problem, a seasonal integrated and integrated term
have been used to transform the process until stationary before apply SARMAX models.
The exogenous term includes the relevant variables to solar irradiance for explaining the
characteristics of solar irradiance. In [47], SARIMAX (p, d, q)(P,D,Q)T model is defined as

Ã(LT )A(L)(1− LT )D(1− L)dy(t) = B(L)u(t) + C̃(LT )C(L)v(t) (4.1)

where L is lag operator, y(t) is the solar irradiance, T is seasonal period, v(t) is white
noise, (1 − L)d and (1 − LT )D are integrated term using d order and seasonal integrated
term using D order respectively, A(L) and C(L) are Auto-Regressive and Moving Average
polynomials: A(L) = I − (a1L

1 + · · · + apL
p), C(L) = I + c1L

1 + · · · + cqL
q, Ã(L) and

C̃(L) are seasonal Auto-Regressive and seasonal Moving Average polynomials respectively,
B(L) = B1L

1 + B2L
2 + · · · + BmLm, and u(t) is relevant variable(s) of solar irradiance

such as relative humidity, temperature, wind speed, air pressure. Then, SARIMAX (p, d, q)
(P,D,Q)T is used to described the characteristic of solar irradiance in the future based on the
previous observed or forecasted values. There are some works that use time series method to
predict solar irradiance. In [48], the SARIMAX model was used to predict the solar irradiance
5, 15, and 30 minutes in advance and SARIMAX model outperforms the other time series
models such as neural networks and regression models.

Machine learning

Machine learning also use the historical solar irradiance and the relevant variables to
solar irradiance data to train the forecasting model. The common methods for solar irradiance
forecasting are support vector machine (SVM), support vector regression (SVR), and neural
networks. However, the neural networks method is the most widely used for solar forecasting.
The simplest model of neural network is the Artificial Neural Networks (ANN) that uses the
historical data and optimization algorithm to train and adjust the weights and biases of the
model. ANN consists of input layer, hidden layer, and output layer as shown in Figure 4.2a.
The inputs from input layer are fed into the hidden layer with the multiplication of weights.
The hidden layer can be used to learn complex characteristics of the variables of interest by
optimization algorithms such as batch gradient descent, stochastic gradient descent, and mini-
batch gradient descent. The output layer is the sum of product of the outputs from hidden
layer and weights. The error between output and the target is fed back to the network in
order to adjust weights in all layers in training process. Moreover, there are some other neural
networks such as Radial Basis Function Neural Networks (RBFNN) and Recurrent Neural
Networks (RNN). RBFNN has the same structure as ANN, however, the activation function
in hidden layer is Gaussian function. RNN also has three layers as same as ANN but the
outputs from hidden layer are fed back to hidden layer for taking into account the sequence
of the outputs. RNN structure is shown in Figure 4.2b.
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Hidden layer

Input layer Output layer

(a) Diagram of a basic structure of ANN.
Hidden layer

Input layer Output layer

(b) Diagram of a basic structure of RNN.

Figure 4.2: Diagram of a structure of neural networks.

According to [49], solar irradiance forecasting up to six hours from ANN and time
series were investigated. The results showed that the performance of ANN outperformed time
series models, especially for forecasting horizon greater than one hour. The eight algorithms
of ANN were investigated in [50] in order to find the best algorithm for solar forecasting
in India. Moreover, many studies of solar forecasting by neural networks methods were
reported in [51] and all results showed that neural networks methods outperformed the other
methods such as time series methods and persistence forecast. The machine learning for solar
forecasting and other renewable energy are summarized in Table 4.1.
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Table 4.1: Summary of renewable energy forecasting by machine learning.

Reference Tool Hidden
layer/
node

Input Target

[18] ANN 1/3 I Î

[52] ANN 1/10 I Î

1/1460 I Î

[53] ANN 2/11,17 mean daily I, mean daily T, and
day of the month

Î

[54] ANN 1/3 I and T P̂

[55] ANN 1/3 Iclr, PR, T, RH, WS, WD, cloudy
height class, peak wind speed, sun-
shine duration, and rain precipita-
tion

Îclr

[56] ANN 1/8 I and T P̂

PHANN,
Wavelet+ANN,
and ANFIS

1/12 I, T, and Iclr P̂

[57] Ensembles of ANN 1 P P̂

[58] Hierarchical ANN
and SVR

- P and predicted weather variables
from weather forecast: T, WS, and
WD

P̂

[59] ANN with ELM 1/100 P and T P̂

[60] Wavelet+ANN - Load, Weekday index, Wind-chill,
T, RH, WS, Cloud cover, and Pre-
cipitation

Predicted
load

[61] ANN with ELM 1/50 mean daily I, T, Tc, WS, and P P̂

SVR -

ANN 1/35

[20] K-means+ANN - I Î

[62] EMD+ANN 1 WS ŴS
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[63] Wavelet+SVM - I, zenith angle, tcc, opaque cloud,
dry bulb temp., dew point temp.,
RH, PR, WS, WD, visibility, ceil-
ing height, precipitation, aerosol
optical depth, and albedo

Î

Wavelet+ANN 1/10

[20] Transformation
based K-
means+ANN

- I Î

[64] Wavelet+Diagonal
RNN

- I, hour, cloud cover, and day of
year

Î

[65] Wavelet+GTSOM+
BNN

1/5 I, T , WS, and WD Î

[66] PHANN 2/9,7 physical data: Iclr, sunshine dura-
tion, day, and hour and predicted
weather variables from weather
forecast: RH, T, WS, PR, and tcc

P̂

[67] PHANN 1 Iclr and predicted weather variables
from weather forecast: T and RH

P̂

[68] PHANN 2/11,5 predicted weather variables from
weather service: I, I on plane of
array, Iclr, T, WS, WD, PR, tcc,
cloud type, and precipitation

P̂

[22] RNN 1/5 P P̂

P and I

P , I, and T

[69] Wavelet+DCNN - P P̂

[70] SVM - Sunshine duration Î

[71] Wavelet+SVM - I, max/min/average T, RH, water
vapour, and sunshine duration

Î

[72] SVM based on
weather classifica-
tion

- P and predicted max/min/mean T
from weather report

P̂

[73] SVR - I, hours T, and RH P̂
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[74] SOM+LVQ+
Fuzzy+SVR

- I and predicted weather variables
from weather forecast: T and prob-
ability of precipitation

P̂

[75] SVR+KF - Load Predicted
load

Other statistical approaches

Other statistical approaches for solar forecasting and other renewable energy are sum-
marized in Table 4.2.

Table 4.2: Summary of renewable energy forecasting by other statistical approaches.

Reference Tool Input Output

[76] Volterra filter I Î

[77] Dynamic Harmonic Regres-
sion

I Î

[78] Partial Functional Linear Re-
gression models

PR, max/min/mean T, dew
temperature, RH, insulation,
WS, and precipitation

P̂

[79] Multi-linear Adaptive Regres-
sion Splines

max/min/mean T, dew tem-
perature, RH, isolation dura-
tion, PR, WS, and precipita-
tion

P̂

[80] Hammerstein model WS ŴS

4.2 Physical methods

Physical methods use equations derived from physics to predict the weather variables.
The most popular method for predict the weather variables is Numerical Weather Prediction
(NWP) models. NWP models [6] use non-linear partial differential equations which derived
from physics to model the dynamics of the Earth’s atmosphere such as air pressure, temper-
ature, relative humidity, wind speed, and solar irradiance. Then, the predicted variables are
obtained by solve the equations. The resolution of NWP forecasting is 1-28 km2 which is
too wide to predict cloud motion accurately [81]. Therefore, the low accuracy of predicted
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cloud motion cause the low accuracy of predicted solar irradiance. However, NWP models
can yield better solar irradiance prediction with long time horizon (6 hours up to several
days) than other methods. In order to run a prediction, NWP models need an initialization
data which is the collected data from ground stations and satellites around the world. NWP
can be classified into two main categories.

1. Global NWP models are used to forecast meteorological variables around the world.
The initialization data of global NWP models are collected from ground stations, radar,
radiosonde, and satellite.

(a) Global Forecast System (GFS): GFS model runs by the National Oceanic and
Atmospheric Administration (NOAA) four times daily with a resolution of 28×28
km2. The time step of GFS is 3-hourly and forecast up 10 days ahead and then
the time step has changed to 12-hourly and GFS continues to forecast up to 16
days in advance.

(b) European Centre for Medium-Range Weather Forecasts (ECMWF): ECMWF model
is supported by most of the nations of Europe. The ECMWF runs twice a day.
The time step of ECMWF is 3-hourly and forecast up 10 days in advance.

2. Regional NWP models are used to forecast meteorological variables only a sub-domain
of the global space. The initialization of regional NWP models are the data from the
output of global NWP models.

(a) North American Mesoscale (NAM): NAM model runs by the National Centers for
Environmental Prediction (NCEP) four times daily with a resolution of 12×12
km2. NAM is used to forecast the meteorological variables over the area of North
America with time step of 3-hourly and forecast up to 84 hours in advance.

(b) Weather Research and Forecasting (WRF): WRF model is created by NOAA and
the National Center for Atmospheric Research (NCAR). WRF model is flexible
to users for design a forecasting area and resolution. WRF software is a free ware
supported by many developers, so there are many schemes of predictions to use.

There are many studies that compare the performance of NWP models for solar irradiance
forecasting [7,82,83]. The results in those studies show that the global NWP models outper-
form the regional NWP models because the global NWP models provide an averaged forecast
values over a large area while regional NWP models provide the forecasted values in more
specific area which have high fluctuation. However, the regional NWP models require less re-
sources and also computing time than global NWP models. Thus, we use WRF model which
is an open source software to predict solar irradiance for this work. WRF model requires ini-
tialization data, forecasting domain, microphysics scheme, cumulus parameterization scheme,
surface physics scheme, planetary boundary layer physics scheme, longwave radiation scheme,
and shortwave radiation scheme before solve the non-linear partial differential equations in
order to forecast the meteorological variables. The forecasting error of NWP outputs can
be reduced by spatial averaging method which is described in Chapter 5. We summarize
the works that benchmark the NWP models for predicting solar irradiance one day ahead
in Table 4.3.
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Table 4.3: Summary of the performance of NWP models for predicting solar irradiance one
day in advance.

Reference Country Model Resolution
(km2)

Time step
(minutes)

RMSE
(W/m2)

NRMSE
(%)

[11] USA GEM 15 × 15 7.5 16.7 to 43.6

[10] USA ECMWF 25 × 25 180 96.4 to
157.6

GFS 50 × 50 180 83.2 to
129.4

NAM 11 × 11 60 93.5 to 149

[7] USA GEM 15 × 15 7.5 33

ECMWF 25 × 25 180 33

WRF 5 × 5 60 44

MASS 5 × 5 60 55

ARPS 5 × 5 60 56

NDFD 5 × 5 180 40

[83] Germany ECMWF 16 × 16 180 40

DWD 7.5 × 7.5 60 43

DMI 3 × 3 60 45

[84] French WRF 3 × 3 60 189.81 35.2

[85] Brazil WRF 5 × 5 60 20.5 to
58.9

[86] Italy ECMWF 13.5 × 13.5 180 114.3 to
123.2

29 to 33

[86] Italy ECMWF 13.5 × 13.5 180 114.3 to
123.2

29 to 33

4.3 Hybrid methods

This section describes about the combination of two or more existing methods for solar
irradiance forecasting. From the literature, there are many combinations of the forecasting
models which can be described as follows.

1. Extension on adaptive parameters: In these methods, one has a forecasting model
containing parameters that are initially trained in an off-line manner so that the model



26

fits well with historical data. The idea is to apply an adaptive rule to adjust model
parameters when the new data sample arrives in an on-line manner. Examples of
adaptive scheme are Kalman filter, [75] used the Extended Kalman filter (EKF) to
update the parameter in Radial Basis Function Neural Network (RBFNN).

2. Extension on adding non-linear models: Conventional techniques based on linear mod-
els are time series approach. More examples, though non-linear, such as deterministic
clear-sky models, they are too simple to capture the real characteristics of solar irradi-
ance. Therefore, including more complex nonlinearity in the model feature is a research
direction here. Including nonlinearity can be done in many ways and we present three
main schemes:

• Cascade: The output of model 1 will be the input of the (typically non-linear)
model 2. Examples of non-linear models are neural network and its variants.

y = G1Gnonlinearu,

where G1 represents system 1 and Gnonlinear represents the non-linear model in
consideration.

• Bias correction: The output of model 1 is compared to the measurement and
results in the residual error (e). This error is subsequently fed as an input to
the model 2 with an assumption that the residual error still contain unexplained
non-linear dynamic of the model. As a result, the output of model 2 is linearly
added with the output of model 1.

y = ŷ1 + e, ŷ2 = Gnonlineare, y = ŷ1 + ŷ2

• Variants: There are a certain number of research work who proposed different
configurations of how two methods are combined. These methods typically con-
sider residual errors from the model 1, similarly to the bias correction approach.
However, the combination with the model 1 is distinguished from one work to
another. We will explain in detail here.

Later this section explain examples of non-linear models (Gnonlinear) and G1 (the first model),
input u, and output y from the literature.

Adaptive approach. According to [75], the RBFNN with dual EKF is used for load fore-
casting. The parameters of RBFNN are updated by dual EKF iteratively. However, this work
uses only the historical load data where the forecasting model can be improved by adding the
relevant variables to the model. For example, [87] uses the RBFNN for on-line load forecast-
ing 24 hours ahead. The unit centers, widths and weights of RBFNN are updated iteratively
by K-mean clustering algorithm, nearest-neighbor, and lest-squares technique respectively.
The input of RBFNN are day of the month, P (t), Înwp(t + 1), ŴSnwp(t + 1), T̂nwp(t + 1),
and R̂Hnwp(t+1). The output are P (t+1, . . . , t+24). The adaptive approach takes a short
time in both predict the variables and update the model parameters which is usually used in
an on-line forecasting.
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Cascade models. The cascade models are updated the model parameters in an off-line
manner. The diagram of the cascade models is shown in Figure 4.3.

Model 1 Model 2u y
z

w

Figure 4.3: Diagram of two cascade models.

There are many studies that use a hybrid forecasting method having two cascade models
for many purposes and are summarized in Table 4.4.

Table 4.4: Summary of a hybrid forecasting method having two cascade models.

Ref. u z w G1 Gnonlinear y RMSE
(W/m2)

NRMSE
(%)

[88] WRF initial-
ization data

mean daily Inwp day of year, T,
tcc, and mean
daily I on the
plane of PV cell

NWP ANN Î on
the
plane
of
PV
cell

145 -
149

31 -
31.9

Inwp day of year

Inwp day of year, T,
tcc, and mean
daily I on the
plane of PV cell

[86] WRF initial-
ization data

Inwp I, T, K, and day
of year

NWP ANN Î 96.4 -
112.6

24 - 29

[85] WRF initial-
ization data

RHnwp, Tnwp,
WSnwp, and tccnwp

Iclr NWP ANN Î 15 -
51.5

[89] WRF initial-
ization data

Inwp P , AVG value of
P over day at
the same time,
and Iclr

NWP ANN P̂ 11.26 -
11.4

[90] WRF initial-
ization data

Tnwp and predicted
sky conditions

I, T, and sky
conditions

NWP Fuzzy+ANN Î

[91] WRF initial-
ization data

Inwp, Tnwp, tccnwp,
solar azimuth, and
solar elevation

time NWP ANN, AnEn,
ANN+AnEn

P̂ 8.09 -
8.66
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[92] WRF initial-
ization data

Inwp, RHnwp, Tnwp,
WSnwp, tccnwp, and
PRnwp

day NWP ANN with
Genetic
Swarm Op-
timization
and Back
Propagation
algorithms

P̂

[93] WRF initial-
ization data

Inwp P NWP ARIMA,
SVM, ANN,
ANFIS
with GA
algorithm

P̂ 3.4 -
6.6

[94] predicted
amount of
cloud and
relative hu-
midity from
weather
report

Î - Fuzzy RNN P̂

[87] WRF initial-
ization data

Inwp, RHnwp, Tnwp,
and WSnwp

hour and P NWP RBFNN P̂

[95] WRF initial-
ization data

Inwp, Tnwp, WSnwp,
PRnwp, and tccnwp

cos θ NWP Multi-linear
Adaptive
Regression
Splines

P̂

[96] WRF initial-
ization data

Predicted surface
sensible heat flux,
surface latent heat
flux, surface down-
ward shortwave
radiation, surface
downward long-
wave radiation, top
outgoing short-
wave radiation, top
outgoing longwave
radiation, and T

day of year and
hour

NWP RNN P̂

Bias correction approach. The bias correction approach also updates the parameters in
an off-line manner. The diagram of bias correction approach is shown in Figure 4.4.
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Figure 4.4: Diagram of the bias correction approaches.

There are many studies that use the bias correction approach in forecasting applications
and are summarized in Table 4.5.

Other hybrid approaches. There are some studies that combine the model 1 and model
2 in different ways. According to [1], this work uses the combination of ARIMA model and
ANN model. The inputs of ANN model are the residual error and the differencing terms of
ARIMA model. The diagram of this work is shown in Figure 4.5.

u

y

Differencing ARMA

ANN

Delay

z Predicted variable

Bias+
-

Figure 4.5: Diagram of the hybrid model of [1].

In [105], the forecasting model is similar to [1] but this work also includes the predicted
value from ARIMA model as the input of ANN model. Moreover, there is the method that
uses the model 1 and model 2 in parallel to forecast the solar irradiance and the diagram of
the parallel model is shown in Figure 4.6.

u1

u2

y1

y2

Model1

Model2

yu

Figure 4.6: Diagram of the parallel models.

According to [106], this work also uses parallel model and requires only the measured
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solar irradiance as the input of the solar forecasting model. The model 1 is an ANN model
which is used to forecast the solar irradiance around noon. The model 2 is the average
measured solar irradiance over day which is used to forecast the solar irradiance both in
the morning and in the evening. However, the model 2 of this parallel model provides high
forecasting error because the solar irradiance is not the same as the previous day. According
to [107], the parallel model is used to forecast the solar irradiance. The model 1 and model
2 are the ANN models. The inputs of model 1 are the measured solar irradiance and the
measured relevant variables to solar irradiance to forecast the solar irradiance 1 to 3 hours
ahead. The input of model 2 is only the measured solar irradiance to forecast the solar
irradiance 4 to 6 hours ahead.
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Table 4.5: Summary of the hybrid methods using bias correction for solar irradiance and PV
power forecasting.

Reference u w z G1 Gnonlinear y

[84] WRF ini-
tialization
data

I cos θ and
k

NWP ANN Î

[97] WRF ini-
tialization
data

I - NWP Wavelet+
RNN

Î

[98] I I - ARMA ANN Î

[99] P P - ARIMA SVM P̂

[100] WS WS - ARIMA ANN ŴS

WS, T,
PR, Pre-
cipitation

WS - ARIMAX ANN ŴS

WS WS - Holt-
Winters

ANN ŴS

[101] Sunspot
data and
Money
exchange
rate data

Sunspot
data and
Money
exchange
rate data

- ARIMA ANN Predicted
sunspot
and
money
exchange
rate

[102] Stock
price

Stock
price

- ARIMA SVM Predicted
stock
price

[103] Canadian
Lynx data

Canadian
Lynx data

- ARIMA RNN Predicted
Canadian
Lynx

[104] Sunspot
data and
Money
exchange
rate data

Sunspot
data and
Money
exchange
rate data

- ARIMA PNN Predicted
sunspot
and
money
exchange
rate



CHAPTER V

NUMERICAL WEATHER PREDICTION AND
POST-PROCESSING

This chapter describes about the methods for improving the accuracy of NWP outputs
which are usually called post-processing methods. Common methods are spatial averaging,
Model Output Statistics (MOS), and Kalman filter (KF). The spatial averaging method uses
mean of the forecasted value from NWP instead of the nearest forecasted value of the site of
interest for reducing the variance of forecast values. MOS uses the predicted weather vari-
ables from NWP model and the measured weather variables to predict the weather variable
of interest. KF is usually applied to MOS for updating the coefficients of MOS over time.
However, MOS should include only the important variables for explaining the characteris-
tics of the weather variable of interest. Therefore, the statistical methods such as partial
correlation, stepwise regression, and subset regression are used to specify the important vari-
ables to the weather variable of interest. The details of each are described as follows. Note
that, the Numerical Weather Prediction (NWP) model that we use in this work is Weather
Research and Forecasts (WRF) model which is a kind of regional NWP model as described
in Section 4.2.

5.1 Spatial averaging

The NWP outputs are reported in the form of latitude and longitude grid points as
shown in Figure 5.1.
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is the forecast grid points of NWP models.

Figure 5.1: Coordinate grid points of NWP forecast.

Therefore, the method that uses the averaged value of nearby forecasted grid points
instead of only the nearest grid point called spatial averaging [9]. Spatial averaging is used
to reduce the variation of NWP outputs. For example, the equation of spatial averaging for
solar irradiance forecasting can be expressed as

Îspatial(t) =
1

mn

m∑
i=1

n∑
j=1

Înwp(pi, qj)(t), (5.1)

where Îspatial is the averaged value of predicted solar irradiance, Îmwp is the predicted solar
irradiance from NWP model, m is the number of different latitude, n is the number of different
longitude, (pi, qj) is latitude and longitude coordinates, and t is time index. According to [9],
the spatial averaging can be used to reduce the forecasting error of multiple sites by half with
spatial area of 3◦ × 3◦.

5.2 Model Output Statistics (MOS)

MOS is firstly introduced by [2]. MOS is a regression model for modeling the relation-
ships between a predictand and predictors to refine the predicted variable from NWP models.
The general equation of MOS can be expressed by

y = β1x1 + β2x2 + · · ·+ βnxn, (5.2)

where y is the refined weather variable of interest from NWP models, β1, β2, . . . , βn are regres-
sion coefficients, and x1, x2, . . . , xn are the measured relevant variables to weather variable
of interest, including the predicted weather variables of interest from NWP models. The
flowchart of MOS is shown in Figure 5.2.
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Figure 5.2: Diagram of general Model Output Statistics of [2].

According to [7,82,83], the solar irradiance forecasting performances from various NWP
models are compared. Moreover, these works are also investigated in MOS and the results
show that all the NWP models with MOS provide lower prediction error than the original
NWP output. Moreover, MOS can also be used for bias correction where B̂ias(t) = Înwp(t)−
I(t), then the B̂ias(t) is regressed on the relevant variables. The estimated bias is used to
correct the predicted solar irradiance by Îmos(t) = Înwp(t)− B̂ias(t) [9,10,16]. In [108], MOS
with the satellite data as input and MOS with the ground measurement data as input are
compared. The results show that MOS with ground measurement data as input provides
lower prediction error than MOS with the satellite data as input in both hourly and daily
forecast horizon. According to [109], MOS and ANN are cascaded in order to reduce the
prediction error.

MOS is a simple method that is used to reduce the prediction error from NWP models.
However, MOS should includes only the important variables to solar irradiance in order to
explain the characteristics of solar irradiance. The important variables to solar irradiance
can be specified by statistical methods such as partial correlation, stepwise regression, and
subset regression which are described as follows.

Partial correlation: A partial correlation is a measure of relations between two variables
by taking into account the effect of the third variable that may jointly influence the two
variables of interest. Specifically, let X and Y be the two variables and Z is another common
variable. The partial correction between X and Y is the correlation between two residual
errors of X and Y after regressing the effect from Z. If the partial correlation is zero, then
the two variables are not correlated (even after conditioning the remaining variables).

Stepwise regression: Stepwise regression [110] is used to select relevant variables from
hypothesis testing of estimated regression coefficients. For this work, only forward and back-
ward stepwise regression have been applied.

• Forward stepwise regression: There are no variables in the regression model at the
beginning. Then solar irradiance is regressed on each variable individually and apply
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hypothesis testing of estimated coefficients. A variable with the lowest p-value will be
added to the regression model and repeat again until there are no variables that meet
the criterion of hypothesis testing (95 % confidence interval).

• Backward stepwise regression: All variables are included in the regression model at
the beginning. Then solar irradiance is regressed on all variables and apply hypothesis
testing of estimated coefficients. A variable with the highest p-value will be removed
from the regression model and repeat again until there are no variables that meet the
criterion of hypothesis testing (95 % confidence interval).

Subset regression: This method performs regression of solar irradiance on all combina-
tions of relevant meteorological variables. Therefore, the total combinations of regression
model is 2p, where p is the number of the relevant meteorological variables. To evaluate the
performance of each model, we use Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) [47] in order to find the optimal model. The model which provides
the lowest AIC or BIC score will be selected. AIC and BIC can be expressed by

AIC = N +N log(2π) +N log(SSE/N) + 2d, (5.3)
BIC = N +N log(2π) +N log(SSE/N) + d log(N), (5.4)

where N is the number of observed data, d is the number of parameters, SSE =
∑N

t=1(I(t)−
Î(t))2, I(t) is the measured solar irradiance at time t and Î(t) is the refined solar irradiance
at time t. The important variables which are frequently selected from the three statistical
methods will be considered to include in MOS model.

5.3 MOS and Kalman filter

In MOS model, the regression coefficients are fixed and may not be suitable to use to
predict the solar irradiance which changes over time. Therefore, the regression coefficients
of MOS should be updated and Kalman filter is a method that can be used to update the
regression coefficients over time. Normally, KF is used to estimate unobservable variables
from the previous state of relevant observable variables recursively. KF is an optimal esti-
mator for conditional mean of a random variable [111]. The state equation and observation
equation can be expressed by

State equation : z(t+ 1) = A(t)z(t) + w(t), (5.5)
Observation equation : y(t) = C(t)z(t) + v(t), (5.6)

where z(t) is the estimated variable at time t, A(t) is the state transition matrix at time
t, w(t) is white Gaussian process noise with zero mean and covariance W at time t, y(t) is
observed variable at time t, C(t) is observation matrix at time t, and v(t) is white Gaussian
measurement noise with zero mean and covariance V at time t. In realistic, z(t) in state
equation is unknown, so it changes over time based on the dynamical of state transition
matrix A(t) plus process noise w(t) which is also unknown. Then, the estimated z(t) can
be obtained by conditional mean given measurement y(t) called ẑ(t|t), where the notation
of x(a|b) means the variable x at time a given observe variable from time 0, . . . , b. The
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error covariance of ẑ(t|t) can also be obtained from conditional mean called P (t|t) where
P (t|t) = E(z(t)− ẑ(t|t))(z(t)− ẑ(t|t))T and it is necessary for calculate the Kalman gain. In
order to run KF, A(t), C(t), W , and V must be known. Moreover, KF also needs an initial
conditions ẑ(0|0) and initial conditions of error covariance matrix P (0|0) in order to predict
and update ẑ(t|t) and P (t|t) recursively which called time update and measurement update
respectively. Time update and measurement update are described as follows [111].

Time update

ẑ(t+ 1|t) = A(t)ẑ(t|t), (5.7)
P (t+ 1|t) = A(t)P (t|t)A(t)T +W (t), (5.8)

Measurement update

ẑ(t|t) = ẑ(t|t− 1) + P (t|t− 1)C(t)T (C(t)P (t|t− 1)C(t)T + V )−1(y(t)− C(t)ẑ(t|t− 1)),

(5.9)

P (t|t) = P (t|t− 1)− P (t|t− 1)C(t)T (C(t)P (t|t− 1)C(t)T + V )−1C(t)P (t|t− 1), (5.10)

where ẑ(t+1|t) is the conditional mean of z(t+1) given y(0), . . . , y(t), ẑ(t|t) is the conditional
mean of z(t) given y(0), . . . , y(t), P (t+1|t) is the error covariance of ẑ(t+1|t), P (t|t) is error
covariance of ẑ(t|t), and

P (t|t− 1)C(t)(C(t)TP (t|t− 1)C(t) + V )−1 (5.11)

is the Kalman gain. Then, the predicted output can be obtained by ŷ(t) = C(t)ẑ(t|t− 1).
KF based on MOS is also widely used to refine the predicted weather variables from

NWP. The regression coefficients (β) of MOS are obtained from least squares method which
are fixed values. Then, the purposes of KF are prediction and correction β over time. In
order to refine the predicted weather variables from NWP by KF, typically, we do not know
exactly what A(t), C(t), W , and V should be. Then, those parameters are usually assumed.
According to [112–115], these works aim to refine the predicted wind speed and temperature
from NWP models by MOS+KF. All of those studies determine the state equation as random
walk and noise covariances can be estimated by residual error of previous N iterations. In [11],
this work aims to refine the predicted solar irradiance from NWP models by MOS+KF. The
input of this model is only the predicted solar irradiance from NWP. The state equation is
assumed to be random walk and the noise covariances are estimated from the latest residual
error of 30 days. From [12], the predicted solar irradiance from NWP and solar zenith angle
are included in MOS+KF model to predict the solar irradiance. The noise covariances of
this work are constant values. Moreover, [116] uses 24 KF models (one model for one specific
time) to refine the predicted solar irradiance from NWP model one day in advance and the
inputs of these model are the predicted solar irradiance from NWP model and the measured
solar irradiance.



CHAPTER VI

PROBLEM STATEMENT AND FORMULATION

This chapter describes about problem statement derived from practical goal and con-
straints. We proposed a solar forecast scheme and describe the model as follows. Note that,
our proposed solar forecast scheme requires the predicted weather variables from NWP model.
For more clearly, we use WRF model which is a kind of regional NWP model to predict the
weather variables for this work.

6.1 Framework

This work aims to predict PV power one day in advance. The predicted information
can help the Short-term Operation Planning Section (SOPS), Generation Operation Planning
Department, Electricity Generating Authority of Thailand for more efficient dispatching.
SOPS usually starts to plan the generation of the next day after 13.00 hrs daily. Therefore,
the forecasting model should be run at 13.00 hrs (forecasting time (tf ) = 13.00 hrs) and
provide the predicted PV power of day d+1 between 7.00 to 16.00 hrs by 13.00 hrs of day d

as shown in Figure 6.1.
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Figure 6.1: Forecasting time of this work for providing the predicted solar power one day
ahead.

The resolution of solar power forecasts that SOPS uses to plan the generation is 30
minutes but we use the resolution of 1 hour in this work because currently, we have limitation
on computing resource to run WRF in the resolution of 30 minutes. The scheme of this work
is shown in Figure 6.2.
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Figure 6.2: Proposed scheme of PV power forecasting with one day horizon.

From Figure 6.2, at the beginning, both local weather measurements and predicted
weather variables from WRF must be available. The measured I and P usually contain the
missing values, so the measurement data need to be cleaned first. Typically, the WRF data
are not contain the missing data, however, the data are reported in the coordinate grid points
then we use the spatial averaging method to average the forecasted values for reducing the
variance of forecast values. The averaged values are used in the later process instead of a
forecasted value that is closest to the PV site of interest. Then, all meteorological variables
that relate to solar irradiance are selected with statistical methods in order to determine the
important variables to solar irradiance. After that, the important variables to solar irradiance
are used in the proposed model to predict the solar irradiance one day in advance. Then, the
predicted solar irradiance values are converted to predicted PV power. In what follows, we
describe the proposed solar irradiance forecasting model.

6.2 Solar irradiance forecasting model

The content from now on will describe about the proposed models. The proposed solar
forecasting models can be classified into two types, i) hourly-step models and ii) daily-step
models. The details of these two models are described as follows.

1. Hourly-step models: This type of the model has only one model that is used to predict
the solar irradiance. The inputs of this model are the important variables to solar
irradiance and then the output will be converted to PV power as shown in Figure 6.3.
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Figure 6.3: Proposed scheme of PV power forecasting (hourly-step models).

2. Daily-step model: This type of the model contains h sub-models; each of which gives
the forecasts at specific hour. The h forecast values are then arranged as a forecast
profile of the next day and converted to PV power as shown in Figure 6.4.

WRF inputs

PV Conversion

Splitting the data

Grouping the data

Model 1 Model 2 Model .    .    .

Deterministic
variables

Figure 6.4: Proposed scheme of PV power forecasting (daily-step models).

The details of the proposed models both hourly-step and daily-step are described in-
Chapter 7.

6.3 Solar irradiance power conversion

From the literature review of PV cells in Section 3.5, the important variables for calcu-
lating the power of the PV cells are the solar irradiance and temperature. We then propose
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the model for estimating the generated power of the PV cells. The proposed model is a re-
gression model and the inputs of the model are solar irradiance and temperature [117]. The
equation of solar irradiance conversion model is expressed as

P (t) = β1I(t) + β2T(t) + β3I(t)T(t). (6.1)

However, the variable T(t) is not available when we use this model to convert Î(t) into P̂ (t)

of the next day. We then use the predicted temperature from WRF (T̂wrf) instead of T(t).



CHAPTER VII

MODEL DESCRIPTION

This chapter describes the details of the model for solar irradiance forecasting which
are presented in Section 6.2. The proposed models for solar irradiance forecasting are based
on the regression model which can be expressed as

Î(t) = β1x1(t) + β2x2(t) + · · ·+ βpxp(t) = Xβ, (7.1)

where x1, . . . , xp are predictors (the important variables to solar irradiance) and β is the
parameter that obtained by least-squares method. From the variable selection results in Sec-
tion 9.3, we conclude that the important variables to solar irradiance are Îwrf, R̂Hwrf, T̂wrf, and cos θ,
so these variables will be the inputs of the proposed models. Moreover, Kalman filter requires
prior knowledge about parameters from least-squares (LS) fitting that are approximated noise
covariance from residual error (σ̂2) and approximated error covariance of the estimated re-
gression coefficients (P (0|0)) from (7.1). The approximated noise covariance from residual
error is expressed as

σ̂2 =
1

N − n
ΣN
t=1e(t)

2, (7.2)

where N is the number of samples, n is the number of predictors, and e is residual error. The
approximated error covariance of the estimated regression coefficients is expressed as

P (0|0) = σ̂2(XTX)−1. (7.3)

The models can be classified into two types, i) hourly-step models and ii) daily-step models,
as described in Section 6.2. Each type of the model consists of two methods which are Model
Output Statistic (MOS) and Kalman filter applied on MOS (MOS+KF). The details of the
forecasting models are described as follows.

7.1 Hourly-step models

Hourly-step models consist of two methods which are MOS and MOS+KF. There are
one proposed MOS model and three proposed MOS+KF models. The difference in MOS+KF
models is the assumption for updating the parameters of KF. All hourly-step models are
described as follows.

1. MOS: The inputs of this model are the important variables to solar irradiance. This
model can be expressed as

Î(t) = β1Îwrf(t) + β2R̂Hwrf(t) + β3T̂wrf(t) + β4 cos θ(t). (7.4)

The diagram of proposed hourly-step MOS is shown in Figure 7.1.



42

MOS

Figure 7.1: Proposed scheme of solar irradiance forecasting (hourly-step MOS model).

There are three proposed MOS+KF models and the diagram of general MOS+KF
models is shown in Figure 7.2.

MOS

-Update regression 

coe cients
+

Figure 7.2: Proposed scheme of solar irradiance forecasting (hourly-step MOS+KF model).

2. MOS+KF1: The regression coefficients of MOS (β) are updated by the Kalman filter
processes. The state-space of the dynamical system is assumed as a random walk
equation,

z(t+ 1) = z(t) + w(t), (7.5)

y(t) =

[
Îwrf(t) R̂Hwrf(t) T̂wrf(t) cos θ(t)

]
z(t) + v(t), (7.6)

where z(t) = β(t) and y(t) = I(t). The initial conditions of MOS+KF1 are chosen as
follows.

A = I, C(t) =

[
Îwrf(t) R̂Hwrf(t) T̂wrf(t) cos θ(t)

]
,

V = σ̂2, W = 10−6 diag(β̂ls),

ẑ(0|0) = β̂ls, P (0|0) = σ̂2(XTX)−1,

(7.7)

where β̂ls is obtained by least squares and has the same value as β of (7.4), σ̂2 is obtained
from (7.2), P (0|0) is the error covariance matrix of z(0|0), V is the approximated
variance from the residual error of (7.4), and W is chosen to be 10−6z(0|0). To calculate
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the forecast values, in this work, the forecasting time (tf ) is 13.00 hrs of day d and the
forecasted values are the forecasted solar irradiance of day d+ 1 between 7.00 to 16.00
hrs (h = 10 hours). Therefore, we have three hours left until the end of day d and we
need to estimate the parameters of 7.00 hrs of day d+1 which is equal to the forth step
ahead of the forecasting time (tf +4). However, the parameters are updated up to time
tf , then the parameters that we need to estimate are ẑ(tf +4|tf ), . . . , ẑ(tf +13|tf ) and
can be obtained by measurement update process as follows.

ẑ(tf + 4|tf ) = A4ẑ(tf |tf ), ẑ(tf + 5|tf ) = A5ẑ(tf |tf ), . . . , ẑ(tf + 13|tf ) = A13ẑ(tf |tf ). (7.8)

Moreover, since A = I, (7.8) reduces to

ẑ(tf + 4|tf ) = ẑ(tf |tf ), ẑ(tf + 5|tf ) = ẑ(tf |tf ), . . . , ẑ(tf + 14|tf ) = ẑ(tf |tf ). (7.9)

Note that, the regression coefficients are not updated since tf .

3. MOS+KF2: This model is modified from MOS+KF1. MOS+KF1 updates the pa-
rameters β based only on the forecasting error at time tf and the parameters are not
changed until time tf of day d+1. Therefore, MOS+KF2 use the averaged forecasting
error of h hours on day d for updating the parameters [117]. Then, we define the output
y and the state variable z as follows.

y(t) =

 I(t)

1
h

∑h−1
k=0 I(t− k)

 ,

z(t) = (β(t), β(t− 1), . . . , β(t− h+ 1)).

We assume that the regression coefficients evolve as random walk process (β(t + 1) =

β(t)+w(t)). Then, the state-space of the dynamical system can be expressed as follows.

z(t+ 1) =



I 0 0

I 0 0

0 I

. . .

I 0


z(t) +



I

0

0

...

0


w(t), (7.10)

y(t) =

C̃(t) 0 · · · 0

C̃(t)
h

C̃(t−1)
h · · · C̃(t−h+1)

h

 z(t) + v(t), (7.11)

where C̃(t) =

[
Îwrf(t) R̂Hwrf(t) T̂wrf(t) cos θ(t)

]
. The initial conditions of MOS+KF2

are chosen as follows.
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A =



I 0 0

I 0 0

0 I

. . .

I 0


, C(t) =

C̃(t) 0 · · · 0

C̃(t)
h

C̃(t−1)
h · · · C̃(t−h+1)

h

 ,

C̃(t) =

[
Îwrf(t) R̂Hwrf(t) T̂wrf(t) cos θ(t)

]
, H =

1 0 · · · 0

1
h

1
h · · · 1

h

 ,

V = H



Re(0) Re(1) · · · Re(h− 1)

Re(1) Re(0)
. . . ...

... . . . . . . Re(1)

Re(h− 1) · · · Re(1) Re(0)


HT , W =

10−6β̂ls 0

0 0

 ,

ẑ(0|0) = (β̂ls, β̂ls, . . . , β̂ls), P (0|0) = 1h×h ⊗ σ̂2(XTX)−1.

(7.12)

From (7.12), ẑ(0|0) can be chosen as β̂ls at the first iteration. Then, P (0|0) =

cov(ẑ(0|0)) is a block matrix which consists of cov(β̂ls). To determine the process

noise covariance W , the process noise is of form
[
1 0 · · · 0

]T
w(t). Therefore, all

blocks of W are zero except block (1,1) and W (1, 1) is chosen to be 10−6z(0|0). For
determining the measurement noise (V ), we assume that the measurement noise (v(t))
can be expressed as follows.

v̂(t) =

1 0 · · · 0

1
h

1
h · · · 1

h





e(t)

e(t− 1)

...

e(t− h+ 1)


, H





I(t)

I(t− 1)

...

I(t− h+ 1)


−



Îmos(t)

Îmos(t− 1)

...

Îmos(t− h+ 1)




.

Then, V = cov(v(t)) ≈ cov(v̂(t)) as shown in (7.12). The forecasted values of
MOS+KF2 can be obtained from the first element of the output vector y.

4. MOS+KF3: This model is also modified from MOS+KF1. MOS+KF3 uses the
forecasting error of all hours at day d to update the parameters [117]. Then, we define
the output y and the state variable z as follows.

y(t) = (I(t), I(t− 1), . . . , I(t− h+ 1)),

z(t) = (β(t), β(t− 1), . . . , β(t− h+ 1)).

The state-space of the dynamical system can be expressed as follows.
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z(t+ 1) =



I 0 0

I 0 0

0 I

. . .

I 0


z(t) +



I

0

0

...

0


w(t), (7.13)

y(t) =



C̃(t)

C̃(t− 1)

. . .

C̃(t− h+ 1)


z(t) + v(t), (7.14)

where C̃(t) =

[
Îwrf(t) R̂Hwrf(t) T̂wrf(t) cos θ(t)

]
. The initial conditions of MOS+KF3

are chosen as follows.

A =



I 0 0

I 0 0

0 I

. . .

I 0


, C(t) = diag(C̃(t), C̃(t− 1), . . . , C̃(t− h+ 1)),

C̃(t) =

[
Îwrf(t) R̂Hwrf(t) T̂wrf(t) cos θ(t)

]
,

V =



Re(0) Re(1) · · · Re(h− 1)

Re(1) Re(0)
. . . ...

... . . . . . . Re(1)

Re(h− 1) · · · Re(1) Re(0)


, W =

10−6β̂ls 0

0 0

 ,

ẑ(0|0) = (β̂ls, β̂ls, . . . , β̂ls), P (0|0) = 1h×h ⊗ σ̂2(XTX)−1.

(7.15)

From (7.15), ẑ(0|0) can be chosen as β̂ls at the first iteration. Then, P (0|0) = cov(ẑ(0|0))
is a block matrix which consists of cov(β̂ls). To determine the process noise covariance

W , the process noise is of form
[
1 0 · · · 0

]T
w(t). Therefore, all blocks of W are

zero except block (1,1) and W (1, 1) is chosen to be 10−6z(0|0). For determining the
measurement noise (V ), we assume that the measurement noise (v(t)) can be expressed
as follows.
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v̂(t) =



e(t)

e(t− 1)

...

e(t− h+ 1)


,



I(t)

I(t− 1)

...

I(t− h+ 1)


−



Îmos(t)

Îmos(t− 1)

...

Îmos(t− h+ 1)


.

Then, V = cov(v(t)) ≈ cov(v̂(t) = cov(e(t)) which is the Toeplitz matrix as shown
in (7.15). The forecasted values of MOS+KF3 can be obtained from the first element
of the output vector y.

7.2 Daily-step models

Daily-step models consist of h sub-models to forecast the solar irradiance of specific
h hours. Daily-step models also consist of two methods which are MOS and MOS+KF.
There are one proposed MOS model and two proposed MOS+KF models. The difference
in MOS+KF models is the assumption for updating the parameters of KF. All Daily-step
models are described as follows.

1. MOS: The inputs of this model are the important variables to solar irradiance as
hourly-step MOS model. However, daily-step MOS consists of h sub-models where
h = 10 is the number of hour between 7.00 to 16.00 hrs. Each sub-model is used to
predict the solar irradiance at specific hour, i.e. sub-model 1 is used to predict the solar
irradiance at 7.00 hrs, sub-model 2 is used to predict the solar irradiance at 8.00 hrs,
and so on. This model can be expressed as

Î(d+1)(t) = β1(t)Î
(d+1)
wrf (t)+β2(t)R̂H

(d+1)

wrf (t)+β3(t)T̂(d+1)
wrf (t)+β4(t) cos θ(d+1)(t), (7.16)

where t ∈ {t1, . . . , th}. The flowchart of daily-step MOS is shown in Figure 7.3.
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Grouping the data

Model 1 Model 2 Model .    .    .

Splitting the data of each hour

Figure 7.3: Proposed scheme of solar irradiance forecasting (daily-step MOS model).

2. MOS+KF1: We apply Kalman filter to daily-step MOS model called daily-step
MOS+KF1. The regression coefficients (β) of sub-models are updated based on fore-
casting error of day d. β is assumed to evolve as a random walk process and can be
expressed as

β(d+1)(t) = β(d)(t) + w(d)(t).

We then determine the state variable and the output as

z(d)(t) = β(d)(t), y(d)(t) = I(d)(t),

where d is day and t is hour. The state-space of the dynamical system can be expressed
as

z(d+1)(t) = z(d)(t) + w(d)(t),

y(d)(t) =

[
Î
(d)
wrf(t) R̂H

(d)

wrf(t) T̂(d)
wrf(t) cos θ(d)(t)

]
z(d)(t) + v(d)(t),

(7.17)

for t ∈ {t1, t2, . . . , th}. The time index of dynamic equation of (7.17) is d. The diagram
of the daily-step MOS+KF is shown in Figure 7.4
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Splitting the data of each hour

Grouping the data

Model 1 Model 2 .    .    .

Update regression 

coefficients

Update regression 

coefficients

Update regression 

coefficients
+++

- --

Model 

Figure 7.4: Proposed scheme of solar irradiance forecasting (daily-step MOS+KF model).

The daily-step models consists of h sub-models, however, the h sub-models can be
rewritten into single vector equation as

z(d+1) = z(d) + w(d), y(d) = C(d)z(d) + v(d),

where

z(d+1) ,



z(d+1)(t1)

z(d+1)(t2)

...

z(d+1)(th)


=



z(d)(t1)

z(d)(t2)

...

z(d)(th)


+



w(d)(t1)

w(d)(t2)

...

w(d)(th)


,

y(d) ,



I(d)(t1)

I(d)(t2)

...

I(d)(tn)


=



C(d)(t1)

C(d)(t2)

. . .

C(d)(th)





z(d)(t1)

z(d)(t2)

...

z(d)(th)


+



v(d)(t1)

v(d)(t2)

...

v(d)(th)


.

(7.18)

According to (7.18), the parameter A = I and C(t) are block diagonal matrices. From
the Kalman filter process, if the parameters A = I, C,W, V, P (0|0) are block diagonal
matrices, then K(d), P (d|d), P (d|d−1) are also block diagonal matrices. Therefore, ẑ(d|d)

and ẑ(d+1|d) are separately updated in each tk.
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Modification of KF According to the constraint, the predicted solar power must
be provided by 13.00 hrs daily. Therefore, the data between 14.00 to 16.00 hrs are not
available to use in update parameters process in Kalman filter, then the parameters
in Kalman filter according to the missing data should not be updated. To deal with
this constraint, we derive the equations in update parameter process of Kalman filter
at time tf when measurement data are partially missing [118]. We use a matrix F =[
Ir×r 0r×(h−r)

]
; where r is the number of hours between t1 and tf , to represent as a

transformation of unavailable data y in update parameter process of Kalman filter as
follows.

• Measurement update at tf :

K̄(d)(t) = P (t|t− 1)C(t)TF T (FC(t)P (t|t− 1)C(t)TF T + FV F T )−1,(7.19)
z̄(d|d)(t) = ẑ(d|d−1)(t) + K̄(d)(t)(Fy(d)(t)− FC(d)(t)ẑ(d|d−1)(t)), (7.20)

where K̄(d)(t) is Kalman gain which is updated at time tf of day d and z̄(d|d)(t) is
the regression coefficients which is updated at time tf of day d. Since A = I and C

are block diagonal matrix, then K̄(d)(t) =

X
0

 is that the parameters according

to t > tf will not be updated.

• Time update at tf :
z̄(d+1|d)(t) = Az̄(d|d)(t). (7.21)

We then determine yd+1(t) = Cd+1(t)z̄(d+1|d)(t) for t ∈ {t1, t2, . . . , th}. For more clearly,
the parameters of Kalman filter for t ∈ {t1, t2, . . . , tf} are updated and are used to
predict solar irradiance as blue line in Figure 7.5a. The parameters of Kalman filter
for t ∈ {tf +1, tf +2, . . . , th} are not updated and still use the same parameters as the
previous update at time th of day d − 1 as red line in Figure 7.5a. At the end of the
day at time th, the local measurement data are already collected. We then update the
parameters of the Kalman filter using normal procedure again for the next iteration as
green line in Figure 7.5b.
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Measured data

Predicted data

7.00 10.00 13.00 16.00 7.00 10.00 13.00 16.00

= 13.00 hrs= 16.00 hrs

7.00 10.00 13.00 16.00

At time of day

(a) Updating parameters at time tf .
Measured data

Predicted data

7.00 10.00 13.00 16.00 7.00 10.00 13.00 16.007.00 10.00 13.00 16.00

= 16.00 hrs

(b) Updating parameters at time th.

Figure 7.5: Updating time of the parameters in Kalman filter.

The initial parameters β(t) of daily-step MOS+KF1 are the same as β̂ls(t) of daily-
step MOS which are obtained from least-squares method. We determine {e(d)(t)}Nd=1

is the residual error of daily-step MOS model of time t, variance of {e(d)(t)}Nd=1 is
σ2(t) = 1

N−p

∑N
d=1 |e(d)(t)|2. Then, the initial parameters for Kalman filter of model tk

can be chosen as follows.

ẑ(0|0) = (β̂ls(t1), β̂ls(t2), . . . , β̂ls(th)), cov(β̂ls(t)) = σ̂2(t)(XTX)−1,

P (0|0) = diag(cov(β̂ls(t1)), cov(β̂ls(t2)), . . . , cov(β̂ls(th)),

W = 10−4 diag(ẑ(0|0)).

(7.22)

For estimating the noise covariance V , we estimate V from the residual errors of daily-
step MOS. The residual errors of daily-step MOS can be expressed by

v̂(d) =



e(d)(t1)

e(d)(t2)

...

e(d)(th)


.
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Moreover, there are two assumptions for estimating the noise covariance V as follows.

(a) e(d)(tj) and e(d)(tk) are not correlated.
(b) e(d)(tj) and e(d)(tk) are correlated.

We then propose two MOS+KF models based on MOS+KF1 called MOS+KF1a and
MOS+KF1b. The difference between MOS+KF1a and MOS+KF1b is the assumption
of the noise covariance. The proposed MOS+KF1a and MOS+KF1b are described as
follows.

(a) MOS+KF1a: e(d)(tj) and e(d)(tk) are not correlated and the noise covariance V

can be expressed by

V = diag(cov(e(d)(t1)), cov(e(d)(t2)), . . . , cov(e(d)(th))). (7.23)

Note: V and P (0|0) in (7.22) are block diagonal matrices, then the h sub-models
of Kalman filter are updated independently.

(b) MOS+KF1b [117]: e(d)(tj) and e(d)(tk) are correlated and the noise covariance
V can be expressed by

V = cov(v̂(d)) =



cov(e(d)(t1)) cov(e(d)(t1), e(d)(t2)) · · · cov(e(d)(t1), e(d)(th))

cov(e(d)(t2), e(d)(t1)) cov(e(d)(t2)) cov(e(d)(t2), e(d)(th))
...

. . .

cov(e(d)(th), e(d)(t1)) · · · cov(e(d)(th))


,

(7.24)

where the covariance (assume mean is removed) can be expressed as

cov(e(d)(tj), e(d)(tk)) =
1

N

N∑
d=1

e(d)(tj)e
(d)(tk).

For this choice, V is not diagonal matrix then the Kalman gain is also not diagonal
matrix. If Kalman gain is not diagonal matrix, then the residual error of y(d)(tk)
will effect on state variable z(d|d)(tj).

In conclusion, all the solar irradiance forecasting models of this work are listed as
follows.

1. Hourly-step MOS

2. Hourly-step MOS+KF1

3. Hourly-step MOS+KF2

4. Hourly-step MOS+KF3

5. Daily-step MOS

6. Daily-step MOS+KF1a

7. Daily-step MOS+KF1b

The details of the inputs data are describes in Chapter 8.



CHAPTER VIII

DATA DESCRIPTION

This chapter describes about the detail of the data. The data can be separated into
three sources, i) measurement ii) WRF model and iii) deterministic variables and only the
data from local measurements and WRF model are described in this chapter as follows.

8.1 Measurement data

The measurement data that used in forecasting model are collected from the sen-
sors which are installed on the top of the Electrical Engineering Building, Chulalongkorn
University. The sensors that installed at Electrical Engineering Building are Pyranometer
(for measuring the solar irradiance), Energy meter (for measuring the energy that generate
from PV cells), Thermometer (for measuring the temperature), Hygrometer (for measuring
the relative humidity), wind speed sensor, wind direction sensor, and UV index sensor. How-
ever, we just use only two measurement data that are solar irradiance (I) and power (P ) to
train the forecasting model. The details of the data are summarized in Table 8.1.

Table 8.1: Summary of the data description of this work.

Variables

Chulalongkorn University

NoteLat.13.7365 Lon.100.5321

Source Sampling period Starting from

I (W/m2) CUBEMS 3 minutes 15/12/16 Contains missing data

Îwrf (W/m2) Supachai 60 minutes 1/1/17 -

R̂Hwrf (%) Supachai 60 minutes 1/1/17 -

T̂wrf (Degree Celsius) Supachai 60 minutes 1/1/17 -

P (kWm) (8kW) CUBEMS 1 minute 15/12/16 Contains missing data

P (kWm) (15kW) CUBEMS 1 minute 24/03/17 Contains missing data

Measurement data are typically missing, so we need to clean the data first. The pro-
cesses to clean the measurement data of this work are shown in Figure 8.1 and the details
are described as follows.
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Local weather measurement

Remove duplicate record

Check for missing data

Remove out of range data

Remove non-smooth data

Remove non-update data

Imputation

Imputed data

Smoothing and downsampling

Figure 8.1: Proposed scheme of data pre-processing.

1. Duplicate records: The latest timestamp and value of the duplicate record are stored
and the previous timestamp and value of the duplicate record will be removed.

2. Missing values: The missing values are automatically treated as erroneous value by
MATLAB.

3. Out-of-range values (limit from sensor spec, practical range of variables): The range
of solar irradiance is 0 < I < 1366W/m2, the range of solar power of 8 kW PV site is
0 < P < 8kW, and the range of solar power of the 15 kW PV site is 0 < P < 15kW. If
the value exceeds the range, then treat that value as erroneous value.

4. Non-smooth values: We define the maximum rate of change of each variable as follows.
The maximum rate of change of solar irradiance is 133.3 W/m2. The maximum rate
of change for 8 kW PV system is 2.5 kW and the maximum rate of change for 15 kW
PV system is 5 kW. If the rate of change of the measured variables is more than the
defined maximum rate of change, then the value is treated as erroneous value.

5. Non-updated values: If the value is not equal to zero and the values are not changed
for one hour, then treat those values as erroneous values.

6. Imputation: The imputation method can be classified into two types, i) short consecu-
tive missing values and ii) long consecutive missing values. Short consecutive missing
values contain the consecutive missing values less than one hour and we use the linear
interpolation method to impute the missing values. Long consecutive missing values
contain the consecutive missing values that longer than one hour and we impute the
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missing values by averaged value of the previous and the next 10 days at the same time
that missing value occur.

7. Smoothing and downsampling: The imputed data usually fluctuate and we do the
experiments by using just hourly data. Then we apply smoothing that using a moving
average filter on the imputed data for reducing variance of the data with time span
of 15 minutes before and after current value. After that, we do downsampling of the
variables I and P (from the sampling period of 3 minutes and 1 minute respectively)
into 60 minutes by choosing tha data that are collected at minute 0 of each hour.

The imputed data are used to train the model or used as the inputs of the forecasting model.

8.2 WRF data

In this work, the predicted weather variables are obtained from WRF model. The
parameters of WRF model that need to be determined are described as follows.

• The number of spatial domain of the area of interest: We use 2 domains to predict the
weather variables from WRF model. The first domain is used to forecast in a large area
which consist of Western, Central, and Eastern region of Thailand. The second domain
is used to forecast only in Central region of Thailand.

• Resolution of the area (km2): The first domain has the resolution of 9× 9 km2 and the
second domain has the resolution of 3× 3 km2.

• Sampling of the forecast value: The sampling of the forecast value is hourly data.
Moreover, the sampling can be changed to 15 or 30 minutes. However, it consumes a
lot of time to run WRF (depend on computing resources).

• Date and time of the prediction: One day ahead prediction.

• Schemes of the WRF model: The forecasting schemes of the WRF model should be
consistent in location of interest. Therefore, we follow Thai Meteorological Depart-
ment (TMD) to use the same forecasting schemes which may be the most suitable for
Thailand. The schemes that we use are shown in Table 8.2.

The input of the WRF model is the output of GFS model. The output of GFS model is
provided four times daily by the National Oceanic and Atmospheric Administration (NOAA),
USA. GFS model runs daily at 0.00, 6.00, 12.00, and 18.00 Universal Time Co-ordinated
(UTC) (7.00, 13.00, 19.00, and 1.00 Thailand Standard Time (TST), respectively) and GFS
model takes 4 hours to run the prediction. Therefore, the input data of WRF model are
available at 11.00, 17.00, 23.00, 5.00 TST. From Figure 8.2, we illustrate the time schedule
of the input data of WRF model. We can start to download the input data of WRF model
at 11.00, 17.00, 23.00, and 5.00 TST (green dots). Our PC (CPU: Intel®Xeon®Processor E5-
2620 v4 2.10GHz upto 3.00GHz 8Cores 16Threads 20MB SmartCache 8 GT/s QPI, RAM:
32GB Module - DDR4 2400 ECC Registered) takes 2 hours to run WRF model to predict the
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Table 8.2: Summary of the physics options for running WRF model of this work.

Physics options Schemes

Micro Physics Options WRF Single–moment 6–class Scheme

Planetary Boundary Layer Physics Options Mellor–Yamada Nakanishi Niino (MYNN)
Level 2.5 Scheme

Cumulus Parameterization Options Grell 3D Ensemble Scheme

Shortwave and Longwave Options RRTMG Shortwave and Longwave Schemes

Land Surface Options Unified Noah Land Surface Model

Surface Layer Options Revised MM5 Scheme

weather variables one day in advance, therefore, the predicted variables data are obtained at
red dots. The first predicted weather variable value always start at blue dots.

 

00UTC

12UTC

06UTC

18UTC

5:00 9:00 13:00 17:00 21:001:00 5:00 9:00 13:00 17:00 21:001:00

Thailand Standard Time (TST)

The beginning of forecasting value

The input data are available for download

WRF provides forecast values 

Figure 8.2: Time schedule of the input data of WRF model (the input data of 12UTC are
used in this work).

If we would like to obtain WRF outputs by 13.00 hrs to compute the predicted solar
power of day d + 1, then it cannot be achieved by running WRF one day in advance. To
deal with this constraint, we recommend that WRF should be run to predict the weather
variables two days in advance with the input data of 12UTC as shown in Figure 8.3.
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Measured data

Predicted data

TST

= 13.00 hrs

12.00 18.00 0.00 6.000.00 6.00 12.00 18.00 0.0018.00

19.00 23.00 3.00 19.00

The beginning of forecasting value

The input data are available for download

WRF provides forecast values

The last predicted value from WRF12UTC

Figure 8.3: Recommended time schedule and input data for running WRF to deal with the
practical constraint.

However, WRF model takes a lot of time (at least 4 hours based on our PC) to predict
weather variables two days in advance, therefore, we just use WRF model to predict the
weather variables one day in advance for this work. At the beginning, we run WRF model
twice a day as TMD with the input data of 00UTC and 12UTC. Then, we compare the
forecasting performance of solar irradiance between input data of 00UTC and 12UTC. From
the results that will be shown in Section 9.1, we conclude that the predicted solar irradiance
from WRF model with the input data of 12UTC provides lower forecasting error than the
input data of 00UTC. Therefore, we run WRF model with the input data of 12UTC only.

Moreover, the forecast values from WRF are reported in the form of coordinate grid
points and the forecasting error can be reduced by spatial averaging method. From the
experimental result in Section 9.2, we will see that the forecasting error decreases as the
spatial area increases. However, the forecasting error does not significantly reduce when the
spatial area is too large. According to the experimental result in Section 9.2, we conclude
that the spatial averaging with 7 × 7 grid points is the most suitable, so we use the spatial
averaged value instead of the nearest grid point in forecasting process.



CHAPTER IX

EXPERIMENTAL RESULTS

Main experimental results and conclusions of the experiments are shown and described
in this chapter. We explore the following topics in the experments.

1. Comparison between WRF with input data of 00UTC and 12UTC: This experiment
compares the predicted solar irradiance from WRF model between the input data of
00UTC and 12UTC. The input data which provides the lowest RMSE is chosen as the
input data for the rest of this work.

2. Improvement on spatial averaging: This experiment investigates the improvement of
spatial averaging method with various spatial areas. The most suitable spatial area will
be chosen and the averaged values will be used instead of the closest predicted value
from WRF model to the PV site.

3. Selection of influential variables to solar irradiance: This experiment aims to determine
the important variables to solar irradiance by statistical methods which are partial
correlation, stepwise regression, and subset regression. The important variables to solar
irradiance are the variables that are frequently selected by the statistical methods.

4. Solar irradiance forecasting: The performance of all proposed models are compared.
The proposed model which provides the lowest RMSE is chosen as the best of proposed
solar irradiance forecasting model for this work. Moreover, we also compare the per-
formance between our proposed models and the models from previous work. In this
experiment, we use k-fold cross validation in order to see the averaged forecasting error
from each model.

5. Solar irradiance to PV power conversion: The predicted solar irradiance from previous
work and the proposed models are converted into predicted solar power. The predicted
solar power data are evaluated by k-fold cross validation of the measured solar power
from the PV sites of 8 kW and 15 kW installed capacity.

Moreover, there are some minor experiments that are described in appendix such as Linke
turbidity estimation, imputation methods for missing data, and noise covariance estimation
for Kalman filter. The results and discussion of the main experiments are shown as follows.

9.1 Comparison between WRF with input data of 00UTC and 12UTC

The input of WRF model is the output of GFS model which provided four times a
day. However, we try to use the input of WRF model the same as TMD, therefore, output
of GFS at 00UTC and 12UTC (7.00 hrs and 19.00 hrs Thailand time, respectively) are used
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to forecast the solar irradiance. The GFS input that provide the lowest forecasting error
in RMSE will be used in later process. In this experiment, we compare the predicted solar
irradiance data of 00UTC and 12UTC on the measurement data between 1 Dec 2017 to 31
Jan 2018. The results are shown in Figure 9.1.
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(a) RMSE and MBE of the predicted solar irradiance of WRF 00UTC and 12UTC.
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(b) RMSE and MBE of the predicted solar irradiance of WRF 00UTC and 12UTC with specific
hour.

Figure 9.1: RMSE and MBE of the predicted solar irradiance of WRF 00UTC and 12UTC
of the data between 1 Dec 2017 to 31 Jan 2018.

From the results, we can see that the predicted solar irradiance of GFS at 12UTC pro-
vides lower forecasting error than GFS at 00UTC. From the results of MBE of specific hour,
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we can see that the forecasting errors around noon of the GFS at 00UTC provide significantly
high compared to the GFS at 12UTC. The GFS at 00UTC provides high forecasting error
than the GFS at 12UTC because the forecasted values that we are interested are too close to
the initial time. This problem may affect to the accuracy of the solar irradiance forecasting.
Therefore, we use the predicted solar irradiance values from the GFS at 12UTC only in
subsequent experiments.

9.2 Improvement on spatial averaging

The solar irradiance always fluctuates due to cloud positions which are difficult to
predict. Therefore, the nearest forecasted solar irradiance value from WRF model to the PV
site of interest may provides too high forecasting error. The idea of spatial averaging can
be used to reduce the forecasting error from WRF model. Therefore, this section aims to
explore the improvement of the spatial averaging on predicted solar irradiance from WRF
model. The spatial areas that we explore are 3× 3, 5× 5, and 7× 7 km2. The performance
indices (RMSE and MBE) are used to justify which spatial area is most suitable. The most
suitable spatial area is used to calculate the spatial averaged value of the predicted solar
irradiance from WRF which is called Îwrf in following experiments. The data between 1 Jan
2017 to 30 Jun 2018 are used in this experiment. The results of the spatial averaging are
shown in Figure 9.2
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Figure 9.2: RMSE of the predicted solar irradiance from WRF with various spatial areas.

Figure 9.2 shows that RMSE decreases as spatial area is higher. However, the RMSE
does not significantly reduce when the spatial area is too large. The results are the same
as [9]. Therefore, we use the WRF forecast with spatial area of 7 × 7 km2 instead of the
single nearest grid point for all predicted variables from WRF model. Moreover, we also plot
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histogram of the residual error of the predicted solar irradiance from WRF with spatial area
of 7 × 7 km2. The residual errors are the data between 1 Jan 2017 to 31 Dec 2018. The
histogram plots of residual error are shown in Figures 9.3 and 9.4.

Figure 9.3: Histogram plot of residual errors of the predicted solar irradiance from WRF
model.

Figure 9.4: Histogram plot of residual errors of the predicted solar irradiance from WRF
model in specific hour.

From Figures 9.3 and 9.4, we can see that WRF model usually overestimates the mea-
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sured solar irradiance especially around noon.

9.3 Selection of influential variables to solar irradiance

The aim of this section is to analyze the influential variables to solar irradiance by using
statistical methods which are partial correlation, stepwise regression, and subset regression.
Selecting an important variable is based on a hypothesis testing on the regression coefficient
using p-value approach to justify if the regression coefficient is different from zero. p-value
is the probability of the random variable (associated with the test statistic distribution) is
greater than the test statistic value computed from the data. If the p-value is a smaller than
a significance level (α and determined by a user) then the variable in question is significant.
The variables that we choose for testing are

Îwrf, R̂Hwrf, T̂wrf, Iclr, cos θ, k̂wrf.

Note that, we calculate Iclr from Ineichen clear sky model (3.12) with the estimated Linke
turbidity value which is obtained from least-squares method. The estimated Linke turbidity
for top of the Electrical Engineering Building is 4.8597, see Chapter 10 for more details. The
data that we use in this experiment are the data between 1 Jan 2017 to 30 Jun 2018. Once
we can determine the important variables, performance on forecasting correction is reported
and the seasonal effect on the improvement can be observed.

Partial correlation

The results are shown in Table 9.1 and the selected variables from partial correlation
are

Îwrf(t), T̂wrf(t), cos θ(t).

Table 9.1: Partial correlation coefficients and p-value of correlation coefficients of the selected
weather variables.

Îwrf(t) R̂Hwrf(t) T̂wrf(t) Iclr(t) cos θ(t) k̂wrf(t)

Correlation 0.2155 -0.0181 -0.1657 -0.0186 0.0353 -0.0256

p-value 2.5708× 10−58 0.1820 6.9053× 10−35 0.1688 0.0091 0.0584

Stepwise regression

• Forward stepwise regression: The processes of forward stepwise regression are shown
below and the estimated coefficients and p-value of forward stepwise regression are
shown in Table 9.2.

– Step 1: Adding Îwrf(t), p-value = 0
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– Step 2: Adding Iclr(t), p-value = 1.758× 10−59

– Step 3: Adding R̂Hwrf(t), p-value = 0.013

– Step 4: Adding T̂wrf(t), p-value = 3.239× 10−10

– Step 5: Adding cos θ(t), p-value = 6.030× 10−10

Table 9.2: Estimated coefficients and p-value of the selected weather variables from forward
stepwise regression.

Variables Estimated coefficients Standard Error p-value

Îwrf(t) 0.532 0.020 3.346× 10−141

R̂Hwrf(t) 0.868 0.190 4.745× 10−6

T̂wrf(t) -6.559 0.741 1.132× 10−18

Iclr(t) -0.597 0.134 9.023× 10−6

cos θ(t) 924.28 149.06 6.03× 10−10

The selected variables from forward stepwise regression are

Îwrf(t), R̂Hwrf(t), T̂wrf(t), Iclr(t), cos θ(t).

• Backward stepwise regression: The processes of backward stepwise regression are shown
below and the estimated coefficients and p-value of backward stepwise regression are
shown in Table 9.3.

– Step 1: Removing k̂wrf(t), p-value = 0.103

Table 9.3: Estimated coefficients and p-value of the selected weather variables from backward
stepwise regression.

Variables Estimated coefficients Standard Error p-value

Îwrf(t) 0.532 0.020 3.346× 10−141

R̂Hwrf(t) 0.868 0.190 4.745× 10−6

T̂wrf(t) -6.559 0.741 1.132× 10−18

Iclr(t) -0.597 0.134 9.023× 10−6

cos θ(t) 924.28 149.06 6.03× 10−10

The selected variables in backward stepwise regression are the same as the results from
forward stepwise regression.
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Subset regression

This method performs regression of I on all combinations of relevant variables and we
have six relevant variables, so the total is 26=64 different models with different goodness of
fit and model complexity. Therefore, we use AIC and BIC in order to choose the optimal
model which is the model that has the lowest AIC or BIC score from (5.3) and (5.4). In this
experiment, the data are separated into two sets which are training data set and validation
data set. The training data set is the data between 1 Jan 2017 to 31 Dec 2017 and this
data set is also used to train the model. The validation data set is the data between 1 Jan
2018 to 30 Jun 2018 and this data set is used to evaluate the trained models. The top five
models that provide low AIC and BIC score in both training and validation set are shown
in Table 9.4.

The important variables to solar irradiance from each method are summarized in Ta-
ble 9.5.

Table 9.5: Summary of the selected weather variables from partial correlation, stepwise
regression, and subset regression.

Methods
Predictor variables

Îwrf(t) R̂Hwrf(t) T̂wrf(t) Iclr(t) cos θ(t) k̂wrf(t)

Partial correlation • • •

Forward stepwise • • • • •

Backward stepwise • • • • •

Subset regression

AIC training • • •

AIC validation • • • •

BIC training • • • •

BIC validation • • • •

Mostly, the important variables to solar irradiance are the variables which selected by
the statistical methods. From Table 9.5, we can conclude that the important variables to
solar irradiance are

Iwrf,RHwrf,Twrf, and cos θ.

These important variables are used as the input of MOS and MOS+KF to predicted the solar
irradiance in later process. Therefore, the equation of proposed MOS which is used in the
rest of the experiments can be expressed as

Îmos(t) = β1Îwrf(t) + β2R̂Hwrf(t) + β3T̂wrf(t) + β4 cos θ(t). (9.1)

The statistical test of (9.1) is shown in Table 9.6.
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Table 9.6: The regression coefficients and p-value of the regression coefficients of the proposed
MOS model.

Variables Regression coefficients Standard Error p-value

Îwrf(t) 0.522 0.020 1.545× 10−137

R̂Hwrf(t) 0.183 0.190 2.279× 10−9

T̂wrf(t) -4.280 0.536 1.613× 10−15

cos θ(t) 267.84 19.901 1.214× 10−40

9.4 Solar irradiance forecasting

The performance of the solar irradiance forecasting methods are compared and summa-
rized in this section. The experiments are separated into three topics. The first topic is the
performance comparison between WRF forecast, persistence forecast, and MOS. The second
topic is the performance comparison of proposed methods of MOS and MOS+KF. The last
topic is the performance comparison between the proposed methods and the previous works
from literature reviews. We use k-fold cross validation in order to see the average of the
forecasting error of the proposed models. The data from 1 Jan 2017 to 31 Dec 2018 are split
into 10 folds and each fold contains 73 days of data. Ninety percent of the data are used
for training the models called training fold and the rest of the data is used to evaluate the
performance of the models called test fold. Therefore, we have 10 folds of the data which
contain training fold and test fold. All 10 folds of the data are used to train the proposed
models and provide the predicted solar irradiance. The performance of the proposed models
are evaluated with the test fold. Then the average performance indices of the proposed mod-
els are calculated. We apply 10-fold cross validation in order to evaluate the performance
of the forecasting models in all following experiments. The model that provides the lowest
RMSE or MBE is the best model for solar irradiance prediction.

WRF forecast, Persistence forecast, and MOS: This experiment aims to see the
improvement of MOS over the persistence forecast and the spatial averaging of predicted
solar irradiance from WRF model.
Note that, the persistence forecast is modified as daily-step to predict the solar irradiance of
the next day. We assume that the clear sky index of day d + 1 is the same as day d. The
modified equation of persistence forecast can be expressed as follows.

Îd+1
persist(t) = k̂d(t)Îd+1

clr . (9.2)

The results of this experiments are shown in Figure 9.5.
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Figure 9.5: The averaged RMSE of the predicted solar irradiance of WRF, persistence fore-
cast, hourly-step MOS, and daily-step MOS from 10-fold cross validation.

From Figure 9.5, the results show that the daily-step persistence forecast provides lower
RMSE than the spatial averaged of solar irradiance from WRF model about 0.04 kW/m2.
Moreover, MOS can further reduce the RMSE about 0.05 kW/m2 from Persistence forecast.
We can conclude that MOS is simple and efficient method to forecast the solar irradiance.
Besides, more complexity of MOS which is the daily-step MOS can be used to provide lower
RMSE than hourly-step MOS but it is not significant. From the bar plot of specific hour,
we can see that the RMSE of WRF and persistence forecast are too high around noon but
the RMSE of MOS is significantly lower than WRF and persistence forecast. In conclusion,
the proposed MOS outperforms the other basic solar forecasting methods. Moreover, the
daily-step MOS provides lower RMSE than hourly-step MOS because of the complexity of
the model. In the next topic, we apply Kalman filter on MOS which should provide better
performance than MOS only.

MOS and MOS+KF: The Kalman filter that applied to MOS adjusts the regression
coefficients over time. Therefore, the results of all proposed MOS+KF models should pro-
vide lower forecasting errors than MOS only. Therefore, this experiment aims to see the
improvement of MOS+KF over MOS. Moreover, the daily-step models should provide lower
forecasting errors than the hourly-step models because the daily-step models have high com-
plexity than the hourly-step models. The performance indices that are used to evaluate the
forecasting models are RMSE and MBE. The results are shown in Figure 9.6.
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Figure 9.6: The averaged RMSE and MBE of 10-fold cross validation of the proposed models.

From the results, we can see that the daily-step models provide lower RMSE than
hourly-step models. In training set, the performance of MOS and MOS+KF are not signif-
icantly different in both hourly-step and daily-step models. However, the results in testing
data set show that MOS+KF outperforms MOS in both hourly-step and daily-step mod-
els. We can conclude that MOS+KF can be used to provide the suitable regression coef-
ficients of MOS when the time pass by. From hourly-step MOS+KF models, MOS+KF2
and MOS+KF3 provide lower RMSE than MOS+KF1. Therefore, we can conclude that the
residual error from the previous steps can be used in Kalman filter to provide more suitable
regression coefficients than using only one residual error of the previous step. However, the
performance of MOS+KF1, MOS+KF2, and MOS+KF3 are not significantly different. From
daily-step MOS+KF models, the results show that MOS+KF1a is better than MOS+KF1b.
Therefore, we can conclude that the relationships of the residual error between t1, . . . , th of
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day d of MOS+KF1b cannot be used to provide more suitable regression coefficients than
using independent residual error between t1, . . . , th of day d of MOS+KF1a. From the bar
chart of MBE, we can see that the MBE of hourly-step models are significantly high compared
to daily-step models. The reasons that daily-step models are better than hourly-step models
because daily-step models have higher complexity than hourly-step models. Moreover, the
regression coefficients of daily-step MOS+KF models at time t1, . . . , th of day d+1 are evolved
based on the residual error at time t1, . . . , th of day d. Therefore, daily-step MOS+KF mod-
els provide the suitable regression coefficients than hourly-step MOS+KF models. On the
other hand, the regression coefficients at time t1, . . . , th of day d+1 of hourly-step MOS+KF
models are evolved based on the residual error at time tf (13.00 hrs) of day d. Therefore,
hourly-step MOS+KF models usually underestimate in the morning and overestimate in the
after noon as shown in MBE of the specific hour.

Performance comparison with previous works: The previous works that we choose to
compare the results with our proposed models are the models of [9, 11, 12] (MOS of Lorenz,
MOS+KF of Pelland, and MOS+KF of Diagne respectively). We choose these three previous
works because our models and the previous works are based on the same methods which are
MOS and MOS+KF. Moreover, the models of these three previous works are identified as
hourly-step models. However, the inputs of the models and the initial conditions of MOS+KF
models of the previous works are different from our models. Therefore, we need to compare
the performance between our models and the relevant previous works. The details of the
model from previous works are described as follows.

• Model of [9] (MOS of Lorenz): This work use MOS to predict the forecasting error of
the predicted solar irradiance from the NWP model called bias correction (Bias(t) =

Îwrf(t) − I(t)). MOSLorenz is a fourth order polynomial regression model which the
predictors are the clear sky index and the solar zenith angle. This model can be
expressed as

B̂ias(t) = β1k̂(t)
4+β2 cos θ(t)4+β3k̂(t)

3+β4 cos θ(t)3+ · · ·+β7k̂(t)+β8 cos θ(t). (9.3)

The predicted solar irradiance (ÎLorenz) can be obtained by ÎLorenz(t) = Îwrf(t)+B̂ias(t).

• Model of [11] (MOS+KF of Pelland): This work apply Kalman filter on bias correction.
The input is Îwrf. The state-space is determined as follows.

z(t+ 1) = z(t) + w(t),

Bias = y(t) =

[
1 Îwrf(t)

]
z(t) + v(t).

The initial conditions of this model are expressed as follows.

A = I, C(t) =

[
1 Îwrf(t)

]
,

V (0) = 0.01, W (0) = 10−5I,

ẑ(0|0) = 0, P (0|0) = 5× 10−5I.

(9.4)
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W (t) and V (t) of this model are estimated by adaptive noise covariance as follows.

W (t) =
1

N − 1

N∑
t=1

{
(ŵ(t)− w̄)(ŵ(t)− w̄)T −

(
N − 1

N

)
[A(t)Pt−1|t−1A(t)T − Pt|t]

}
, (9.5)

V (t) =
1

N − 1

N∑
t=1

{
(v̂(t)− v̄)(v̂(t)− v̄)T −

(
N − 1

N

)
[C(t)Pt|t−1C(t)T ]

}
, (9.6)

where ŵ(t) = ẑt|t − ẑt|t−1 is the error between measurement update and time update,
w̄ = 1

N

∑N
t=1 ŵ(t), v̂(t) = y(t) − C(t)ẑt|t−1 is the error between measurement and

predicted value, v̄ = 1
N

∑N
t=1 v(t), and N is the number of sample data which are the

latest data of 30 days. The predicted solar irradiance can be obtained by ÎPelland(t) =

Îwrf(t) + B̂ias(t).

• Model of [12] (MOS+KF of Diagne): This work apply Kalman filter on bias correction
based on the following state-space equation.

z(t+ 1) = z(t) + w(t),

Bias = y(t) =

[
1 Îwrf(t) cos θ(t)

]
z(t) + v(t).

The initial conditions of this model are expressed as follows.

A = I, C(t) =

[
1 Îwrf(t) cos θ(t)

]
,

V = 0.01, W = I,

ẑ(0|0) = 0, P (0|0) = 5I.

(9.7)

Note that, the predicted solar irradiance (ÎDiagne) can be obtained by ÎDiagne(t) =

Îwrf(t) + B̂ias(t).

The results are shown in Figures 9.7 and 9.8. From these results, we can see that
our proposed MOS+KF models outperform the others in both hourly-step and daily-step
models. Among the works from literature review, MOS of Lorenz provides the lowest RMSE.
However, this model is still not better than our proposed MOS in both hourly-step and daily-
step models. MOS of Lorenz is worse than our proposed MOS models because the model just
includes only one important variables to solar irradiance in Thailand which is solar zenith
angle but our proposed MOS models have four important variables to solar irradiance in
Thailand. For MOS+KF of Diagne, the RMSE is very high because noise covariance W

is too high and the model includes only one important variables to solar irradiance. For
MOS+KF of Pelland, the result is better than MOS+KF of Diagne, however, it is still
not better than MOS of Lorenz because the adaptive noise covariance method may provide
inappropriate estimated noise covariance. Moreover, this model just includes two important
variables to solar irradiance.

From the results, daily-step MOS+KF1a provides the lowest performance indices which
RMSE and NRMSE are 157.5 W/m2 and 37.7 %, respectively. However, the performance
indices of daily-step MOS+KF1a are not significantly different when compared to the works
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from literature review. In [9, 11], NRMSE (normalized by mean of solar irradiance) of these
works were 37 % and 16.8 to 35 %, respectively. Accoreding to [12], RMSE and NRMSE
(normalized by mean of solar irradiance) of this work were 119.8 to 154 W/m2 and 22.2 to 35.5
%, respectively. The example plots of the predicted solar irradiance are shown in Figure 9.9.
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Figure 9.7: RMSE and MBE of 10-fold cross validation of the predicted solar irradiance of
the proposed MOS+KF models and the models from previous work.
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Figure 9.8: NRMSE (normalized by mean of solar irradiance) of 10-fold cross validation of the
predicted solar irradiance of the proposed MOS+KF models and the models from previous
work.
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(a) Example plots of the predicted solar irradiance under good weather conditions.
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(b) Example plots of the predicted solar irradiance under bad weather conditions.

Figure 9.9: Example plots of the predicted solar irradiance from the proposed models and
the models from previous work

Note that, the solar irradiance under good condition (high magnitude in solar irradiance
and bell-shaped curve) rarely occur during 1 Jul 2018 to 31 Dec 2018. Therefore, MOS+KF1a
outperforms the other models because the regression coefficients of MOS+KF1a are more
proper than the other models.

Discussion From the experimental results of solar irradiance forecasting, we can conclude
that WRF model always provides the highest RMSE. The error of WRF model is very high
around noon. Therefore, we apply MOS to reduce the forecasting error of predicted solar
irradiance from WRF model. The proposed MOS models can be used to reduce the RMSE of
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WRF model around 92 W/m2. Moreover, the proposed MOS+KF models can be used to fur-
ther reduce the RMSE of the proposed MOS models by 2 to 3 W/m2. The best model among
the proposed models is daily-step MOS+KF1a. MOS+KF1a has high complexity of the
model and the regression coefficients are updated properly over time. Moreover, MOS+KF1a
also outperforms the models from the previous work. The reasons are described as follows.

• MOS of Lorenz: This model is a regression model which is the fourth order polynomial
of k̂(t) and cos θ(t). However, this model contains only one important variable to solar
irradiance which is cos θ. Therefore, the RMSE of this model is higher than even
the proposed hourly-step MOS. We can conclude that the relevant variables to solar
irradiance are the important things to explain the characteristic of the solar irradiance.

• MOS+KF of Diagne: This model contains two relevant variables to solar irradiance
which are Îwrf and cos θ. Moreover, this model also updates the regression coefficients
of MOS by Kalman filter. Therefore, this model should provide better performance than
MOS of Lorenz. However, the result show that the RMSE of this model is significantly
high compared to MOS of Lorenz. Therefore, we try to apply MOS of Diagne to see
the performance of MOS without the Kalman filter. The RMSE of MOS of Diagne is
lower than MOS of Lorenz about 5 W/m2. Therefore, we can conclude that the Kalman
filter makes this model worse. We then try to vary the noise covariance and see the
performance. We found that the noise covariance W of this model is too high which
makes the regression coefficients too adaptive. Moreover, the regression coefficients
of this model are updated as hourly-step MOS+KF models. Therefore, the regression
coefficients are updated depend on the information at time tf (13.00 hrs). In conclusion,
this model is worse than our proposed models because the author choose too high
W . Moreover, this model lacks the relevant variables to solar irradiance and also low
complexity.

• MOS+KF of Pelland: This model contains only one relevant variable to solar irradiance
which is Îwrf and the regression coefficients are updated by Kalman filter. Therefore,
this model should provides worse performance than MOS+KF of Diagne. However, the
result show that this model is better than MOS+KF of Diagne. We then try to apply
MOS of Pelland to see the performance of MOS without the Kalman filter. The RMSE
of this model is higher than both Lorenz model (about 1 W/m2) and Diagne model.
Therefore, we can conclude that the Kalman filter makes this model worse. According to
MOS+KF of Pelland, this model use the adaptive noise covariance method to estimate
the noise covariance W and V in each iteration. We then try to use the fixed noise
covariance W and V instead of adaptive noise covariance method. We found that the
regression coefficients are too adaptive when the noise covariances are estimated from
adaptive noise covariance method. Moreover, this model also updates the regression
coefficients with the same process as the hourly-step MOS+KF models. In conclusion,
this model is worse than our proposed models because the adaptive noise covariance
method provides inappropriate noise covariance. Besides, this model lacks the relevant
variables to solar irradiance and also low complexity. However, this model provides
better performance than MOS+KF of Diagne because the adaptive noise covariance
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method provides more suitable noise covariance than fixed noise covariance in MOS+KF
of Diagne.

We can conclude that the suitable initial condition and noise covariance V of Kalman filter
can be estimated from the residual error of MOS. The details of the experiments on noise
covariance of the MOS+KF model are shown in Chapter 10. After we obtain the predicted
solar irradiance then we convert the predicted solar irradiance into the predicted solar power
of the PV site which is described in Section 9.5.

9.5 Solar irradiance to PV power conversion

The predicted solar irradiance is converted into the predicted electrical power from
PV cells by PV power conversion. There are two PV sites of interest that are used to
evaluate the predicted solar power. The installed capacity of the first PV site is 8 kW and
the installed capacity of the second PV site is 15 kW. Both PV sites are installed at top
of Electrical Engineering building, Faculty of Engineering, Chulalongkorn University. From
the PV conversion equation (6.1), the regression coefficients of the conversion model for
converting the solar irradiance into solar power of 8 kW and 15 kW PV systems are shown
in Table 9.7 respectively.

Table 9.7: The regression coefficients of PV conversion models for 8 kW and 15 kW PV
systems.

PV site
Regression coefficient of the predictor

Îwrf T̂wrf ÎwrfT̂wrf

8 kW 9.4451 −0.0031 −0.0929

15 kW 17.9051 −0.0226 −1.4267

The results of predicted solar power of 8 kW and 15 kW PV systems are shown in Fig-
ures 9.10 and 9.11 respectively.
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(b) NRMSE (normalized by install capacity).

Figure 9.10: RMSE and NRMSE of the predicted solar power from the proposed MOS+KF
model and the models from previous work for 8 kW PV system.
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(b) NRMSE (normalized by install capacity).

Figure 9.11: RMSE and NRMSE of the predicted solar power from the proposed MOS+KF
model and the models from previous work for 15 kW PV system.

From the result, daily-step MOS+KF1a outperforms the other models in both 8 kW
and 15 kW PV systems. we can see that the trend of RMSE of the predicted solar power
is the same as RMSE of the predicted solar irradiance. According to Table 9.7, we can
see that the weight of the predicted solar irradiance in PV conversion model fitting is the
highest. Therefore, we can conclude that the predicted solar power is linearly dependent to
the predicted solar irradiance. The example plots of the predicted solar power of 8 kW and
15 kW PV systems are shown in Figures 9.12 and 9.13.
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(a) Example plots of the predicted solar power under good weather conditions for 8 kW PV system.
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(b) Example plots of the predicted solar power under bad weather conditions for 8 kW PV system.

Figure 9.12: Example plots of the predicted solar power from the proposed MOS+KF model
and the models from previous work for 8 kW PV system.
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(a) Example plots of the predicted solar power under good weather conditions for 15 kW PV system.
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(b) Example plots of the predicted solar power under bad weather conditions for 15 kW PV system.

Figure 9.13: Example plots of the predicted solar power from the proposed MOS+KF model
and the models from previous work for 15 kW PV system.

A comparison of the performance of the predicted PV output between this work and
the other works is not easy. The formula for calculating some performance indices such as
NRMSE and MAPE in other works are not the same. Moreover, there are various installed
capacity of PV site, therefore, some performance indices of the other works such as RMSE,
MBE, and MAE cannot be compared. To deal with this problem the performance index with
normalized term should be used. The performance index that we prefer to use in order to
compare our work to the previous works is normalized RMSE (NRMSE) by installed capacity
of the PV site. We summarize the results and the details of the predicted solar power for one
day ahead from previous works in Table 9.8. From Figure 9.10, NRMSE by installed capacity
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Table 9.8: Summary of the predicted solar power one day ahead from previous works.

Reference Forecasting model Condition NRMSE (%)

[22] ANN - 23.99

[23] ANN

Clear 12.5

Partially cloudy 24

Cloudy 36.9

[24]

Wavelet+ Winter 12.51

Fuzzy ARTMAP + Spring 13.13

Firefly Summer 12.11

Fall 12.82

[25] Wavelet+ANN

Clear 7.193

Cloudy 16.817

Overcast 17.607

Rainy 19.663

of 8 kW PV system of our daily-step MOS+KF1a is about 13 %. Moreover, our daily-step
MOS+KF1a is evaluated with unclassify data. However, the results from the previous work
in Table 9.8 usually evaluate with the classified data. Therefore, there is only work from [22]
that can be compared with our daily-step MOS+KF1a and our model is better than the
model from [22] about 11 % of NRMSE.



CHAPTER X

CONCLUSION

This work aims to predict the solar power from the PV cells one day in advance by 13.00
hrs daily to serve Short-term Operation Planning Section (SOPS) of EGAT. The predicted
solar power of the next day can help SOPS for efficient dispatching. However, the solar
power mostly depends on the solar irradiance and temperature of the PV panels as described
in Section 3.5. Therefore, the predicted solar irradiance and temperature are needed. NWP
models can provide forecasts of both variables with moderate accuracy up to several days
in advance. Therefore, we use WRF model which is a kind of the regional NWP models to
predict the solar irradiance and the weather variables. However, we found that the predicted
solar irradiance from WRF model usually overestimated the actual solar irradiance. We
then apply the post-processing method to reduce the prediction error of the predicted solar
irradiance from WRF model.

WRF model provides the predicted weather variables according to longitude and lat-
itude coordinates. Therefore, we used spatial averaging method to reduce the forecasting
error of WRF model before we use the predicted weather variables in the forecasting proce-
dures. From Section 9.2, the results showed that the spatial averaging of the predicted solar
irradiance of 7× 7 km2 was the most suitable spatial area compared to 3× 3 km2 and 5× 5

km2. The spatial area of 7× 7 km2 reduced the RMSE of the predicted solar irradiance from
WRF model without spatial averaging by 14 W/m2. Moreover, the relevant variables to solar
irradiance can be used as the input of MOS model to further reduce the prediction error of
the predicted solar irradiance from WRF model with spatial averaging.

MOS is a regression model and uses the relationships between solar irradiance and rel-
evant variables to solar irradiance in order to explain the characteristics of solar irradiance.
Therefore, the first contribution of thesis is to define the important variables to solar irradi-
ance for using in MOS model. The important variables to solar irradiance can be decided by
statistical methods. The statistical methods that we use in this work were partial correlation,
stepwise regression, and subset regression. As the results in Section 9.3, we concluded that
the important variables to solar irradiance in Thailand were Îwrf(t), R̂Hwrf(t), T̂wrf(t), and
cos θ(t). From Section 9.4, we found that the proposed MOS could be used to further reduce
the RMSE of the predicted solar irradiance from WRF model with spatial averaging by 90
W/m2 in both hourly-step and daily-step MOS. However, the regression coefficients of MOS
are fixed then it may not suitable to use all the time. We then apply Kalman filter to MOS
in order to update the regression coefficients over time. As the forecasting time constraint,
some data are not available to use in update parameters process of Kalman filter. We then
modify the equations of Kalman filter to take into account the missing measurement data
and this is the second contribution of this thesis. We found that MOS+KF could further
reduce the RMSE of MOS about 2 to 3 W/m2 in both hourly-step and daily-step models.
Moreover, daily-step MOS+KF1a could further reduce the RMSE of hourly-step MOS+KF3
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by 4 W/m2. In conclusion, daily-step MOS+KF1a outperforms the other models because
of high complexity of the model and the adaptive regression coefficients from Kalman filter.
Besides, daily-step MOS+KF1a also outperforms the models from previous work. After that,
the predicted solar irradiance is converted into the predicted solar power by PV conversion
model which is a regression model. From Section 9.5, we found that the accuracy of the
predicted solar power was related to the accuracy of the predicted solar irradiance since the
regression coefficient of the predicted solar irradiance in PV conversion model fitting was the
highest magnitude. Therefore, the solar irradiance forecasting is the most important process
that should provides accurate predicted solar irradiance values.

The outcomes of this work is the predicted solar power. From the results in Section 9.5,
the NRMSE (normalized by capacity of the PV site) of the predicted solar power from daily-
step MOS+KF1a is about 13 to 14 %. Nowadays, the install capacity of PV in Thailand
is about 3,000 MW. Therefore, if we use the predicted solar irradiance from WRF model to
predict the solar power, then the operators should prepare the spinning reserved of 600 MW in
daytime to deal with the fluctuation of the PV generation. Besides, if we apply MOS+KF1a
to predict the solar power, then the operators just prepare the spinning reserved of 360 MW.
Normally, the National Control Center (NCC) always prepares the spinning reserved in the
range of 700 to 1500 MW for preventing blackouts when the power plant with the biggest
installed capacity tripped. Therefore, NCC can still operate in normal conditions for both
the predicted solar power from WRF model and MOS+KF1a. However, if we assume the
cost of spinning reserved is 0.2 baht per kWh, then our model can further reduce the cost of
spinning reserved of the predicted solar power from WRF model by 48,000 baht per hour.
This cost will reflect the operating cost of power plant and also the electricity bill.

A limitation of this work is that KF models need the measured solar irradiance to
provide the forecast values. Moreover, MOS+KF models still cannot provide a high accuracy
of the predicted solar irradiance more than one day in advance due to lack of measured data
of day d+ 1 for updating the parameters. Therefore, MOS models may be the most suitable
to provide the predicted solar irradiance more than one day in advance because MOS requires
only the outputs of WRF model. In this work, we just use the available weather variables
in the forecasting models, so the model still can be improved by adding more important
variables to solar irradiance to the forecasting models. Moreover, our proposed models are
linear models and solar irradiance characteristics may be non-linear, therefore, the machine
learning methods may further reduce the forecasting error of the linear models.
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APPENDIX A
ESTIMATION OF LINKE TURBIDITY

According to the Ineichen and Kasten clear sky models, TL(t) and Iclr(t) are the vari-
ables that we have no data. Therefore, we assume I(t) of the most clear sky day as Iclr(t) and
we estimate TL(t) from Ineichen and Kasten clear sky models using least squares method.
The processes for estimating TL(t) are described as follows.

Ineichen clear sky model (3.12):

Iclr(t) = a1Isc cos θ(t)e−a2AM(t)(f1+f2(TL(t)−1))

log Iclr(t)

a1Isc cos θ(t) = −a2AM(t)(f1 + f2TL(t)− f2))

a2AM(t)f2TL(t) = − log Iclr(t)

a1Isc cos θ(t) − a2AM(t)(f1 − f2)

where f1 = e−35/8000, f2 = e−35/1250, a1 = 35×5.09×10−5+0.868, a2 = 35×3.92×10−5+0.0387

then perform least squares to estimate TL(t).
Kasten clear sky model (3.11):

Iclr(t) = 0.84Isc cos θ(t)e−0.027AM(t)(f1+f2(TL(t)−1))

log Iclr(t)

0.84Isc cos θ(t) = −0.027AM(t)(f1 + f2TL(t)− f2)

0.027AM(t)f2TL(t) = − log Iclr(t)

0.84Isc cos θ(t) − 0.027AM(t)(f1 − f2)

We then perform least squares to estimate TL(t). The measured solar irradiance data that
we assume to be Iclr(t) are the data between 9 to 15 Apr 17 from 7.00 to 16.00 hrs with the
time step of 3 minutes as shown in Figure A.1. The measured solar irradiance after 16.00 hrs
is not considered because the sunlight have been blocked by the building.
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Figure A.1: Measured solar irradiance from CUBEMS between 9 to 15 Apr 2017 (7.00 to
16.00 hrs).

The results of estimated TL(t) are shown in Table A.1

Table A.1: Estimation of TL(t)

Data Ineichen clear sky model Kasten clear sky model

9-15 Apr 2017 4.8597 6.4993

The solar irradiance data that we use to validate the estimated TL(t) value are data
between 28 to 30 Apr 17. In Figure A.2, we plot the measured solar irradiance and the solar
irradiance under clear sky conditions between 28 to 30 Apr 17 using Ineichen clear sky model
with TL(t) = 4.86 and Kasten clear sky model with TL(t) = 6.49. The MBE and RMSE of
Ineichen clear sky model is 23.15 W/m2 and 60.52 W/m2 respectively. The MBE and RMSE
of Kasten clear sky model is 15.34 W/m2 and 61.27 W/m2 respectively. Thus, we use Iclr(t)

from Ineichen clear sky model for the later process beacuse it provides the lowest error in
RMSE.
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Figure A.2: Measured solar irradiance and solar irradiance from Ineichen and Kasten clear
sky models.



APPENDIX B
DATA PRE-PROCESSING

The measured data are contaminated with missing values. If the missing values are not
longer than one hour, the linear interpolation is used to impute the missing values, otherwise,
the averaged value of 10 days before and after the missing value occurs at the same time is
used to impute the missing value. Due to high sampling rates of local weather data, the
smoothing method is also used to reduce the variation of data by moving average method
with time span of 15 minutes before and after the current value. We then downsampling
to hourly data. The processes of imputation long consecutive missing data are described as
follows.

1. Missing data imputation: Measured data usually contains long consecutive missing
values as shown in Figure B.1. There are many ways to impute the data and we try
to impute the missing data by some simple methods such as linear interpolation, spline
interpolation, and Piecewise Cubic Hermite Interpolating Polynomial (PCHIP). The
results of simple imputation methods are shown in Figures B.2 to B.6. We can see that
these methods yield bad results. In addition, we also try to impute with moving average
method but the results are worse than those previous methods as shown in Figure B.
7. In order to impute long consecutive missing values, we use the averaged value of 10
days before and after the missing value occurs at the same time to impute the missing
value. The equation can be expressed as

Yimpute(t) =
1

20

10∑
i=1

Y (t− 24i) + Y (t+ 24i) (B.1)

where Yimpute(t) is the imputed data at time t, i is the number of days, and Y (t) is
the measured data at time t. The results of our proposed method are better than the
other methods for imputing the long consecutive missing values as shown in Figure B.8.
Therefore, we impute long consecutive missing values by this method in all variables.
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Figure B.1: Missing measurements data.
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Figure B.2: Imputed solar irradiance data with simple methods.
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Figure B.3: Imputed relative humidity data with simple methods.
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Figure B.4: Imputed temperature data with simple methods.



100

0

5

10

15

U
V

 in
de

x

Linear interpolation

Imputed data
Raw data

-10

0

10

U
V

 in
de

x

Spline interpolation

16/4/17 6:00 17/4/17 5:30 10:48 18/4/17 6:00
Time

0

5

10

15

U
V

 in
de

x

Pchip interpolation

Figure B.5: Imputed UV index data with simple methods.
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Figure B.6: Imputed wind speed data with simple methods.
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Figure B.7: Imputed temperature and wind speed data by 3rd and 10th order moving avrage.
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Figure B.8: Imputed data using mean of 10 days before and after the missing value occur.

2. Smoothing: From Figure B.8, we can see that the imputed data fluctuate all the time
and we need to do the experiments using just hourly data. Then we apply smoothing
method to the imputed data in order to reduce the fluctuation of the data by moving
average method with time span of 15 minutes before and after current value.



APPENDIX C
EXPERIMENT ON NOISE COVARIANCE OF KALMAN

FILTER

This experiment aims to determine the most suitable method to estimate noise co-
variance that is used in Kalman filter. We explore three methods to determine the noise
covariance which described as follows.

1. KF with fixed noise covariance: All conditions of this method is the same as hourly-step
MOS+KF1.

2. KF with fixed noise covariance from batch estimation [119]: This method uses the
output of MOS+KF1 to estimate the noise covariance and it can be expressed by

W =
1

N − 1

N∑
t=1

{
(ŵ(t)− w̄)(ŵ(t)− w̄)T −

(
N − 1

N

)
[A(t)Pt−1|t−1A(t)T − Pt|t]

}

V =
1

N − 1

N∑
t=1

{
(v̂(t)− v̄)(v̂(t)− v̄)T −

(
N − 1

N

)
[C(t)Pt|t−1C(t)T ]

}
where ŵ(t) = ẑt|t − ẑt|t−1 is the error between measurement update and time update,
w̄ = 1

N

∑N
t=1 ŵ(t), v̂(t) = y(t) − C(t)ẑt|t−1 is the error between measurement and

predicted value, v̄ = 1
N

∑N
t=1 v(t), and N is the number of training data.

3. KF with adaptive noise covariance [112]: At the begining, this method uses the same
condition as MOS+KF1. After that this method estimates the noise covariance by

W (t) =
1

N − 1

N∑
i=1

{(ŵ(t− i)− w̄)(ŵ(t− i)− w̄)T }

V (t) =
1

N − 1

N∑
i=1

{(v̂(t− i)− v̄)(v̂(t− i)− v̄)T }

where ŵ(t) = ẑt|t − ẑt|t−1 is the error between measurement update and time update,
w̄ = 1

N

∑N
t=1 ŵ(t), v̂(t) = y(t) − C(t)ẑt|t−1 is the error between measurement and

predicted value, v̄ = 1
N

∑N
t=1 v(t), and N is the number of the data that used in the

process of estimate the noise covariance.

The results of the three models based on MOS+KF1 are evaluated by RMSE. The method
that provide the lowest RMSE will be selected to use in the proposed model. The results are
shown in Figure C.1.
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Figure C.1: RMSE of the predicted solar irradiance from various estimate noise covariance
methods.

We can see that MOS+KF1 with batch estimation provides the lowest RMSE. However,
the result is not significant difference from the other models. MOS+KF1 with adaptive noise
covariance is the worst because at the beginning there is too little data for estimating the noise
covariance. Then, MOS+KF with adaptive noise covariance provides inaccurate forecasted
values at the beginning. We can see the regression coefficients of ẑ(t+ 1|t) in Figure C.2.
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Figure C.2: Regression coefficients from various estimate noise covariance methods.

The regression coefficients of MOS+KF1 and MOS+KF1 with batch estimation have
almost the same trend which varies around the regression coefficients of MOS. The regression
coefficients of MOS+KF1 with adaptive noise covariance are too adaptive especially at the
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beginning due to lack of data. This problem also affects the error covariance and Kalman
gain as shown in Figures C.3 and C.4.
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Figure C.3: Error covariance from various estimate noise covariance methods.
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Figure C.4: Kalman gain from various estimate noise covariance methods.

In conclusion, MOS+KF1 is the simple way to estimate the noise covariance and the
model still provides good results. Although MOS+KF with batch estimation is the best,
however, the performance is a little bit improved. Therefore, we use MOS+KF1 which
estimates noise covariance from the residual error of MOS in this work.



APPENDIX D
COMPUTER CODES

This section provides the computer codes of MATLAB which are used in this work.
The computer codes are uploaded in github (https://github.com/jitkomut/solarnwpmos)
and the uploaded computer codes are listed in Table D.2.

Table D.2: List of computer codes.

Name Description

impute.m Imputation for measurements data

prepare.m Preparation of the input data for proposed MOS and MOS+KF

both hourly and daily models

run_mos.m Run MOS

run_kf.m Run MOS+KF

perf_plot.m Performance plot for solar irradiance forecasting

https://github.com/jitkomut/solarnwpmos
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