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Introduction

[Vichaya, 2016] conclude that the other relevant variables is
improve solar forecasting insignificantly. Thus, we focus only solar
irradiance.
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Batch Estimation
Batch estimtion is a model estimation which model parameters are
not further updated.
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Recursive Estimation
Recursive estimation is a model estimation which model
parameters are updated using new measurement data.
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SARIMA model Estimation Flowchart

Seasonal AutoRegressive Integrated Moving Average (SARIMA)
model defined by

A(L)(1− L)d(1− LT )DI(t) = C(L)v(t) (1)

where
A(L) =1− (A1L+A2L

2 + · · ·+ApL
p)

C(L) =1 + (C1L+ C2L
2 + · · ·+ CqL

q)
(2)

L is a lag operator, T is a seasonal period, d is an integrated
non-seasonal order, D is an integrated seasonal order
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Stationarization

Seasonal Removing
Finding seasonal period T from power spectral density by using
periodogram in MATLAB.

Differencing
Apply Autocorrelation Function (ACF) test finding integrated order
d.
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Finding seasonal trend
Using Fast Fourier Transform (FFT) to find the power spectral
density (PSD). We choose only high-energy frequency and label
them ωi.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Normalized Frequency  (  rad/sample)

10

20

30

40

50

60

70

80

90

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/r
ad

/s
am

pl
e)

Periodogram Power Spectral Density Estimate

The PSD of this data set has 2 peaks at ω1 = 0.0083π and
ω2 = 0.0166π.
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Differencing
Autocorrelation test of each data set.
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Differencing
Both d=1 and d=2 pass the autocorrelation test. Because of
model complexity, we use d=1. Thus, we get the
SARIMA(p, 1, q)(0, 1, 1)240. After finding order d, these
post-processing data are used for find the polynomial in ARMA
model.
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Estimation of ARMA model and Model selection

Maximum Likelihood Estimation
From [Hamilton,1994] Parameter θ in ARMA model can find from
the maximum of the cost function in (3)

logL(y|θ) = −N − p2 log(2π)− N − p
2 log(σ2)−

N∑
t=p+1

v(t)2

2σ2 (3)

Candidate Score
Both AIC and BIC are trade-off between goodness of fit and model
complexity.

AIC =− 2L+ 2d (4)
BIC =− 2L+ d log(N) (5)

where L is a log-likelihood function, N is a number of data and d
is a number of parameter in each models.
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Maximum Likelihood Estimation and Model Validation

Finding the AIC score and BIC score after doing ML to find the
candidate model.
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After chose the candidate model, we find RMSE and MAE on
validation data set of all models which we choose from AIC or BIC
graph.

Error on validation data set
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SARIMA(5, 1, 2)(0, 1, 1)240 has less RMSE and MAE than others
model.
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Recursive Prediction Error Method
The aim of Recursive Prediction Error Method (RPEM) is to
minimize the cost function which is defined as

Vt(θ) = 1
2

t∑
s=1

ε(s, θ)T ε(s, θ) (6)

[Young, 2011] assume that
I θ̂(t− 1) minimize Vt(θ)
I minimum point of cost function Vt(θ) is close to θ̂(t− 1)

Finally, the final step of the update formulas are shown in

θ̂(t) =θ̂(t− 1) + P (t)K(t)ε(t) (7)
g(t) =P (t)K(t)[1 +KTP (t− 1)K(t)]−1 (8)
P (t) =P (t− 1)− P (t− 1)KT (t)g(t) (9)

where ε(t) = y(t)− ŷ(t|t− 1), K(t) = −∇ε(t).
This method is used in ARMA model.
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Conclusion
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Maximum Likelihood Estimation
Maximum Likelihood Estimation is a method to find parameter θ
in ARMA model.

θ̂ML = maximize
θ

f(y(1), y(2), · · · , y(N)|θ) (10)

where θ =
[
A1 A2 · · · Ap C1 C2 · · · Cq σ2

]T
,

f(y(1), y(2), · · · , y(N)|θ) is likelihood function. v(t) in ARMA
model can write into

v(t) = y(t)− (A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p))−
(C1v(t− 1) + C2v(t− 2) + · · ·+ Cqv(t− q)) (11)

From [1], if y(t) has real value from 1 to p and v(t) = 0 since
t = p, p− 1, · · · , p− q + 1, so that y(t) also has normal
distribution.

L(y|θ) = f(y(p+ 1), y(p+ 2), · · · , y(N)|y(1), y(2), · · · , y(p), θ)
(12)
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Thus, we start at t = p+ 1. At the same time, the conditional
likelihood function is change to (12). Problem in (10) subject to
root of polynomial

A(z−1) =1− (A1z
−1 +A2z

−2 + · · ·+Apz
−p)

C(z−1) =1 + (C1z
−1 + C2z

−2 + · · ·+ Cqz
−q)

(13)

lie inside the unit circle.
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Autocorrelation Function
Autocorrelation function is defined by

ACF = R(τ)
R(0) (14)

where the sample autocovariance function is defined by

R(τ) = 1
N

N∑
t=τ

y(t)y(t− τ) (15)

In ARMA model, ACF of the ARMA(p, q) is shown in 16

R(τ)−(A1R(τ−1)+A2R(τ−2)+· · ·+ApR(τ−p)) = 0, 0 ≥ max(p, q+1)
(16)

with initial condition

R(τ)−
p∑
i=1

AiR(τ − i) = σ2
q∑
i=τ

H(i− τ), 0 ≤ τ ≤ max(p, q + 1)

(17)
where H(z−1) = y(z−1)

v(z−1) = C(z−1)
A(z−1)

21



Prediction Error Method
After finding the model, we can find the optimal prediction from
the ARMA model by using Prediction Error Method (PEM)

ŷ(t|t− 1) = (1− C−1(L)A(L))y(t) (18a)

e(t) = C−1(L)A(L)y(t) (18b)

We can find the estimated ARMA(p, q) model

ŷ(t|t− 1) =(C(L)− 1)e(t)− (A(L)− 1)y(t)
ŷ(t|t− 1) =(C1L+ C2L

2 + · · ·+ CqL
q)e(t)+

(A1L+A2L
2 + · · ·+ApL

p)y(t) (19)

where e(t) = y(t)− ŷ(t|t− 1)
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Then we can find the estimate ARIMA model in 20.

ẑ(t|t− 1) =ŷ(t|t− 1) + ẑ(t− 1|t− 1)

ẑ(t|t− 1) =ŷ(t|t− 1) +
∞∑
k=1

ŷ(t− k|t− 1) (20)

Moreover, we can find the estimated SARIMA model in 21.

Î(t|t− 1) =ẑ(t|t− 1) + Î(t− T |t− 1)

Î(t|t− 1) =ẑ(t|t− 1) +
∞∑
k=1

ẑ(t− kT |t− 1) (21)
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Forecasting Result
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where the yellow line is described in (24)
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We can find the forecast model by using Prediction Error Method
(PEM) for an ARMA model.

ŷ(t+ h|t) = (1− 1.84L+ 0.843L2)e(t+ h)
(1 + 1.26L− 0.21L2 − 0.03L3 − 0.02L4 − 0.03L5)ŷ(t+ h|t)

(22)

We can find the forecast of ARIMA model by summation

ẑ(t+ h|t) = (1− 1.84L+ 0.843L2)e(t+ h)
(1 + 1.26L− 0.21L2 − 0.03L3 − 0.02L4 − 0.03L5)ŷ(t+ h|t)+

∞∑
k=0

ŷ(t− k + h− 1|t) (23)

And also find the forecast of SARIMA model by summation

Î(t+ h|t) = ẑ(t+ h|t) +
∞∑
k=1

ẑ(t− 240k + h|t) (24)

25



Reference

J. D. Hamilton.
Time Series Analysis.
Princeton University Press, 1994.

V. Layanun and J. Songsiri.
Solar irradiance forecasting for chulalongkorn university
location using time series models.
http://jitkomut.eng.chula.ac.th/group/vichaya report.pdf,
2016.
Peter C. Young.
Recursive Estimation and Time Series Analysis.
Springer, 2011.

26


	Outline
	Project overview
	Methodology
	Future Plan
	Conclusion
	Back up

