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1 Introduction

There are many methods used to forecast the solar irradiance. This study considers two methods:
time-series model and Weather Research Forecasting (WRF) model.

1. Time series model
Time series model is a model which is used to analyze the solar irradiance in the past and forecast
the future solar irradiance. Moreover, this model is typically used in many fields such as engineering
and science. In this study is mainly focused on time series model. A time-series model can be
divided into 2 types which are a time-series model used in stationary process and a time-series
model used in non-stationary process

(a) Time series model that include stationary properties is the time series model which have a
constant mean and autocorrelation depending on time gap for example AR, MA, ARMA,
ARX, ARMAX

(b) Time series model that include non-stationary properties are the time series model which
either mean or autocorrelation depending on time example ARIMA, ARIMAX

This report uses a time series model with non-stationary process for describing a trend of the solar
irradiance which according to [4].

2. Weather Research Forecasting (WRF) is a regional forecasting model. WRF is a type of Numerical
Weather Prediction(NWP) which is a method of weather forecasting that uses partial differential
equation which is derived from a characteristic of meteorological parameters such as temperature,
wind speed,relative humidity.

When the new solar irradiance data are measured, The model must be estimated by using both historical
data and the new measured data. The model estimation sometimes spends too much time on an online
implementation. A recursive identification method should be applied for model estimation. One advan-
tage of this method is that this model uses only the new data and the previous estimated model. Thus,
this model is compatible for an online implementation because of its estimation speed. Typically, the
recursive method is applied in model estimation such as least-square method (LS), maximum likelihood
estimation (ML), and predicton error method (PEM).

2 Objectives

The objectives of this study are

1. To apply recursive identification of time series model to forecast solar irradiance at Chulalongkorn
University.

2. To implement the forecasting scheme for EE-CU solar forecasting center.

2



3 Background on Model Estimation and Model Validation

Figure 1: Model Estimation Flowchart

This section describes the time-series model estimation of which a flowchart is shown in Figure 1.
First, a seasonal trend must be removed from the solar irradiance data. This means we could write
the seasonal trend into fourier series. After the seasonal trend is removed, the data will be similar to
the random signal. Before finding the parameters in ARMA model, we do the autocorrelation test. If
the autocorrelation graph is not similar to white noise, we could differentiate the data and check the
autocorrelation again. After differencing until the autocorrelation graph is similar to white noise, we
use that set of differencing data to find the parameter in ARMA model by using maximum likelihood
estimation (ML). Then this model use prediction error method (PEM) to find the estimated model and
the estimated model is then used to forecast solar irradiance data.
From Figure 2, the solar irradiance data can be decomposed to the seasonal component and a random
component. That means we can use same model to estimate GHI.
According to [4], the result shows that SARIMA(2, 2, 4)(0, 1, 1)16 achieve the best performance to
forecast the solar irradiance. Thus, this study uses Seasonal AutoRegressive Integrated Moving Average
(SARIMA) model because this model is a general form of time-series model. SARIMA model is defined
by.
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Figure 2: GHI in 1st-2nd January 2017

Ã(L)(1− LT )DA(L)(1− L)dI(t) = C̃(L)C(L)v(t) (1)

From (1) can be written as SARIMA(p, d, q)(P,D,Q)T where

A(L) =1− (A1L+A2L
2 + · · ·+ApL

p)

C(L) =1 + (C1L+ C2L
2 + · · ·+ CqL

q)

Ã(L) =1− (Ã1L
T + Ã2L

2T + · · ·+ ÃPL
PT )

C̃(L) =1 + (C̃1L
T + C̃2L

2T + · · ·+ C̃QL
QT )

(2)
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L is a lag operator, T is a seasonal period, d is an integrated non-seasonal order, D is an integrated
seasonal order, A(L) is AutoRegressive (AR) polynomial, C(L) is Moving Average (MA) polynomial,
Ã(L) is Seasonal AutoRegressive (SAR) polynomial and C̃(L) is Seasonal Moving Average (SMA)
polynomial.
From Figure 2 considers the solar irradiance data as an additive seasonal trend which is written as 3

A(L)I(t) = s(t) + α+ C(L)e(t) (3)

where s(t) = s(t− T ) is a seasonal component, α is constant and e(t) is a noise. According to Figure
1, given that I(t) is solar irradiance data. Then I(t) is subtracted by I(t − T ) for doing a seasonal
decompose. We get

A(L)I(t)−A(L)I(t− T ) =s(t) + α+ C(L)e(t)− s(t− T )− α− C(L)e(t− T )

=C(L)e(t)− C(L)e(t− T )

A(L)(1− LT )I(t) =C(L)(1− LT )e(t) (4)

A(L)(1− LT )I(t) =C(L)C̃(t)e(t) (5)

Substitute (1− LT )I(t) = z(t) and C̃(t)e(t) = η(t). Then differencing z(t) for d time until autocorre-
lation function is similar to white noise. We get

A(L)(1− L)dz(t) =C(L)(1− L)dη(t)

A(L)(1− L)dz(t) =C(L)v(t) (6)

Substitute y(t) = (1− L)dz(t). We get

A(L)y(t) = C(L)v(t) (7)

After using ML to find the parameter in ARMA model, we can find the estimate ARMA model in 8.

C(L)ŷ(t|t− 1) =(C(L)−A(L))y(t)

(C(L)− 1)ŷ(t|t− 1) + ŷ(t|t− 1) =(C(L)− 1)y(t)− (A(L)− 1)y(t)

ŷ(t|t− 1) =(C(L)− 1)(y(t)− ŷ(t|t− 1))− (A(L)− 1)y(t)

ŷ(t|t− 1) =(C(L)− 1)e(t)− (A(L)− 1)y(t)

ŷ(t|t− 1) =(C1L+ C2L
2 + · · ·+ CqL

q)e(t)+

(A1L+A2L
2 + · · ·+ApL

p)y(t) (8)

Then we can find the estimate ARIMA model in 9.

ẑ(t|t− 1) =ŷ(t|t− 1) + ẑ(t− 1|t− 1)

ẑ(t|t− 1) =ŷ(t|t− 1) + ŷ(t− 1|t− 1) + ẑ(t− 2|t− 1)

ẑ(t|t− 1) =ŷ(t|t− 1) + ŷ(t− 1|t− 1) + ŷ(t− 2|t− 1) + ẑ(t− 3|t− 1)

ẑ(t|t− 1) =ŷ(t|t− 1) +

∞∑
k=1

ŷ(t− k|t− 1) (9)

Moreover, we can find the estimated SARIMA model in 10.

Î(t|t− 1) =ẑ(t|t− 1) + Î(t− T |t− 1)

Î(t|t− 1) =ẑ(t|t− 1) + ẑ(t− T |t− 1) + Î(t− 2T |t− 1)

Î(t|t− 1) =ẑ(t|t− 1) + ẑ(t− T |t− 1) + ẑ(t− 2T |t− 1) + Î(t− 3T |t− 1)

Î(t|t− 1) =ẑ(t|t− 1) +

∞∑
k=1

ẑ(t− kT |t− 1) (10)
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3.1 Fitting seasonal trend

This section is describes the finding of the seasonal trend and this seasonal trend is used to remove
from the data. The aim of this section is making time series data stationary and find seasonal period.
From [2], the seasonal trend can represent into fourier series

s(t) =
k∑
i=1

(ai cos(ωit) + bi sin(ωit)) (11)

where t = 1, 2, · · · , N , ai is the coefficient of co-sinusoidal component of each frequency ωi and bi is
the coefficient of sinusoidal component of each frequency ωi.To find the frequency ωi, the data must be
transformed to frequency domain to find the power spectral density. Then we choose the high energy
frequency to be selected as ωi. Before finding the power spectral density, we use Fast Fourier Transform
(FFT) to transform to the frequency domain. According to [3], Fast Fourier Transform is an algorithm
to find the discrete fourier transform (DFT) which show in (12)

S(k) =
N−1∑
t=0

s(t)e
j2πkt
N (12)

where ωk = 2πk
N and k = 0, 1, · · · , N −1. After using FFT, we find |S(k)| to find ωk. Only high-energy

frequency will given to ωi in (11).

3.2 Estimation of integrated part

This section is describes a process to find the integrated order d. After removing seasonal trend, ACF
maybe slowly decay. From (5) which are already substitute,

A(L)z(t) = C(L)e(t)

The data y(t) was differentiated by subtracting y(t− 1).

∆A(L)z(t) = A(L)z(t)−A(L)z(t− 1) = A(L)(1− L)z(t)

We can also differencing 2nd time

∆2A(L)z(t) = ∆A(L)z(t)−∆A(L)z(t− 1) = A(L)(1− L)2z(t)

If we differencing the data in d time, we will write in equation

∆dA(L)z(t) = A(L)(1− L)dz(t) (13)

If an autocorrelation function is cut-off at some lags after differencing d times, we can conclude that
this model has an integrated order d.

A(L)(1− L)dz(t) = C(L)v(t) (14)

3.3 Estimation of ARMA model

This section is describes the estimation of AutoRegressive Moving Average(ARMA) model. In this
report we will use maximum likelihood estimation to find the parameter of AutoRegressive polynomial
and Moving Average polynomial in (2).
Maximum likelihood estimation is one of the method to find the parameter by maximizing a cost function
which is defined by

L(y|θ) = f(y(1), y(2), · · · , y(N)|θ) (15)

where f(y(1), y(2), · · · , y(N)|θ) is defined by

f(y(1), y(2), · · · , y(N)|θ) =
N∏
t=1

( 1

σ
√

2π

)
e−

v(t)2

2σ2 (16)

In (15), this cost function also called likelihood function where
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θ =
[
A1 A2 · · · Ap C1 C2 · · · Cq σ2

]T
f(y|θ) is conditional probabilitiy density function (conditional pdf) of v(t) in (1) and N is a number of
data.
From 7 can also write

y(t) = A1y(t−1)+A2y(t−2)+· · ·+Apy(t−p)+v(t)+C1v(t−1)+C2v(t−2)+· · ·+Cqv(t−q) (17)

Thus, we can find v(t) in term of A1, A2, · · · , Ap, C1, C2, · · · , Cq from (17)

v(t) = y(t)−(A1y(t−1)+A2y(t−2)+· · ·+Apy(t−p))−(C1v(t−1)+C2v(t−2)+· · ·+Cqv(t−q)) (18)

If v(t) has normal distribution which has zero mean and variance σ2. Then the log-likelihood function
according to [1] is

L(θ) = −N
2

log(2π)− N

2
log(σ2)−

N∑
t=1

v(t)2

2σ2
(19)

From [1], if y(t) has real value from 1 to p and v(t) = 0 since t = p, p− 1, · · · , p− q + 1, so that y(t)
also has normal distribution. Thus, we start at t = p+ 1. At the same time, the conditional likelihood
function is change to (20)

L(y|θ) = f(y(p+ 1), y(p+ 2), · · · , y(N)|y(1), y(2), · · · , y(p), θ) (20)

Thus, the likelihood function is

L(y|θ) = (
1

2πσ2
)N−pe−

∑N
t=p+1

v(t)2

2σ2 (21)

From the maximum likelihood estimation, we can find the estimator from log-likelihood function. Finally,
a cost function to find the estimator from the maximum of the cost function in (22)

logL(y|θ) = −N − p
2

log(2π)− N − p
2

log(σ2)−
N∑

t=p+1

v(t)2

2σ2
(22)

where logL(y|θ) is the cost function of the problem and the last term in (22) can be considerd in
2-norm. Thus we can write into matrix form

v(p+ 1)
v(p+ 2)

...
v(N)

 =


y(p+ 1)
y(p+ 2)

...
y(N)

−


y(p) y(p− 1) · · · y(1) v(p) v(p− 1) · · · v(p− q + 1)
y(p+ 1) y(p) · · · y(2) v(p+ 1) v(p) · · · v(p− q + 2)

...
...

. . .
...

...
...

. . .
...

y(N) y(N − 1) · · · y(p) v(N) v(N − 1) · · · v(p)





A1

A2
...
Ap
C1

C2
...
Cq


The numerical solution of θ̂ML can find from many optimization method example steepest-descent,
quasi-newton, conjugate-gradient and the other method. However, doing ML in MATLAB and doing
ML by hand-out probably not given the same parameter especially the parameter in seasonal moving
average polynomial because the simple estimation in 4 show that it has pole lie in unit circle.
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3.4 Computation of Forecasting

After finding the model, it will be used to forecast the solar irradiance in the next h-step. From the
ARMA model in 7.

A(L)y(t) = C(L)v(t)

According to [5] and[6], the optimal prediction from the ARMA model by using PEM is

ŷ(t|t− 1) = (1− C−1(L)A(L))y(t) (23a)

e(t) = C−1(L)A(L)y(t) (23b)

We can find the estimated ARMA(p, q) model

C(L)ŷ(t|t− 1) =(C(L)−A(L))y(t)

(C(L)− 1)ŷ(t|t− 1) + ŷ(t|t− 1) =(C(L)− 1)y(t)− (A(L)− 1)y(t)

ŷ(t|t− 1) =(C(L)− 1)(y(t)− ŷ(t|t− 1))− (A(L)− 1)y(t)

ŷ(t|t− 1) =(C(L)− 1)e(t)− (A(L)− 1)y(t)

ŷ(t|t− 1) =(C1L+ C2L
2 + · · ·+ CqL

q)e(t)+

(A1L+A2L
2 + · · ·+ApL

p)y(t) (24)

So that we can compute one-step ahead prediction of ARMA model

ŷ(t+ 1|t) =(C(L)− 1)e(t+ 1) + (1−A(L))ŷ(t+ 1|t)
=(C1L+ C2L

2 + · · ·+ CqL
q)e(t+ 1) + (A1L+A2L

2 + · · ·+ApL
p)ŷ(t+ 1|t)

=C1e(t) + C2e(t− 1) + C3e(t− 2) + · · ·+ Cqe(t− q + 1)+

A1ŷ(t|t) +A2ŷ(t− 1|t) + · · ·+Apŷ(t− p+ 1|t) (25)

And we can compute h-step prediction of ARMA model

ŷ(t+ h|t) =(C(L)− 1)e(t+ h) + (1−A(L))ŷ(t+ h|t)
ŷ(t+ h|t) =C1e(t+ h− 1) + C2e(t+ h− 2) + C3e(t+ h− 3) + · · ·+ Cqe(t+ h− q)+

A1ŷ(t+ h− 1|t) +A2ŷ(t+ h− 2|t) + · · ·+Apŷ(t+ h− p|t) (26)

where

ŷ(t+ h|t) =

{
ŷ(t+ h|t) t > 0

y(t+ h) t ≤ 0
(27)

e(t+ h|t) =

{
0 t > 0

e(t+ h) t ≤ 0
(28)

So that we can compute h-step prediction of ARIMA(p, 1, q) model

ẑ(t+ h|t) =ŷ(t+ h|t) +

∞∑
k=0

ŷ(t− k + h− 1|t) (29)

Also we can compute h-step prediction of SARIMA(p, 1, q)(0, 1, 1)T model

Î(t+ h|t) =ẑ(t+ h|t) +

∞∑
k=1

ẑ(t− kT + h|t) (30)

MATLAB have command to forecast the h-step prediction after estimated the model. There are

1. Infer

Infer gives the residual error and conditional variance from the data which we use. Then the fitted
numerical value can find from the different between the data which use in this command and
residual error.

2. Forecast

Forecast give the predicted value from the estimated model and the data by using PEM.
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3.5 Model Selection

After we specify some properties of the models. we have to consider some criterior score to find the
optimal order of SARIMA models. This study uses Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC). Both AIC and BIC explain a trade-off between a complexity of the model
and goodness of fit. Both AIC and BIC are defined by

AIC =− 2L+ 2d (31)

BIC =− 2L+ d log(N) (32)

where L is a log-likelihood function, N is a number of data and d is a number of parameter in each
models.

4 Recursive Prediction Error Method (RPEM)

After finding the optimal prediction, we use recursive identification method to adapt the model with a
new data. The following criterion which we consider as cost function is in (33)

Vt(θ) =
1

2

t∑
s=1

λt−sε(s, θ)TQε(s, θ) (33)

where λ is a forgetting factor which has a value between 0 and 1, Q is a positive definite weight matrix
and ε(s, θ) is a residual error.
From an offline estimation, θ̂(t) cannot be found analytically except in recursive least-square. From [6],
assume that

• θ̂(t− 1) minimize Vt(θ)

• minimum point of cost function Vt(θ) is close to θ̂(t− 1)

Then approximated the cost function Vt(θ) by the second order taylor series expansion around θ̂(t− 1)

Vt(θ) ≈ Vt(θ̂(t−1))+∇Vt(θ(t−1))T (θ− θ̂(t−1))+
1

2
(θ− θ̂(t−1))T∇2Vt(θ(t−1))(θ− θ̂(t−1)) (34)

From assumption, we get the parameter θ̂(t) by given θ = θ̂(t). Thus, we will get an updated formula
in (35)

θ̂(t) = θ̂(t− 1)− 2∇2Vt(θ(t− 1))∇Vt(θ(t− 1)) (35)

From (35), it shows that the updated formula of estimator is similar to Newton-Raphson step. In this
study we might skip to the final step of an update formula of this method. According to [7], the final
step of an update formula which give forgetting factor is equal to 1 and Q is identity matrix are shown
in

θ̂(t) =θ̂(t− 1) + P (t)K(t)ε(t) (36)

g(t) =P (t)K(t)[1 +KTP (t− 1)K(t)]−1 (37)

P (t) =P (t− 1)− P (t− 1)KT (t)g(t) (38)

where ε(t) = y(t)− ŷ(t|t− 1), K(t) = −∇ε(t)
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5 Preliminary results

This section is describes the estimation of SARIMA model with solar irradiance data at Chulalongkorn
University. According to [4], because the data come from different source, the estimated model is
different in term of order of each polynomial and integrated order but uses SARIMA model to forecast
solar irradiance. In this study we select select the optimal model by using AIC and BIC. The data used
for training is GHI from 1st January to 31st May 2017 at 6.00 AM to 6.00 PM.

5.1 Fitting seasonal trend

The aim of finding seasonal trend is finding the seasonal period T and removing the seasonal trend to
make the time series data have stationary process.
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Figure 3: Power Spectral Density by using Fast Fourier Transform

First, we use FFT finding the power spectral density to find the power spectral density. Then we
choose only high-energy frequency and label them ωi. Figure 3 show that there are two peaks at the
frequencies ω1 = 0.0083π and ω2 = 0.0166π
After choosing frequency ωi, we can find each ai, bi and α in 3 and 11 from the least square method.
Then we will get the data with removing seasonal trend in Figure 4. This set of data are used for finding
integrated order.
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Figure 4: Component with removing seasonal somponent
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5.2 Finding Integrated Order

This aim of differencing is finding the integrated order d and also making time series stationary. After
removing the seasonal trend, the autocorrelation function(ACF) of the residual error is shown in figure
5(a). Figure 5(a) show that there is non-stationary because autocorrelation function is slowly decay.
So that we must differentiate the data before using maximum likelihood estimation to find the ARMA
model. The autocorrelation function of one time differencing data and two time differencing data are
shown in figure 5. From Figure 5, we can conclude that d = 1 is the best choice because it has more
similar to white noise than d = 2.
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(b) 1 time differencing
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Figure 5: ACF of both one and two time differencing

5.3 Maximum Likelihood Estimation and Model Validation

The aim of maximum likelihood estimation is finding the parameter in the ARMA model and the aim of
model validation is finding the order p and q. After data are stationarized, this set of data are used for
maximum likelihood estimation to estimate the parameter in the ARMA model. Then use each model
to find AIC and BIC scores for finding the optimal model and to find mean absolute error and root mean
square error on validation data set. Let p and q be in the range 1 to 6. The result of both AIC and BIC
scores are shown in Figure 6, 7, 8, 9 respectively.
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AIC score when p=1
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(a) AIC score when p=1

AIC score when p=2
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(b) AIC score when p=2

AIC score when p=3
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(c) AIC score when p=3

Figure 6: AIC score when p=1-3
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AIC score when p=4
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(c) AIC score when p=6

Figure 7: AIC score when p=4-6
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BIC score when p=1
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Figure 8: BIC score when p=1-3
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BIC score when p=4
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(b) BIC score when p=5

BIC score when p=6
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Figure 9: BIC score when p=4-6

Figure 6, 7, 8, 9 show that many models have small AIC score and BIC score. Therefore, we
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determine RMSE and MAE of these models to select a proper one.
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Figure 10: Error on validation data set

The result show that SARIMA(1, 1, 6)(0, 1, 1)250 and SARIMA(2, 1, 6)(0, 1, 1)250 have less RMSE
and MAE than others model. Thus, we select SARIMA(1, 1, 6)(0, 1, 1)250 because this model has less
complexity than SARIMA(2, 1, 6)(0, 1, 1)250. SARIMA(1, 1, 6)(0, 1, 1)250 is described in 39.

(1− L250)(1− L)(1− 0.97L)I(t) =

(1− 1.55L+ 0.47L2 + 0.065L3 + 0.01L4 − 0.02L5 + 0.03L6)(1− 0.92L250)e(t) (39)

Thus, we described the forecasting solar irradiance model which is Î(t+ h|t) are shown in 40

ŷ(t+ h|t) =(−1.55L+ 0.47L2 + 0.065L3 + 0.01L4 − 0.02L5 + 0.03L6)e(t+ h) + (0.97L)ŷ(t+ h|t)
ẑ(t+ h|t) =(−1.55L+ 0.47L2 + 0.065L3 + 0.01L4 − 0.02L5 + 0.03L6)e(t+ h) + (0.97L)ŷ(t+ h|t)

+

∞∑
k=0

ŷ(t− k + h− 1|t)

Î(t+ h|t) =ẑ(t+ h|t) +

∞∑
k=1

ẑ(t− 250k + h|t) (40)
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6 Project overview

The mind-mapping of this project is shown in Figure 11

Figure 11: Project Mindmap

6.1 Scope of work

The scopes of this study are

1. We use recursive identification method to the SARIMA model

2. We use data measured at Chulalongkorn University

3. Output solar forecasting is shown on server at Chulalongkorn University

6.2 Expected outcomes

Implementation of recursive estimation adapt with forecasting model to forecasting the solar irradi-
ance data at real-time on the server at Department of Electrical Engineering, Faculty of Engineering,
Chulalongkorn University.

6.3 Project plans

2016 2017

Aug Sep Oct Nov Dec Jan Feb Mar Apr May

40% completeStudy Time Series Models

20% completeStudy Python

10% completeOnline implementation of time series models

Online implementation of WRF+MOS

Recursive Identification Method

Improvement on the online implementation

10% completeDocumentation

Figure 12: Gantt chart of the project
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7 Appendices

7.1 MATLAB code

Finding the estimated model and calculating AIC score, BIC score, RMSE, and MAE for all p,q

6pt
1 % p and q a r e th e h i g h e s t o r d e r o f AR and MA p o l y n o m i a l
2 SpecMdl = ar ima ( ’ Constant ’ , 0 , ’ ARLags ’ , 1 : p , ’D ’ , 1 , ’ MALags ’ , 1 : q , ’

S e a s o n a l i t y ’ ,240 , ’ SMALags ’ ,240) ;
3 % F i t t he model by u s i n g ML
4 [ EstMdl , EstParamCov , logL , i n f o ] = e s t i m a t e ( SpecMdl , dataTra ) ;
5 % Find AIC and BIC
6 AIC ( p , q ) = −2∗ l o g L +2∗(p+q ) ;
7 BIC ( p , q ) = −2∗ l o g L +(p+q ) ∗ log ( length ( dataVad ) ) ;
8 % Find r e s i d u a l e r r o r
9 [ Et , Vt ] = i n f e r ( EstMdl , dataTra ) ;

10 MAEt( p , q )=sum( abs ( Et ) ) / length ( dataTra ) ;
11 RMSEt( p , q )=sqr t (sum( Et . ˆ 2 ) / length ( dataTra ) ) ;
12 % Find v a l i d a t i o n e r r o r
13 [ Ev , Vv ] = i n f e r ( EstMdl , dataVad ) ;
14 MAEv( p , q )=sum( abs ( Ev ) ) / length ( dataVad ) ;
15 RMSEv( p , q )=sqr t (sum( Ev . ˆ 2 ) / length ( dataVad ) ) ;
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