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How to read this handout

[~ |

]

readers are assumed to have a background on elementary linear algebra in
undergrad level (see chapter 'Background and notations (not taught)’)
the note is used with lecture in EE500 (you cannot master this topic just by
reading this note) — class lectures include

m graphical concepts, math derivation of details/steps in between

m computer codes to illustrate examples
pay attention to the symbol &; you should be able to prove such & result
each chapter has a list of references; find more formal details/proofs from in-text
citations
almost all results in this note can be Googled; readers are encouraged to
‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first
typos and mistakes can be reported to jitkomut@gmail.com
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Sufficient and necessary conditions

consider a (true) conditional statement: P = (@, we say
m P is sufficient for Q)
m () is necessary for P
m Ponlyif Q
example: if x = —3 then |z| =3 (a true conditional statement)
m 'P is sufficient for Q' means
the truth of z = —3 is sufficient for concluding the truth of |z| =3
m ‘P only if Q' and 'Q is necessary for P’ have the same meaning:

x = —3 is true only under the condition that |x| = 3 (because if |x| # 3 then
x = —3 can't be true)
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however, || = 3 is not a sufficient condition for x = —3
(because if |x| = 3 then = can be either 3 or —3)

i.e., the converse of the statement: ‘if x = —3 then |z| = 3’ is false

consider a (true) biconditional statement: P < (), we say
P is sufficient and necessary for ()

when P= @ and Q = P
example: |z| = 2 if and only if 22 =4 (a true biconditional statement)

m saying |z| = 2 is equivalent to saying 2% = 4
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Vector notation

n-vector x:
T
x2
xTr =
Tn
m also written as x = (1, 22,...,Ty)

m set of n-vectors is denoted R™ (Euclidean space)
m z;: ith element or component or entry of x
m it is common to denote x as a column vector

al =[xy o -+ ] is then a row vector
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Matrix notation

an m X n matrix A is defined as

ail ai2

a1 a2
A=

ml  Am2

aln
a2n

amn

, or A= [aij]mxn

a;; are the elements, or coefficients, or entries of A

set of m X n-matrices is denoted

RmXTL

A has m rows and n columns (m,n are the dimensions)

the (7, 7) entry of A is also commonly denoted by A;;

A is called a square matrix if m =n

Linear algebra for EE
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Special matrices

zero matrix: A =0

00 0
00 0
A=,
: 0
00 0
aij:O, forizl,...,m,jzl,...,n
identity matrix: A =1
10 0
01 0
A=
Do 0
00 1

a square matrix with a; = 1,a;; =0 for i # j
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diagonal matrix: a square matrix with a;; = 0 for i # j

ar O 0

0 as 0
A= )

0 0 ap

triangular matrix: a square matrix with zero entries in a triangular part

upper triangular

ai1 a2 -+ Qip
0 ax -+ an

A=
0 0 - ap,

aijZOfOF’iZj

Linear algebra for EE

lower triangular

ail 0 .. 0

agy azy -+ 0
A=

anl Ap2 - Qpp

az-jzoforigj
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Block matrix notation

example: 2 x 2-block matrix A

for example, if B,C, D, E are defined as

B:E é] 0:[(1) El) ﬂ D=[0 1], E=[-4 1 —1]

then A is the matrix

21 0 1 7
A=13 8 1 9 1
01 41 -1

note: dimensions of the blocks must be compatible
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Column and Row partitions

write an m X n-matrix A in terms of its columns or its rows

bf
by
A:[al ag - an]: .
b
m aj for j =1,2,...,n are the columns of A
-binori:1,2,...,maretherowsofA

example: A = [1 2 1}

4 9 0

alzm, a2:[§], agzm, b= 2 1], b3 =1[4 9 0
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Matrix-vector product

product of m X n-matrix A with n-vector x
1121 + 1222 + ... + A1pTn
a2171 + a22T2 + ... + G2nTy
Ax =
Am1T1 + Am2T2 + - .. + AmnTn
m dimensions must be compatible: # columns in A = # elements in z

if A is partitioned as A = [al as - an], then

Az = a1y + agwo + - + apy

m Az is a linear combination of the column vectors of A
m the coefficients are the entries of x
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Product with standard unit vectors
post-multiply with a column vector

0
ann a2 ... ai]| |0 aik
a1 Q2 ... Q2 : a2k
Aey, = : : i : 1| = . = the kth column of A
Gml OGm2 --- Qmn Umk
_0—
pre-multiply with a row vector
a1l a2 ... Qin
a1 Q2 ... Q2p
Aml Am2 ... Qmn
= [akl aga - a;m] = the kth row of A
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Trace

definition: trace of a square matrix A is the sum of the diagonal entries in A

tr(A) =ai1 +ag + -+ ann

example:
2 1 4
A=10 -1 5
3 4 6

traceof Ais2—146=7
properties ©
m tr(AT) = tr(A)
m tr(eA + B) = atr(A) + tr(B)
m tr(AB) = tr(BA)

Linear algebra for EE Jitkomut Songsiri 15 / 203



System of linear equations

a linear system of m equations in n variables

a11ry + apxe + -+ aipy, =

a21x1 + a22xo + - - + a2pxy =

Am1T1 + Am2T2 + - + AGppTn =

in matrix form: Az =b

problem statement: given A, b, find a solution z (if exists)
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Three types of linear equations

m square if m =n (A is square)
[au a12] [331] _ [bl]
az ag] T2 ba
m underdetermined if m <n (A is fat)
z1
[au a2 a13] | = [51}
a1 Gz Gz | b
m overdetermined if m >n (A is skinny)
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Existence and uniqueness of solutions

range space of A € R™*" is

R(A)
rank(A)

{yeR™|y= Az, forz e R"}
dim(R(A))

1>l

nullspace of A is
NA) ={zeR"| Az =0}
important properties: &
m a linear system y = Ax has a solution if and only if y € R(A)
m equivalently, y = Ax has a solution if and only if rank(A) = rank([A | y])
m if the linear system has a solution, the solution is unique if and only if N'(A) = {0}
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Inverse of matrices

definition: a square matrix A is called invertible or nonsingular if there exists B s.t.

AB=BA=1

m B is called an inverse of A
m it is also true that B is invertible and A is an inverse of B
m if no such B can be found A is said to be singular

assume A is invertible

m an inverse of A is unique
m the inverse of A is denoted by A~!
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Facts about invertible matrices

assume A, B are invertible

facts &
m (aA)~t = a 1AL for nonzero a
m AT is also invertible and (A1)~ = (A~1)T
m AB is invertible and (AB)~! = B~1A~!
m (A+B)t#£ A+ B!

¥ Theorem: for a square matrix A, the following statements are equivalent
A is invertible
Az = 0 has only the trivial solution (z = 0)
the reduced echelon form of A is [
A is invertible if and only if det(A) # 0
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Inverse of diagonal matrix

al 0 0

0 a9 0
A= .

0 0 an

a diagonal matrix is invertible iff the diagonal entries are all nonzero
aiﬁéO, i:1,2,...,n

the inverse of A is given by

1/a;, 0 -+ 0
= 0 1/ag -~ 0
0 - 0 1/an

the diagonal entries in A~! are the inverse of the diagonal entries in A
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Inverse of triangular matrix

upper triangular lower triangular
aiy a2 -t Glp apz 0 - 0
Ao 0 a-22 © Q2n Ao agy aze --- 0
0 o - Qnn apl An2 **°  Gpp
aijZOfOFiZj aijZOfOI’iSj

a triangular matrix is invertible iff the diagonal entries are all nonzero

aiﬁéO, Vi:1,2,...,n

m product of lower (upper) triangular matrices is lower (upper) triangular
m the inverse of a lower (upper) triangular matrix is lower (upper) triangular
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Eigenvalues
) € Cis called an eigenvalue of A € C"*" if
det(\ — A) =0

equivalent to:

m there exists nonzero x € C" s.t. (A — A)x =0, ie,
Ax = Mz

any such z is called an eigenvector of A (associated with eigenvalue \)

m there exists nonzero w € C" such that
wl'A = M’
any such w is called a left eigenvector of A
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Computing eigenvalues

m X(A) =det(A — A) is called the characteristic polynomial of A
m X(\) =0 is called the characteristic equation of A

m eigenvalues of A are the root of characteristic polynomial
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Properties

m if Aisn xn then X()\) is a polynomial of order n
m if A is n x n then there are n eigenvalues of A
m even when A is real, eigenvalues and eigenvectors can be complex, e.g.,

-2 0 1
A:E _21] A=1|-6 -2 0
19 5 —4

if A and X are real, we can choose the associated eigenvector to be real
if A is real then eigenvalues must occur in complex conjugate pairs

if x is an eigenvector of A, sois ax for any a € C, a # 0

an eigenvector of A associated with A lies in N(AI — A)
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Important facts

denote \(A) an eigenvalue of A
AMaA) = aA(A) for any a € C

tr(A) is the sum of eigenvalues of A

det(A) is the product of eigenvalues of A
m A and A7 share the same eigenvalues
A(AT) = A(4)

A(A™) = (A(A))™ for any integer m

m A is invertible if and only if A = 0 is not an eigenvalue of A
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Eigenvalue decomposition

if A is diagonalizable then A admits the decomposition

A=TDT!

m D is diagonal containing the eigenvalues of A
m columns of T" are the corresponding eigenvectors of A
m note that such decomposition is not unique (up to scaling in T')

recall: A is diagonalizable if and only if all eigenvectors of A are independent
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Block matrix and quadratic form
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Leading blocks and determinants

let’s illustrate by an example of square matrices

0 -2 -2
0 2 1
-3 -1 =2
-1 0 1

A=

A has four leading blocks:

0 -2

A =0, Agz[o 9

that correspond to four leading determinants:

det(Al) = 0, det(AQ) = 0,

Linear algebra for EE Jitkomut Songsiri

1
2
0

det(A3) = —6,

-3

2 3
2 11,
1 -2

A=A

(also called principal minors)
det(Ay) = det(A) = =7
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Linear function
given w € R" and let x € R™ be a vector variable
a linear function f : R® — R is given by
f(z) = wle = wixy + wazs + -+ + WpTn,
(% review its linear properties, i.e., superposition)

an affine function is a linear function plus a constant: f(z) = w’z +b

u % = w; gives the rate of change of f in x; direction
m the set {z | w2z +b = constant } is a hyperplane in R" with the normal vector w

m linear functions are used in linear regression model and linear classifier
31 /203
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Energy form

given a (real) square matrix A, an energy form is a quadratic function of vector x:

f:R" =R, f(x)=2TAz= Z Z aijTiT;
J

7

m 27 Az is the same as the energy form using (A + AT)/2 as the coefficient because

T 2T (A+ ATz

zl Az = (27 Az) 5

. T _AT X
m using A = % + 4 2‘4 , we can later on assume that an energy form requires

only the symmetric part of A

m reverse question: given an energy form, can you determine what A is ?

CL‘% + 21‘% + 31‘% — 2o+ 2w0x3 2 2T Az
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Energy form and completing the square

recall how to complete the square:
22 + 322 + 14z 120 = (21 + Tap)? — 4622

given these matrices, expand the energy form and complete the square
4 6 4 6 4 6
A= [6 13]’ B= [6 9]’ ¢= [6 —4}
m ol Ax =

m ' Br =

m2Cr =

Linear algebra for EE Jitkomut Songsiri
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Quadratic function

given P € R"*" g € R",r € R, a quadratic function f : R™ — R is of the form

f(z)=1/2)2"Pr+q "z +r

m 27 Px is aka an energy form (due to the quadratic form that appears in the
energy/power of some physical variables)

2

1 1
electrical power = i?R, kinetic energy = §mv , energy stored in spring = ika

m the contour shape of f depends on the property of P (positive definite, indefinite,
magnitude of eigenvalues, direction of eigenvectors) — as we will learn shortly
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Surface plot of quadratic function

let f(z) = (1/2)2T Px + ¢"'z where A\(P) = 0

Ellipsoid in R*

Ellipsoid in R?

the contour plot of f
ellipsoid in R™

m when all eigenvalues of P are positive, P is positive definite

m direction and width of principal axes are related to eigenvalues/eigenvectors of P
(more on this later)
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Surface plot of quadratic function
let f(z1,72) = (1/2)(2? Pz) 4+ ¢’z and three cases of P

Sutace of clipsoid in

m case 1: all eigenvalues of P are positive
m case 2: all eigenvalues of P are non-negative (one is zero)

2

mcase 3: P = [1

1] . . .
_J eigenvalues of P are positive and negative
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Symmetric matrix

definition: a (real) square matrix A is said to be symmetric if A = AT
notation: A € S”
examples:
X Y| . . T . .
vT 7 with symmetric X, Z, A= E[XX"] (correlation matrix)

& basic facts:
m for any (rectangular) matrix A, AAT and AT A are always symmetric
m if A is symmetric and invertible, then A~! is symmetric
m if A is invertible, then AAT and AT A are also invertible
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Properties of symmetric matrix

spectral theorem: if A is a real symmetric matrix then the following statements hold
all eigenvalues of A are real

all eigenvectors of A are orthogonal
A admits a decomposition
A=UDU"

where UTU = UU”T = I (U is unitary) and a diagonal D contains A\(A)
for any z, we have

Auin(A)[|z)3 < 2TAz < Apax(A)|z])3

the first (and second) inequalities are tight when x is the eigenvector corresponding to Amin
(and Amax respectively)
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Proofs

assume Az = Az and ),z could be complex, denote z* = 71

(x"Azx)" = x"A'r =2"Azx =" v = A"z
= (2*\2)* = Az
since z*x # 0, we must have A = \

assume Ax; = Az and Axg = Aozo (now all (A, x;) are real)

ngazl = a:g)\lxlz)\lacgm

= l‘,{AZL‘Q = :L‘IT)\Q."EQ = )\gxlTxg

equating two terms give (A — \o)zd z1 = 0

for simple case, we can assume that \;'s are distinct, so x%xl =0 (z2 L x1)
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Positive definite matrix
definition: a symmetric matrix A is positive semidefinite, written as A > 0 if

T Az >0, VzeR"
and is said to be positive definite, written as A > 0 if
zT Az >0, for all nonzero z € R"

% the curly = symbol is used with matrices (to differentiate it from > for scalars )

example: A7 = [_11 _11} = 0and Ay = [ 1

-1
1 9 ] > 0 because

1 1| |z
2T Ajx = [xl 1'2] [_1 1 } [x;] = x% + a:% —2x129 = (21 — 3:2)2 >0

2T Ay = (1 —x2)> + 23>0, Vr#0

exercise: & check positive semidefiniteness of matrices on page 33
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How to test if A = 07

Theorem: A = 0 if and only if all eigenvalues of A are non-negative
(A > 0if and only if A(4) > 0)

Sylvester’s criterion: if every principal minor of A (including det A) is non-negative
then A t 0 proof in Horn Theorem 7.2.5

1

example 1: A = [ 1 _21} > 0 because

m eigenvalues of A are 0.38 and 2.61 (real and positive)
—1

1 9 |7 1 (all positive)

m the principle minors are 1 and ‘

11

example 2: A = [2 9

] > 0 because eigenvalues of A are 0 and 3
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Properties of positive definite matrix

if A > 0 then all the diagonal terms of A are nonnegative

if A > 0 then all the leading blocks of A are positive semidefinite

if A= 0 then BABT =0 for any B # (exercise)
if A-0and B >0, thensois A+ B

a diagonal psdf D = diag(dy,ds, ..., d,) admits a square root denoted by D'/2

DY2DY? = D where D'/? .= diag(\/dy,\/da, ..., \/dy)

(this choice of D'/ is also positive semidefinite)
@ if A > 0 then A has a square root, denoted as a symmetric A'/2 such that

A1/2A1/2 — A
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Square root of positive semidefinite matrix

definition: a square root of A > 0 is a symmetric matrix denoted by A/2 such that
A1/2A1/2 — A
example:
_ ]2 o0 2 [V2 0 2 -1 e 1[1+v3 1-v3
D_[O 6]’ b _{o —\/6}’ A‘{—1 2}’ ATE3-VE 1443

how to find a square root?: one way is from the eigenvalue decomposition

A=UDUT =uDp2p\2yT — yp2uTupt/2uT = AV?2 .= yp/2yT

m A2 is not unique but we can choose A'/2 that is positive semidefinite
m % A1/2 is NOT the matrix with entries | /i
m different definition exists: if A = BT B then B is called a square root of A
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Positive definite matrices in applications

covariance matrix: C' = E[(X — p)(X — u)7]
Hessian of convex functions: e.g., f(z) = Y ;" | z;log(x;)
given @) > 0 there exists a unique P > 0 satisfying the Lyapunov equations

(continuous) ATP + PA+Q =0, (discrete) ATPA - P +Q =0

if and only if the autonomous linear system is asymptotically stable

a matrix in a form of AT A is called a Gram matrix, e.g., appear in quadratic
term of dual SVM (Gram is pdf when A is full rank)

another name of Gram is Gramian matrix (as in control theory)
> T
W, = / eA"BBTeA Tdr, can be solved via AW, + W,AT = —BBT
0

controllability: (A, B) is controllable iff W, > 0
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Gram matrix

for an m x n matrix A with columns a,...,a,, the product G = AT A is called the

Gram matrix is positive semidefinite

Gram matrix

Jgrgen Pedersen Gram

ata; alay - ala,

T T T
G ATA a2 al a2 a9 st CL2 (0799
ala; alay -+ ala,

2TGr = 2T AT Az = | Az|?> > 0, Vz

m if A has zero nullspace then Az = 0 <> = 0; this implies that AT A > 0
m let X be a data matrix, partitioned in IV rows as x; 's; we typically encounter

T - -
G=X%=1% ij:l zpzi as the sample covariance matrix
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Negative definite and indefinite
more definitions

m A is called a negative semidefinite matrix if —A is positive semidefinite

A= [_12 _13} =<0 (all eigenvalues of A are non-positive)

(recall the Lyapunov theory in control: AT P + PA < 0)

m if A is neither positive semidefinite matrix nor negative semidefinite matrix, A is
said to be indefinite

A= [_23 _13] # 0, (eigenvalues of A have mixed signs)

(its energy form xT Az is not monotone — can be increasing or decreasing,
depending on x)
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Exercises on positive definite matrix

for which a and c is this matrix pdf ?

a a a
A= |a a+c a—c
a a—c a+c

let z € R", is zz® = 07 is zz® = 07

if A=0,and let « >0, is A+ ol = 07

prove that if A = 0 then BABT = 0 for any B

let A > 0, under what condition on B is BABT = 0?

A let A= [2

4 ;1 i) check if A > 0, ii) find the smallest @« € R such that A+al =0
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Common misunderstanding about pdf matrices

A > 0 does NOT mean all entries of A are positive!
if 27 Az > 0 for some x, it does NOT imply that A =0
the converse of some statements on page 42 is NOT true

X if all diagonal terms of A are nonnegative then A = 0
X if all the leading blocks of A are positive semidefinite then A = 0
X if A+ B > 0 then A and B are positive semidefinite
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Can we compare two psdf matrices?

let A, B be positive semidenite matrices

definition: we say A > B (A is greater than B in matrix sense) if

A-B>0

5 1 2 -1 3 2
example.A—[1 3]>_-0, B—[ 1 1]>_-0, A—B_[2 2]>—0

however, A and B are not comparable if A — B % 0 (and denoted by A ¥ B)

4 -1 31 1 -2
A_[ ) 2]50, B_L 1]50, A—B_[_2 1]%0

(such relation is called partial ordering)

a necessary condition for A > B is that diag(A) = diag(B)
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Congruent transformation
let A be a symmetric matrix and B be any invertible matrix
definition: a transformation f : S — S™ given by
f(A)=BTAB
is said to be congruent to A and has the following properties: law of inertia

BT AB has the same number of (positive)(negative)(zero) eigenvalues as A
(proof in Strang page 177)

for a special case when A > 0, the result is clear, i.e.,
BTAB>0 <= A>0, provided that B is invertible

example: let X be a random vector and Y = BX; then cov(Y) = B cov(X)BT
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Positive semidefinite ordering

=

if A> B then A=1 < B! (provided that A, B are invertible)
)\max(A)I t A i )\min(A)I
if A= B then STAS = STBS for any S

]

proof of [1] involves spectral radius and singular value of matrices (see detail in
Horn, Corollary 7.7.4 page 495)

proof of [2] and [4] are straightforward; just use the definition
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Ellipsoid in R"

given P> 0,z. € R",a > 0, an ellipsoid in R™ is parametrized by

E={zecR"|(z—z)'P (z—z)<a}

2Tz =q yI'D~ 1y =« TPz =qa

circle ellipsoid rotated ellipsoid P > 0

T

2

y= D2,

P > 0 has an eigenvalue decomposition: P = UDU”
principal axes of ellipsoids are eigenvectors of P: ui,us, ..., U,

the widths of principal axes are v/a\; where \;'s are eigenvalues of P
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How to sketch an ellipsoid
ingredients:
m P=UDU"T = P! =UD'U" where D = diag(\y,...,\n)
m U is unitary, i.e.,, UTU =T and if 2 = Uy then ||z|| = ||y||

2Tz=a yI'Dly =« Pl =a
circle ellipsoid rotated ellipsoid P > 0

22 Y2 T2

Y= DY/2; z=Uy
“ ‘ { P=UDUT
21 o n “ é Eal = )\1 0 u{

m RtoL: 2" P2 =2"UD Uz = 2TUD2D~1/2U" 2 and make
transformations y = UTz and z = D~1/2y

m L to R: plot shape in z (easy), scale/dilate z to get shape in y, and rotate y to
get the shape in x
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Ellipsoid as in Gaussian confidence region

basic facts: suppose X is Gaussian with covariance X,
m if Z = AX + b (affine) then Z is also Gaussian with covariance ¥, = A%, AT
m for X ~ N(0,%) and if © = UDU? then Z = D~'/2UT X is a standard Gaussian

m sum square of n standard Gaussians is a Chi-square of n degree of freedom

m 2~ N(0,X) and transform z to z

m decompose ¥ = UDU" and transform
2z =D Y2UTx to make cov(z) = I

PzTys e <a)=P(zT2<a) = P(X? <)

m size of ellipsoid («) is computed to
guarantee that P(xz € £) > a desired value

-6 -4 -2 xol 2 4 6 o= F><_21(09)
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Schur complement

a consider a block matrix X partitioned as

N

m Schur complement of D in X is defined as
S=A—BD7'C, if detD#0

we can show that det X = det Ddet S

m Schur complement of A in X is defined as
S=D—-CA'B, if detA#0

we can show that det X = det Adet S
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N = O

w o= N

YN =

N = O

w o~

Cll= | &~
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How Schur complement arises in Gaussian elimination

consider a system of linear equations in two-block variables and get rid of xo first
Az1 + Bro =y1, Cxi+ Dxy =1y
if D71 exists, we can eliminate x first; 2o = D lys — D™ 1Cx;
plug xo in the first equation and solve for z;
Az + B(D_lyg — D_ICLL'l) =y = (A-— BD_IC)ZL‘l =y, — BD 1y,
denote S = A — BD~'C and if it is invertible, ® the solution is given by

T1| S_lyl — S_lBD_lyQ
2| |-D71CSTlyy + (D1 + DTICSTIBD Yy,
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Inverse of block matrix

express the solution (1, z2) as a formula for the inverse of a block matrix

v [A BT _] s —S1BD
~|c D| T |-D'cs™' Dl'4+DtCcs'BD!

% note that the Schur complemnt is the inverse of the (1,1) block of X!

in fact, an LDU decomposition of X is

X_AB_IBD—l A-BD7'C 0 I 0
~|C D] 0o I 0 D||D7'C I

this proves that the determinant of X is det(A — BD~'C) det D
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Schur complement of positive semidefinite matrix

X:[A B], Sp=A—-BD'BT, S,=D-BTA7'B,

BT D
facts:
m X > 0if and only if D = 0 and Sp = 0 x=[ 57 % 8o
m if D> 0 then X > 0if and only if Sp =0 ful rank
| det X - det D det SD - det A det SA a form of congrurent transformation

interesting result when X > 0: we have Sp > 0 and D > 0
A—Sp=BD'BT -0 <= Ais bigger than Sp !

analogous results for Sy

m X >0ifandonlyif A>0and S4 >0
mif A>0Othen X =0ifandonlyif S4 =0
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Applications of Schur complement

71|03
114 |1]-2
01(2)-2
31r21-2]19

m conditional covariance matrix of X|Y (Gaussian case)

s_[Z S o [T 1]_fo 3])[2 —2] [0 3]
T8y T T 4] 1 2] -2 9 1 -2
(clearly, Yaly = Bz — if Xy # 0, knowing Y helps reduce covariance in X)

m elimination of variable in solving a linear system

m inverse of block matrix
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Matrix inversion lemmas

Woodbury formula: let A be invertible and let C, U,V be rectangular matrices
(A+vcv)t=At—Alyct+vatu)~tvat
(useful when U is tall and V is fat giving C~* + VA™'U in smaller size than n)

when U,V reduce to outer product of vectors

A lupT AL

TN—1 _ 4—1 _
(A+uw') " =4 11 oA

(useful when A™! is simple — the denominator in RHS turns to be scalar)

the inverse of perturbation of A corrected by a low-rank update is obtained by a cheap
perturbation of A~!
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Example of matrix inversion lemma

recall that the inverse of a diagonal matrix D = diag(d) is D~! = diag(1/d) (simple)
2 0 0 1 -
03 0+ |-1|[0 =3 1] =
0 0 4 2

compare the matrix inversion result with the direct calculation

when the dimension of w, v is large, and if A is diagonal
m A~ ! is obtained as cheaply as O(n)

m calculations of v7 A=1y and A~ 'uv” A=1 are also in O(n)
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Push-through identity

let A€ R"™ "™ B e R™™ and assume that I + AB is invertible

facts: &
m [ + BA is invertible
m push-through identity

B(I+AB)'=(I+BA)™'B

(B is pushed from the left to right)

hint: start with B(I + AB) = (I + BA)B

Linear algebra for EE Jitkomut Songsiri
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Pseudo-inverse

consider a full rank matrix A € R™*™ in three cases
m tall matrix: A is full rank < columns of A are LI & AT A is invertible

(ATA)TATYA = (ATA) 1 (ATA) =1
the pseudo-inverse of A (or left-inverse) is AT = (AT A)~tAT
m wide matrix: A is full rank < row of A are LI & AAT is invertible
A(AT(AAT)™Y) = (AATY(AATY L =1

the pseudo-inverse of A (or right-inverse) is AT = AT(AAT)™!

= A is full rank & A is invertible and both formula of
pseudo-inverses reduce to the ordinary inverse A~!

& the pseudo inverses of the three cases have the same dimension 7
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Symmetry in the complex world***

let A € C™*™ and denote the operator A* as
A* = AT (complex conjugate transpose)
definition: A is said to be Hermittian or self-adjoint if A* = A

2

example: [3 py

3 _1 21} clearly see that A" = A <= a;; = aj;

facts: if A is self-adjoint
m eigenvalues of self-adjoint matrix are real
m eigenvectors are mutually orthogonal
m A admits a decomposition: A = UDU™* where U is unitary, e.g., U*U = UU* =1
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Vector space

a vector space or linear space (over R) consists of
masetV
m a vector sum +: VxV =V
m a scalar multiplication : RxV — VY
m a distinguished element 0 € V

V is called a vector space over R, denoted by (V, R) if elements, called vectors of V
satisfy the following main operations:

vector addition:
z,yeV = x+yeV

scalar multiplication:

forany a e Rz eV = axeV
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Example of vector spaces

- Rn Rm><n
m set of polynomials of degree less than or equal to n

m set of continuous functions on (a, b)

M is called a subspace of vector space V if M is a subset of V, and M is a vector
space itself

examples:
m{zeR"|z1=0}
m set of diagonal matrices of size n X n

m range space and nullspace of a matrix A
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Normed vector space

a normed linear space is a vector space V over a R with a map

|-|:V—R
called a norm that satisfies

m homogenity

|loz|| = |a||z]|, Ve e V,VaeR
m triangle inequality

lz+yll <[zl +lyll,  Vz,yeV
m positive definiteness

lz|| >0, |z||=0<=z=0, Ve eV
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Example of vector and matrix norms

z € R" and A € R™*"

m 2-norm (Euclidean norm)

lellz = VaTa = \/o? + a3+ - +a2

A7 = \/tr(ATA) = | ) " ai;[?

i=1 j=1

m 1l-norm
[zl = [21] + 22| + -+ [zal, Al = 2255 lai]
m OO-norm
12lloc = max{|za], |z2], ..., [enl}, Al = mgXlaijl

clearly, ||z|| measures the vector size; ||z — y|| measures the distance between y and
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{,-norm

1
|2l = (|z1[P + |za|P + - - + |zalP)"/?

T2 T2 T2 T2

T /-\\ Ty 1 /K 1
£1-norm ball \\Morm ball Lo -norm ball W Ly

m a unit-norm ball is the set {z € R" | ||z|| < 1}
m /(g is defined as ||z||o = card(z) (the number of nonzero elements in x)

m {15 is NOT a norm due to violation of triangle inequality

T = (170)7y = (07 1)7 HxH1/2 = HyH1/2 =1, but H.’L’ +y”1/2 = ||(17 1)”1/2 = 22
m {o, /3 are not truly a norm; in fact, £, is a norm when 1 <p < oo
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Norm as a distance function

for R™, we can use different norms to measure the distance between = and y

& mark the distance between red and green dots using
1

distance function induced by different norms

m /1-norm: Manhattan/taxicab distance

.ﬁ

m /5-norm: Euclidean distance

m (,-norm: Minkowski distance for p > 1

*" m /-norm: Chebyshev distance

m a distance value should be non-negative
m the distance from x to y should be the same as measuring from y to x

a distance function can be formulated mathematically as the idea of a metric

Linear algebra for EE Jitkomut Songsiri 72 / 203
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Finding the closest point

given y, find z € C that is closest to y in a norm sense

X1

minimize || xr— y”
zel

using different norms can lead to different solutions

Linear algebra for EE
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Metric space

a metric is a function d : X x X — R that gives a distance meaning of two points

a metric (or distance function) must satisfy the three properties for all z,y € X

d(z,y)=0ifandonlyif z =y (definiteness)
d(z,y) = d(y, x) (symmetry)
d(z,z) <d(xz,y)+d(y, 2) (triangle inequality)

definition: any set X" that is equipped with a matric is called a metric space (X, d)
m any normed linear space (V, || - ||) is then a metric space with the distance
function d(z,y) := ||z — y|
m the triangle inequality is satisfied by following

d(z,z) = |lz =zl = [z =y +y = 2| < lz = yll + ly = 2] = d(z, y) + d(y, 2)
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Further reading about distance

let X be a metric spaceand M C X and z € X

dist = inf
ist(M, z) zglMd(z,:E)

(the distance between a set and a point — taking the minimum distance)

let C and D be two subsets of a metric space X’ — the distance between two sets is

dist(C,D) = inf d
ist(C, D) ot d@y)
dist(C,D) = inf |z —y| if the distance is induced from a norm
zeC,yeD

measure error between two inputs: given any two vectors x,y or matrices A, B, to
compare if x =y or A = B (mathematically) we should check numerically that

lz—vy||<e ||A—B|] <e (choice of norm may affect the computation)
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Applications of vector norms

questions involving norms
m find a vector  having the smallest norm (measured by any norm choice) while z
stays in a set (hyperplane, convex sets)

minimize ||z|| subject to Az =y
x

m we can choose several choices of distance functions in kNN to measure the
k-nearest neighbors

m /3-norm (as MSE) and ¢;-norm (as MAE) are typical loss functions p in regression
problems

m|n|m|ze Zp f(x:;0))

where p(r) can be |r|,7?
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Separable property

-2

03]5 4] 1

x:‘l

-5

let’s verify that
w [|2]13 = [lz1]3 + ll2ll5 + |zl
w ||lzfly = ([ + |22l + llzsll

® [[zflo = maxizi 23 {|21]lo0; [|22]lc, [l23]l0 }

_2|0‘3|_5‘4‘ éx:($17$2)x3)a

xkER2

a — r/»ofes%
i
in fact, £,-norm of a stacked vector is ® ] oo
b [ M ”ffomf[;?:ar ” (av ba C) H
(@, b; )l = [l Cllallps [1Bllps llellp) 1 - el
C
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Operator norm

matrix operator norm of A € R™*" is defined as

[Ax]|
| Al = ma max || Az||
feli20 e fleli=i
aka as the induced norm
properties:
for any z, || Az|| < ||A]l]|z]] (by the definition)
[aA|| = [a[[Al (scaling)
A+ B|| < ||A] + [|B]| (triangle inequality)
|All =0 if and only if A =10 (positiveness)
[AB] < [|Alll|B| (submultiplicative)
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Examples of operator norms

m 2-norm (aka as spectral norm)

| All2 £ ”H|1|ax |AZ|l2 = \/ Amax (AT A) = omax(A) (max singular value)

m 1-norm
m
||A|\1—”Hf‘l‘aX Az, = Hllaan\aijl 121013
T = 03112
m oo-norm 51012 -2
0780

n
[Alloc = max x lAzloo = max > lai|
1EA|PSS 1,:1,“.,mj:1

& verify that the above operator norms have the given expressions
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More on metric norms

m nuclear norm: sum of singular values (no. of nonzero o; determines rank(X))

min(m,n)

IXIe= > ouX)

i=1
(recall a singular value is 0;(X) = /\(XT X))
m spectral radius p(X): let Ay,..., A\, be n eigenvalues of X

p(X) = m]?.X{ ’)\1‘7‘)‘2|77’)‘n‘ }

% spectral radius is NOT a norm == check which norm condition is violated

m useful relations & p(A) < ||All2 < ||AllF < || 4]«

proof hint: definition of operator norm ; max eigenvalue < sum of eigenvalue ;

Va+b<ya++vb
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Applications of matrix norms

analog of least-squares for matrix parameter: minimizex [|Y — HX||%

deriving norm of output from a matrix-vector multiplication

z(t+1) = Ax(t) = z(t) = A'z(0)
= [lz(@)ll < [ANIA 2 ()] < - < A"z (0)]

the inquality is obtained by the matrix operator norm
zT Sz

let S = AT A, the maximum of R(x) = i is called the Rayleigh quotient
which turns out to be the squared spectral norm of A, o2, (A)

max

low-rank approximation: minimize |A — X||% subject to rank(X) <r
(find a low-rank X that best approximates A in Frobenius norm sense)

problem: minimize f(X) 4+ A||X ||« (a regularized regression with parameter X
that has a low-rank prior)
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Equivalence of norms

two norms || - |4 and || - ||z on a vector space V are said to be equivalent

if there exists constants «, 3 such that
allzlla < |zllp < Bllzlla, VeV
examples: 1,0, {s-norms for x € R™ are all equivalent
[zlloe < llzll2 < [lzlls < vrllzll2 < nllzlw

(non-trivial: prove ||z||oc < ||z||2 using Cauchy-Swarz inequality with y = e; making y" 2 = ||z )

applications: for an error e € R, MSE = % e||3, RMSE = ﬁHeHg, MAE = % |le|l1

MAE < RMSE < vV NMAE

which bound is useful ? — meaning that it provides a tight upper/lower bound
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Inner product space
an inner product space is a vector space ) over R with a map
(,):VxV—=R
for all x,y,z € V and all scalars a € R, an inner product satisfies

symmetry: (z,y) = (y, )
linearity in the first argument:

(az,y) = alz,y), (T+y,2)=(,2)+ (y,2)
positive definiteness

(x,z) >0, and (z,2)=0&2=0
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Examples of inner product spaces

m R": (2,9) =yTo =291 +Toy2 + -+ Tpyn  (canonical/vanilla inner product)

m R":for W =0, (z,9)w =y Wz (weighted inner product)
(W = 0 is a positive definite matrix, i.e., zT Wz > 0 for all x # 0)

m R (X,Y) =tr(YTX)

m Cla,bl: set of all real-valued continuous functions on [a, b] whose inner product is
defined as

b
(f.9) = / F(Hg(t)dt
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Applications of inner product in R"

the inner product 27y has a meaningful interpretation in applications

m co-occurrence: let a,b are n-vectors that describe occurrence, i.e., each elements

is either 0 or 1; then a”b gives the total number of indices for which a; and b; are
both one

m score/weight/feature: s = w’ f where f is a feature vector, w is the weight
vector, and s is the total score

m probability /expected value: expected value = fTp where p is a probabability
vector, and f; is the value if outcome 7 occur

m polynomial evaluation: p(x) = ¢o + c1x + - - - + c,x™ then we can present
p(t) = ¢’z where ¢ = (cg, ..., c,) and z = (1,,...,t")
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Induced norm
every inner product space induces a norm that is defined by
lz|| & /(z, ) (satisfy all properties of norm)

(@, )] < [l [yl

& show that the induced norm satisfies the triangle inequality

|z +yll> = (@ +y.2+y) = (z,2) + (y,9) + (z,y) + (y,2)
= [lz[|® + [|yl|* + 2R(z, y) < [|=]]* + |ly]|* + 2/(z, )|
2
< l=®+ lyl* + 22/ lyll = (=]l + lyll)

(the last inequality follows from Cauchy-Schwarz inequality)

& if (z,y) = yT W is used for the inner product, what is the induced norm ?
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Cauchy-Schwarz inequality (CS)
for any x,y in an inner product space (V,R)

(@, 9)] < ll=[llly]

moreover, for y # 0,

(z,y) = llzlllyll <= =z=cy, FceR
proof of non-trivial case (y # 0): for any scalar «

0 < fla+ ayl* = lz* + o®[lyll* + 2a{z, y)

=)
yl®

interpretation as cosine similarity: —1 < cosf £ |<x’y>| <1

if y # 0, then we can choose @ = and the CS inequality follows
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Example

show that
show that ||u + v|| < ||lu]| + ||v]| (triangle inequality)

show that (3, uv;)? < (32, ui) (32, uiv?) for u; >0
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Cosine similarity function

let's find the similarity between f(z) = sin(z) € C[0, 27| and each of two polynomials:

g(z) =0.123 —0.82%2 +1.22 — 0.1, h(z) =0.152> —2®> + 2 — 0.5

Function Discretized Discretized
4 :’ﬁ{;i 4 = 4 l
2 2 2
o / o wﬁ;ITII . o 21111111, g
ity
2 2 2
0 2 4 6 0 2 4 6 0 2 4 6

2m
m similarity between f(x) and g(z Jo Sm(x)g(z)dx

\/ Jo " sin(z ™ g(z)dx
m after discretizing f(z) to a vector f € R”, the S|m||arity index is computed using
T
inner product in R™: similarity = ”fﬁ;%

Linear algebra for EE Jitkomut Songsiri 90 / 203



Orthogonality

let (V,R) be an inner product space

x and y are said to be orthogonal if
xly <= (x,y)=

these are orthogonal pairs
m (1,0,—1) L (1,1,1)

" [_12 3] + [3 —11/3}

m C[0,1]: 2 L (422 —2)
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Orthogonal complement
orthogonal complement in V of S C V), denoted by S+, is defined by

St={zeV|(r,s) =0, Vsc S}

fact: &
m S+ is a vector space
m let dim(S) =n and {¢1, d2, ..., Pn} be a basis for S

zeSte—= 2 l¢p, k=1,2,...,n

(vectors that lie in St is orthogonal to each of basis vectors for .S)
® please verify
mS={zcR"|a’2z=0} and S* =span{a}

as={aerm2ja= |0 2l gor L pere po |t O
a1 0 0 b22
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Orthogonal decomposition

for M C R", R"™ admits the orthogonal decomposition:
R"= M@ ML, and dim(R") = dim(M) + dim(M*)

any y € R" is uniquedly decomposed as y = m + 1 where m € M and m € M=+

example: S = span{(1,0,0)} and S+ = span{(0,1,0), (0,0,1)}

1 0 0
R? = span 0 @ span 11,10
0 0 1
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Parallelogram law

we start with z,y in an inner product space and || - || is the induced norm
le +yl* = (z+ya+y)=(z2)+ )+ 9+ y2)

m Pythagoras’ theorem: when x 1 y, squared norm of the sum reduces to
2 2 2
[z +ylI* = ll=[]” + llyll
m the parallelogram law: by adding the above two identities

2|z + 2]yl = llz + ylI* + Il — ylI?
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Orthogonal projection

let =,y be vectors in an inner product space V equipped with (-,) and let M CV

orthogonal projection of y onto M

v=maom: _y definition: find a mapping P : V — M such that

e=y—P(y) e M+

e=y—P(y)

is orthogonal to any vector in M
P(y) e M
#n concept of orthogonality depends on the inner product

M
associated with V

orthogonality condition: y— P(y) L M
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Procedure of finding the orthogonal projection of y onto M

m let {¢1,P2,...,dm} be a basis for M

m P(y) must be a linear combination of ¢;'s (since R(P) C M)
P(y) =a1¢1 + -+ azpm

my—Ply) LM< (y— P(y),¢r) =0 for all k£ and it gives

orthogonality condition: (y,¢x) = (P(y),¢%), k=1,2,...,m
= <a1¢1 +aspa + -+ amdm, ¢k>

this forms a system of m linear equations in a;'s

example: if M has only one basis vector ¢, we have (y, ¢) = a1(¢, ¢)
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Procedure of finding the orthogonal projection of y onto M

solve m linear equations to find coefficients a;

(P1,01) (P2,01) ... (Dm,01)| |1 (y, b1)
(P1,02) (P2, 02) ... (P2,0m) | | a2 (y, 2) 5 Gaed

Grnb1) (S d2) e Do dm)| Lam) (s 6m)

m G with g;; = (¢, ¢;) is called a (clearly symmetric and can be
shown to be positive definite)

m for this reason, G is invertible and a = G~ b

m b is linear in y, it is clear that P(y) = a1¢1 + - - - + @@, is then linear in y

Linear algebra for EE Jitkomut Songsiri 97 / 203



Projection onto a vector
if a basis for M is {¢} (only one basis vector), then P(y) = a¢

(y,¢) =alp,9) = P(y) =

project y onto x in R™:

= ax = (z,y) X = (v z)a = cosf - ——

Ran.

project Y onto X in

Y:B § EI}’X:[(I) 11 _01}7<XaY>:tF(YTX)=3,(X,X):tr(XTX):4
_(X)Y) 3, 3[1 -1 o0
P =y X =¥ =1 1 Y]
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Try out the formula
find the projection of y = (1,2) onto the subspace spanned by x

Y Y

x=(-1,1)
x=(1,1)

z=(-2,-1)

& which pair of (y,z) has the highest cosine similarity index?

(review acute/obtuse angles between vectors)
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Projection of a function

example: project g(z) = 2sin(2z) € C[—=, Z] onto a subspace spanned by {1,z}

a’a

Projection of g(x) on Span{1,z} in C[a,b] 5 Residual versus Projected function

inner product:

" i 10!

w/a
[, (f.g) = / F(Hg(ydt

on C’[

Cl-106> 100

-3
/2 /4 0 /4 /2

m three projections: P(g(z)) are different by the support of function (but all of
them are linear in z)

m as the support becomes smaller, P(g(x)) tends to be the tangent line of g(x) at 0
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Calculations

the orthogonality condition forms a system of 2 equations

B2l -a) =16 | |on] = ngz) ot con)

(as we use the inner product for C[—7/a,/al)

3a® 2 12
P(g(x)) = a1 + agx = % [Sin(27r/a) - % COS(QW/G):| r = 3 [sin(c) — ccos(c)]z
m C[-73,7]: the projection is P(g(z)) = Bz
m C[-7, 7] the projection is P(g(z)) = 321‘

m & as a is sufficiently large, P(g(z)) — 4z
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Orthogonal complements of range space and nullspace

let A e R™*"

2 verify that
R(A)F = N(AT), N(A)T =R(AT)

therefore, we have orthogonal decompositions

R™ = R(A) a N(AT), R"=N(4) s R(AT)

1
example: A= |0

S 1 RO RN 1
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Linear independence vs Orthogonality

definition: a set {¢;}I"; €V can be a basis for n— dimenstional vector space V if

(1) span{¢1,...,0n } =V, (2) {¢1,...,¢x }is linearly independent

al a9 bo
by a2
as
C3
b3
independent orthogonal orthogonal
+ unit norm

m (1,2,-1),(1,0,—1),(1,—3,4) are independent but not orthogonal
= (0,0,—-1),(1,1,0),(1,—1,0) are orthogonal and independent

fact: & orthogonal vectors are also independent
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Orthonormal basis
{or}}_, C Vis said to be an orthonormal set if

1, +=3j

and is called an orthonormal basis for an n-dimensional V if
{¢x } is an orthornomal set
Span{(bla ¢27 ceey (b'rl} =V

example for R™:

1 1
¢1 = (0507 _1)7 ¢2 = E(lv 170)> ¢3 = ﬁ(lv _170)

we can construct an orthonormal basis from the Gram-Schmidt orthogonalization
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Gram-Schmidt algorithm (GS)

., ap, GS algorithm finds orthogonal vectors ¢, ..., ¢, that

given vectors a, asg, . .

m fori=1,...,m, a; is a linear combination of ¢1,...,¢ny, and ¢; is a linear
combination of a1, as,...,q;

mifai,...,a;—1 are Ll but ay,...,a; are dependent, GS detects the first vector a;
that is a linear combination of previous ay,...,a;_1

(a2, q1)q1

a1 qQ
71 q1/ [
as as L,(ii as <
pa———
\/ q2
q2

algorithm:
project vector ag onto the previous £ — 1 orthonormal vectors

gk is the residual after the projection (hence, must to orthogonal to the previous

ai,...,ar—1 vectors

normalize gi to have a unit norm: qi := qx/|| x|
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Orthogonal expansion

let {¢;};—; be an orthonormal basis for a vector V of dimension n

for any x € V, we have the orthogonal expansion:

n

=1

meaning: we can project x into orthogonal subspaces spanned by each ¢;

the norm of x is given by
n
] = > [, i)
i=1

can be easily calculated by the sum square of projection coefficients
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Kernel @

a kernel K : [a,b] x [a,b] — R is a continuous function with the symmetric property
K(z,y) = K(y,z),  Va,y€[a,0]
Mercer’s condition: a real-valued K (x,y) is said to satisfy Mercer's condition if

//g(f”)K(ﬂf7y)g(y)dxdy >0

positive-definite: K is said to be positive-definite if

ZZK(%,%’)QCJ‘ >0, Vz;€la,b], V; €R
i=1 j=1
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Further reading

open/closed sets, supremum, infimum

m Holder's inequality (Strang page 96)

m dual norm (see page 637 of Boyd and Vandenberghe 2014)
m composite norms: x = (z1,Z2,..., Tk ) where each x; € RP
K
Izl = > llilly
i=1
m similarity measure:

m cosine similarity
m Mahalanobis distance (between a point z and a distribution D)
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Finite/Countable/Bounded sets

m a finite set is a set that has a finite number of elements

{(3,4),(1,1),(0,0)},{[})’ ?]’[130 _91]} but R™*™ is not finite

m a set is countable if each element in the set is uniquely associated to a unique
natural number (or can be counted at a time)

{1,2,3,...} is countable (but not finite), set of diagonal matrices is not countable

m a subset C' of a normed vector space is bounded if there exists M > 0 such that
|z —v|| < M for all z,v € C

m span{(1,1)} is not bounded
m {z€R*|z=(1,1)+t(2,3) |t €[0,1]} is bounded (but not finite)

Linear algebra for EE Jitkomut Songsiri 109 / 203



Open and closed sets

concepts about open and closed sets are generalized to normed vector space!

let C' be a subset of a normed space V

x € C is called an interior point of C if there

Y Y Y

1 m m exists € > 0 for which

{ \II T ST\

NN Wiy -2l <eycc

(if all points of e-neighborhood of x are also stay in C)
m the set of all interior points of C' is denoted by int C'

m a set C is said to be open if int C = C (every point in C is an interior point)
m ® what is interior of A7 is A open ?

m a set C is called closed if its complement V\C' is open % is B closed ?

"more general definitions for metric/topological space
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Supremum and infimum

let C CR
m the supremum of the set C', denoted by sup C' is the least upper bound of C

sup(0,2) = 2, sup(0,2] =2, sup{(2,—D)7z ||zl <1} =V5

m max C denotes the maximum element in C' (that can be explicitly specified)

m sup C may or may not be in the set C; when sup C' = C', we say the supremum of
C'is attained or achieved

m we take sup = —oo and sup C' = oo when (' is unbounded above

m the of C, denoted by inf C, is the of C
inf(0,2) =0, sup[0,2] =0, sup{(2, -7z ||z]2<1}=—-V5

m we take inf = co and inf C = —oo when C is unbounded below

Linear algebra for EE Jitkomut Songsiri 111 / 203



Holder's inequality

the £, and £, norms are dual? in the sense that 1% + % =1
U & by, £ is self-dual

Holder's inequality is an extension of Cauchy-Schwarz to all dual pairs:

., 11
(@9} < lelpllylle: P €lloo) with 4 - =1

(proofs can depend on the inner product space in question)

2there is more formal definition of dual norm/dual space
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Dual norm in R"
let || - || be a norm on R™; the dual norm, denoted || - ||« is defined as
21l = sup {=" | |z <1}
(% verify that it is a norm )
m consider the operator norm of 27 with the norm || - || on R"
[ Ed

i<t el e 2l

= can be regarded as the dual norm

m © it can be shown that the dual norm of 45 is itself and the dual norm of ¢, is ¢1
m the dual of the dual norm is the original norm (||z[/.« = ||z||)

m from the definition of dual norm, we always have the inequality
2To <|z||||z]l« (a special case of Holder's inequality for R™)
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Dual norm in R"™*"

let || - || be a norm in R™*™

the associated dual norm for this space is defined by generalizing the idea of inner
product for matrices: (X, Z) = tr(Z7X)

1Z]]x = sup {tr(Z"X) [ |X] <1}
for example, consider the spectral norm || X||2

1Z ]2+ = sup {tr(Z"X) | [ X2 < 1}
=01(Z) +02(Z) + -+ 0,(Z) = tx(ZT Z)V/?

where r = rank(Z) — the dual norm of spectral norm turns out to be the nuclear norm
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Special matrices
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Common matrices used in applications

symmetric Hermittian

positive definite Gram

unitary orthogonal

idempotent nilpotent

Toeplitz Hankel

banded doubly stochastic
Linear algebra for EE Jitkomut Songsiri
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Unitary matrix

a complex matrix U € C™*" is called unitary if

Utu=UuU*=1, (U407

example: let z = ¢~27/3
1 1 1 1 1 1 1 1
U=_—|1 » 22| = |1 e-i2n/3 p—idn/3
V3 1 22 4 V3 1 e—in/3 —i8T/3

facts: &
® a unitary matrix is always invertible and U~ = U*
m columns vectors of U are mutually orthogonal

m 2-norm is preserved under a unitary transformation: |Uz|3 = (Ux)*(Uz) = ||z||3
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Example: Discrete Fourier transform (DFT)

DFT of the length-N time-domain sequence x[n] is defined by
| N
X[kl =— Y zple /N og<k<N-1
= 5 2l <k<

—i2n /N

define z = ¢ , we can write the DFT in a matrix form as

X[0] 11 TR 1 2[0]
X[1] 1 2t 22 . ZN-1 z[1]
X2 | = \; T 2[2]
. N
X[V - 1], 1 N1 20D L WD | v — 1))

or X = Dx where D is called the DFT matrix and is unitary (.. x = D*X)
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Unitary property of DFT

the columns of DFT matrix are of the form:
o = (1/\/ﬁ) [1 e—i2mk/N  —i2mk2/N e—ika(N—l)/N]T

use (¢, o) = ¢;.¢ and apply the sum of geometric series:

N—-1 _i2n(k=1)
_ 1 S eiznlktn/N _ 1 1=
<¢l7 ¢k> N o € N 1 — ei2n(k—=l)/N

the columns of DFT matrix are therefore orthogonal

1, fork=1+rN, r=0,1,2,...

(01, o) = {0, for k # 1
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Orthogonal matrix

Ran

a real matrix U € is called orthogonal if

vt =vTu =1

properties:
m an orthogonal matrix is special case of unitary for real matrices
m an orthogonal matrix is always invertible and U~ = U7
m columns vectors of U are mutually orthogonal

m norm is preserved under an orthogonal transformation: ||Uz||3 = |||/

L 1 -1 cosf —sind
V21 1)’ sinf cosf

example:
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Projection matrix

P € R™ " is said to be a projection matrix if P2 = P (aka idempotent)

m P is a linear transformation from R" to a subspace of R", denoted as S
m columns of P are the projections of standard basis vectors and S is the range of P
m if P is applied twice on a vector in S, it gives the same vector

examples: identity and
L0 /2 172 13 =6 I—X(XTX)7'XT (in regression)
0 0| |1/2 1/2]" |1 =2|°
properties: &
m eigenvalues of P are all equal to 0 or 1

m [ — P is also idempotent
m if P # 1, then P is singular
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Orthogonal projection matrix

a matrix P € R™*" is called an orthogonal projection matrix if
pP?=p=pT

properties:
m P is bounded, i.e, ||Pz| < |z

|Pz||3 = 2T PT Pz = 2T P*z = 27 Px < ||Px|||z||
m if P is an orthogonal projection onto a line spanned by a unit vector u,
P =uu®
(we see that rank(P) = 1 as the dimension of a line is 1)

m another example: P = X (X7 X)™'XT for any matrix X — (in regression)
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Permutation

a permutation matrix P is a square matrix that has exactly one entry of 1 in each row
and each column and has zero elsewhere

010 010
100/, 001
00 1 100

facts: &

P is obtained by interchanging any two rows (or columns) of an identity matrix

PA results in permuting rows in A, and AP gives permuting columns in A
m PTP =1 s0 Pt = PT (simple)

the modulus of all eigenvalues of P is one, i.e.,

Ai(P)] =1

a permutation matrix is an example of doubly stochastic matrix
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Stochastic matrix

a (real) square matrix A with non-negative entries is called
a row/right stochastic if each row sums to 1: 3 a;; =1or A1=1
a column/left stochastic if each column sums to 1: 3" a;; =1 or 174 =17

a doubly stochastic if each row and column sums to 1

0.2 0.1 0 0.1 05 04 010
row/left stochastic: [0.3 0.9 1|, doubly: [0.2 0.2 0.6|,|0 0 1
05 0 0 0.7 03 0 1 00

m a stochastic matrix clearly has 1 as an eigenvalue
m D the spectral radius of any stochastic matrix is one

m a left stochastic matrix appears in Markov chain as the transition probability

matrix: p(t + 1) = Ap(t) where A;; is the conditional probability that state j
from time ¢ jumps to state i at time ¢t + 1
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Vandermonde

appears in polynomial evaluation at multiple points

we are not related !

p(t) =c1+ oot + -+ cpgt" 2 4 et

1 t; - t’f—i
v 1 to --- t;ﬁ
1oty - ol

(with a geometric progression in each row)
% one can show that the determinant of V' can be expressed as

det(V)= [[ (¢t —t)

1<i<j<n
hence, V is invertible as long as ¢;'s are distinct
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Companion matrix

[—a1 —as —ap—1 —an
1 0 0 0
A= I 0 0|, a,...,an€R
0 0 10

appears as the state-space dynamic matrix of autoregressive (AR) process

y(t) = ary(t — 1) + agy(t — 2) + - + apy(t — n) + u(?t)

® the characteristic polynomial of A is given by
AN+ NP aN" 2+ a, N+ a, =0

stationarity of AR process is obtained via the root test depending on a1,...,a,
127 / 203
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Companion matrices in state-space system

controllable canonical form

0 0 0  —anp 1
1 0 0 —ap_1 0
0 1 0 — Qg 0
A= n—2 . B=
0 o 1 —a 0
C=lc1 c2 c3 cn]

C = I, and (A, B) is controllable
controller canonical form

—ayp  —az - —Qp—1 —an
1 0 0 0
0 1 0 0
A= , B=
0 0 1 0
C = [cl co c3 cee cn]

[=NaNT

observable cannonical form

0 1 0 0 by
0 0 1 0 by
b
A= B=|"
0 0 0 1
—an  —ap_-1 —ap-—2 - —ai bn
c=[1 0o 0o --- 0

O = I, and (A, C) is observable
observer canonical form

—a1 1 0 --- 0 O b1

—ag 0 1 0 0 by

b

A= : , B= 3

—Qp—1 (SN 1 0 .

—an o o .- 0 0 bn
c=[1 0 0o ... 0]

C is an upper triangular matrix with 1's on the diagonal and (A, B) O is a lower triangular with 1's on the diagonal and (A, C) is observ-

is controllable
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Toeplitz

Toeplitz matrix has constant entries along each descending diagonal from left to right

| m T;; = constant when ¢ — j is fixed

m T needs not be square

m the set of n x n Toeplitz matrices forms a subspace for R™*"

m an n X n Toeplitz T has at most 2n — 1 unique values
m two Toeplitz matrices can be added in O(n) time
m the linear system 3 = T'x can be solved by the Levinson algorithm in O(n?)

m can be found in convolution system, covariance matrix, polynomial multiplication

— See more in Boyd and Vandenberghe page 137 and https://ee.stanford.edu/~gray/toeplitz.pdf
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Convolution: impulse response

consider an input-output relationship in a convolution form

y(t) = hpult — k) = hou(t) + hau(t — 1) + - - + heu(0)
k=0

the input-output response in vector format has a Toeplitz system

Yo
un

YN-1
YN

ho
h1

hn_1

_hN

ho

hn—2
hn—-1

ho

Uo
Uy

UN-1

hy  ho]

un

when considering M-order FIR (finite impulse response) where h; = 0 for
t=M+1,M+2,..., T(h) becomes a banded matrix
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Autocorrelation matrix

for a wide-sense stationary process (WSS), define auto-correlation function:
R(7) = Elz(t +7)z(t)"], R(-7)=R(r)"

which has non-negative property: for any a;,a; € R" and for 1 <i,5 <n
> alR(i—j)a; >0
i

which is equivalent to positivity of a quadratic form with a Toeplitz coefficient matrix:

- -T - 4 -
a Ry R.1 -+ R_(_3 R_(hy a
as Ry Ry R e R_(n-9) as
: : KR - : : >0
ap—1 R, o - Ry Ry R_4 ap—1
L an | [Rn—1 Rn—a - Ry Ro | [ an ]
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Hankel and Circulant matrices
Toeplitz matrix's siblings

Toeplitz Circulant Hankel

.

m circulant matrix: each row is a cyclic shift of the row above (e.g., covariance
matrix of WSS process)

m Hankel matrix: ascending skew-diagonal from left to right is constant (e.g.,
input-output relationship from state-space model)
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Nilpotent matrix
A € R™™ is nilpotent if

A¥ =0, for some positive integer k

Example: any triangular matrices with 0's along the main diagonal

O1 0 --- 0
001 --- 0

|:8 (1]:| ’ - . (shift matrix)
o000 --- 1

also related to deadbeat control for linear discrete-time systems
facts: &
m the characteristic equation for A is A =0

m all eigenvalues are 0
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Graphs

a graph: consists of
nodes (or vertices): labeled by {1,2,...,n}

edges: set £ of (i,7) describing connections between node i and j where
‘connection’ can be defined in many ways

m directed graph: the connections are bi-directional

L] the connections are undirectional (or symmetric)

m directed edge from node j to ¢ can be
described by a relation set

edge
11000
000-1 1 R = {(173)7 (1>4)a (27 3)7 (274)7 (3a 4)7 (47 2)}
10100 i . .
0-1-11-1 m undirected edge between node ¢ and j can
Directed graph incidence matrix be described by a set of pair (i, j):

{(1,3),(1,4),(2,3),(2,4), (3,4)}
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Graph matrix: Adjacency

a relation R on {1,2,...,n} is represented by the n x n matrix A with
L, (i,j)e€R
Aij = ..
0, (i,j)¢R
(2) @ (2) example of how a relation is defined:

m directed edge: variable j causes variable 7

m undirected edge: covariance, partial

Directed graph Undirected graph covariance
directed undirected
R = {(173)7(174)7(273)7(274)7(374)7(472)} R :{(173)7(174)7(273),(274)7(374)}
0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1
A= 0 0 0 1 4= 0 0 0 1
0 1 0 O 0 1 0 O
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Graph matrix: Incidence

a directed graph can be described by its n x m incidence matrix, defind as

1, edge j points to node ¢

Aij; = ¢ —1, edge j points from node i
0, otherwise
edge . . L .
1l1l0lolo] ™ dimension of incidence matrix: no. of
000-11 edges x no. of nodes
10100 g each column has only two nonzero entries
0OF1k1{1[-1
Directed graph incidence matrix (_1 and 1)

m the ith row sum gives a total net flow of node ¢

m unlike adjacency matrix, incidence matrix explicitly labels the edges 1,2,...,m

Linear algebra for EE Jitkomut Songsiri 136 / 203



References

S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors,
Matrices, and Least squares, Cambridge, 2018

C. C. Aggrawal, Linear algebra and optimization for machine learning:A textbook,
Springer, 2020

G. Strang, Linear Algebra and Learning from Data, Wellesley-Cambridge Press,
2019

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, 2014

Linear algebra for EE Jitkomut Songsiri 137 / 203



Matrix decompositions
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Decompositions

SVD (singular value decomposition)
QR

LU

Cholesky
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SVD decomposition

let A € R™*™ be a rectangular matrix; there exists the SVD form of A

A=UxvT

mxn mxm mxXmn nxn

tall fat square
A= U » vT

m U eR"™™ V e R"™™" are orthogonal matrices
m X eR™"with¥; =0; >0and X;; =0 fori #j
m for a rectangular A, ¥ has a diagonal submatrix ¥; with dimension of min(m,n)

A= oo | [V = UV, A =U[ 510 ][] = usivf
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Singular vectors and singular value

suppose rank(A) = r, A has r positive singular values in descending order

o1 2>209>---2>0,>0

and there exist left singular vector u, ..., u,, that are orthogonal in R™ and right
singular vector vq, ..., v, that are orthogonal in R" such that
Avy = oruq, Ave = o9us, ..., Av, =opu,, Avyy=---=Av, =0

or in matrix form: AV = UX (where U and V are orthogonal matrices)

g1 0

Alvi o oo o v ] =[w o o | wer o um | 0
or |0

0 0 0]o0

unlike eigenvalue decomposition: AX = XA, SVD needs two sets of singular vectors
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How to find U, X,V for A =UXV7T

ATA=vyTsyT 2 QAQT,  AAT = UuxxTUT 2 QAQT

m V' contains orthonormal eigenvectors of AT A

m U contains orthonormal eigenvectors of AA”

m 02,...,02 are the nonzero eigenvalues of both AT A and AAT

steps of finding U, >, V:
choose orthonormal eigenvectors vy, ..., v, of ATA
choose oy, = \/mforkzl,...,r
from Av = ou, compute u, = % fork=1,...,r
the last v,41,...,v, are in N'(A)

because N'(AT) L R(A), picking the last w1 1,. .., up in N(AT) make them
orthogonal to uq, ..., u, forming an orthonormal basis
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Example: SVD of a fat A

5
A:[l 0 2], ATA= | -2
2

m find the right singular vector (eigenvectors of AT A)

3 1 2
ATA=QAQ".Q= |7 5 v | A=
V14 V6 V21
B V7T 0 0
thenV—QandE—[O /3 0
Linear algebra for EE Jitkomut Songsiri
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Example: SVD of a fat A

m find the left singular vector U as the normalized image of right singular vector

u_AUl_[l 02] _1 1 _1[—1}
1= -2 10} |, |vid7 v2l!

b A [10 21
2T oy =21 0

o=t =5[]

m the SVD form of A is
3 1 2
1 o0 2| _ 1 f1 1) |[vi o of | V& Yo VR
-2 1 0_\@ 1 1|0 V3 0 i e V2l
Vi NG
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SVD of a tall and low-rank A

given
o 02 s
A= , ATA=1|2 4 2
0 1 L -8 2 10
1 -1 -2

m find the right singular vector (eigenvectors of AT A)

11 1
T T V2 @ _1% 1800
ATA=QAQ",Q = (1) E o , A=10 6 0|, 0{=18,05=6
Vi %V R
18 0 0 O
0 6 00 :
then V=@ and X = 0 0 0 0 and we recognize that rank(A) = 2
0 0 00
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SVD of a tall and low-rank A

m find the left singular vector U as the normalized image of right singular vector

A 1 A 1
:ﬂ:6(17_5711_3)7 U2:£

uy =—(1,1,1,-1)
g1 09 2

(here, r =2, we can find uy,us2)
m find the remaining left singular vector from N (A”) which make them orthogonal
to uy,us:
(-1,0,1,0), (4,—1,0,3)
(they are independent but not mutually orthogonal)
m use Gram-Schmidt procedure to obtain orthonormal ug, u4

1 1
uz = 7(—1,0, 1,0), Ug = 7(2, —1,2,3)
V2 3v2

(after G-S, us,uy are still orthogonal to uy, uz)
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SVD of a tall and low-rank A

an SVD form of A is

i1 _ 1 2
0 1 1 6 2 V2| 32 1 L
5 1 1
31 =2 |76 2 Ul gm e
1 1 _2 6
T O I 5 %
T ~5 2 O] & vz Ve

m for atall A, A= U1 V7T (only Uy, ¥ are used)
m in this example, when A has low rank, only the first two columns in U are
factor A
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Reduced vs Truncated SVD form
consider A € R™"™ and AT A has size n x n
m the number of nonzero A\(AT A) is less than or equal to n
m suppose the number of nonzero o(A) = \/A(ATA) isr <n

m the reduced SVD form is to use the diagonal X1 € R™*" as in the red terms

1
0

VT
} V=S VT, A =U[%1]0] [T/;T] =US, V"

Atallz[UlUQ][

and if 7 < n then ¥y contains r nonzero diagonal entries

m the truncated SVD is to further extract only the non-zero diagonal block of 3;

ful A=UxXVv7T reduced truncated

mxn mxm mxn nxn n n n ror n
! E ! : )

tall
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SVD application: Low rank approximation
when A has nonzero r singular values: 0y > 09> --- >0, >0

,
truncated form: A = UTETVTT = Zakukv,{ (r-sum of rank-1 matrices)
k=1

original r=1 r =10

Eckart-Young theorem: consider A € R™*" of rank r and X € R™*" of rank k; for
any k < r with 4, = Z?:l ajujvf it holds that

A= argmin |[|A— X|2, witherror ||A— Agll2 = op+1
X:rank(X)=k

the best rank—k approximation of A is the first k£ pieces in SVD decomposition
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SVD application: PCA

data points are clustered along a subspace (here, line) in RP
10

R m question: reduce the variable dimension
° o but keep most information in the data
g0 s m setting: find the directions that contain
"‘*’ k-largest variance in data covariance
5 o °°
m data matrix X € RP*" and its covariance
10 isC=XXT/(N -
-4 -2 0 2 4
. . o _otr(XXT) _ ee(XTX) _ X3
m total variance in the data: T'=tr(C) = 5~ = "1~ = vt

m SVD of X is ULVT so covariance is C' = ZQUT

m total variance is also expressed as the sum of r non-zero singular values:
T=(of +03+ - +07)/(N 1)
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SVD application: PCA
for data matrix X € RP”V with X = USVT = Y"1, opupv)
m the first k principal loadings wuq, us, ..., ug accounts for a fraction of
(0F +-+ +03)/T

m we can transform X to a new data matrix using the first k loadings

T
Uy

example:

3 4 7 1 -4 -3
X= 7 -6 &8 —-1 -1 71 o1 = 16.87,09 = 3.92

supppose we reduce the data to 1-dimension using the first loading u;
YV =u{ X =uf (crurv{ + osugvy ) = o0 =[-748 721 —10.55 027 3.07 T7.48|
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Recall Gram-Schmidt (GS)

let A € R™*™ with independent columns a1, as,...,a, (hence, A is tall or square)
m vectors qi, ..., g, are orthonormal vectors produced by GS on aq,...,a,

m (; is the vector after projecting a; on the previous orthogonal vectors

¢ = a; — ((ai, q1)q1 + (@i, q2)q2 + - - + (@is gi—1)qi—1), and ¢ = ¢/||@l|

m hence, we can write a; as linear combination of ¢1,...,¢;

a; = (qf &) + (@ @) g2 + - + (¢ 1a))qi1 + |Gillgs, i=1,...,n
a1 = [|q1llq1

az = (qf ag)a1 + |dalla2

as = (qf as)q1 + (g3 as)qa + [|Gsllgs

m we can form qi,...,q, as columns of ()
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QR factorization

we can write A = QR where

lanll ez afas - qfan
@l g2as - gz n
A=l az a3 - an]=[nn @ ¢ - qn Gl
qg;flan
l1n
m Q € R™™ contains columns as orthonormal vectors qi, ..., g, with QTQ = I,

m R € R™™ is an upper triangular matrix with R;; = ||Gi|| and R;; = qla; for i < j
m ifay,...,a, are all LI, ¢;'s are not zero, so R;; # 0

m if some a; is dependent of others, R;; =0

QR factorization can be found in computing orthogonal projection: numerical solution
of least-square estimate, subspace identification
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Full QR factorization
for a full column rank A €
® 1,92, --,q that form bases vectors for R(A) and put them as columns in 1

R™*™ we have

m we can find the remaining (m — n) orthonormal vectors: ¢p41,.-..,¢m so that
{q1,...,qm} form a basis for R™; put these vectors as columns in Q2
R(4) = R(Q1), R(A)* =R(Q2)

= hence, Q = [Q1 Q2] € R™™ is orthogonal: QTQ = QQ" = I,,
m we also have a full QR factorization: A = QR where R has zero padding

QR factorization: Ris upper triangular, Q has orthonormal columns

mxn mx (m—n)

DR mxn axn
-l - . [
Q1 Q2
0 [m-nxn
A Q R

@1 Q] [m]
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Appilcation: least-squares via QR

for any tall X € R™*", we have QR factorization:
R
X=[Q1 Q] [01} = Q1R

where Q € R™*™ orthonormal, Q1 € R™*™, Ry € R™ " upper triangular, invertible

m multiplication by orthogonal matrix does not change the norm, so

2

Ix6 -1 =11 @) [] 8-

= [@: QQ]T (@1 Q2] []?]1] B — [gfﬂ Yy 2

_ [Rlﬂ—QlTy] ?
-Q3y

= [|R18 - Qyl* + Q2w
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m the least-squares objective can be minimized by the choice
Bls = Rl_lQ{y

which makes the first term zero
m residual with optimal 3 is
XBis—y=—Q2Q5y

m Q1Q7 gives projection on R(X)

P=X(XTX)'XT = QRi(RTR)'RTQT = 1 QT

m Q2Q7 gives projection on R(X)*

Pt=T1-P=1-QQ{ =QQ;
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Factor-solve approach

to solve Ax = b, first write A as a product of ‘simple’ matrices
A= A1Ay--- Ay
then solve (A1 Ay - -+ Ag)x = b by solving k equations
Aiz1 = b, Aszo = 21, ..., Ap_12k_1= Zk_9, Ay = 251

complexity of factor-solve method: flops = f + s
m f is cost of factoring A as A = Aj Ay - A, (factorization step)
m s is cost of solving the k equations for z1, 29, ..zx_1, = (solve step)

m usually f > s
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Forward substitution

solve Ax = b when A is lower triangular with nonzero diagonal elements

aijl 0 ce 0 T bl
as1 ase - 0 x2 b2
anl Ap2 -'° Aapp T, bn
algorithm:
I = bl/all
Ty = (by —azi71)/an
r3 = (b3 —az1w1 — azera)/ass
Tn = (bn — Anpl1T1 — Ap2T2 — *** — an,n—lxn—l)/ann

cost: 1 +3+5+---+(2n— 1) = n? flops
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Back substitution

solve Az = b when A is

ai

algorithm:
T,
Tpn—1

Tp—2

x1

cost: n? flops

Linear algebra for EE

upper triangular with nonzero diagonal elements

a1,n—1 ain 1 b1
Gn—1n—1 Qan—1n Tp—1 bn—1
0 Qnpn Tn bn
bn/ann

(bn—l_'an—Lnxn)/an—Ln—l

(bn72_'anflnflxn71_'anflnxn)/an71n72

(b1 — a12x2 — a1323 — -+ — a1pTy) /a1
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LU decomposition

for a nonsingular A, it can be factorized as (with row pivoting)
A=PLU

factorization:

m P permutation matrix, L unit lower triangular, U upper triangular

m factorization cost: (2/3)n? if A has order n

m not unique; there may be several possible choices for P, L, U
interpretation: permute the rows of A and factor PTA as PTA = LU

m also known as Gaussian elimination with partial pivoting (GEPP)
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Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

01 ol O Junr w2
A= [1 0} = LU= [lm 122] [0 U22]

from this example,
m if A could be factored as LU, it would require that lyju1; = a1 =0
m one of L or U would be singular, contradicting to the fact that A = LU is

nonsingular
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Solving a linear system with LU factor

solving linear system: (PLU)xz = b in three steps
m permutation: z; = PTb (0 flops)
m forward substitution: solve Lzo = 21 (n? flops)
m back substitution: solve Uz = 23 (n? flops)
total cost: (2/3)n® + 2n? flops, or roughly (2/3)n?
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Cholesky factorization

every positive definite matrix A can be factored as
A=rLL"
where L is lower triangular with positive diagonal elements
m cost: (1/3)n3 flops if A is of order n

m L is called the Cholesky factor of A

can be interpreted as ‘square root’ of a positive define matrix

L is invertible (its diagonal elements are nonzero)

m A is invertible and
A—l — L—TL—l
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Cholesky factorization algorithm

partition matrices in A = LL" as

[ ail A2T1 ] _ |: l11 0 :| |: l11 L2T1 ] _ |: l%l llngl
Ao Ago Lo1 Lo 0 LI liLoy LogLL + LooLd,

algorithm:

determine l11 and Loy:

1
li1 = +/an, Loy = EAm

compute Los from
Agy — Loy LY = Ly LY,

this is a Cholesky factorization of order n — 1
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Proof of Cholesky algorithm

proof that the algorithm works for positive definite A of order n
m step 1: if A is positive definite then a;; > 0
m step 2: if A is positive definite, then

1
Agg — Lo LY, = Agg — G—HA21A§1

is positive definite (by Schur complement)
m hence the algorithm works for n = m if it works for n =m — 1

m it obviously works for n = 1; therefore it works for all n
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Example of Cholesky algorithm

25 15 -5 i1 O 0 l11 la1 a1
15 18 0 | =] la1 Iz © 0 lap s
-5 0 11

m first column of L

m second column of L
18 0 _ 3 [ 3 1 ] _ lag 0 lag 32
0 11 —1 - lza  l33 0 l33
9 3 _ 3 0 3 1
3 10 | T | 1 33 0 33

m third column of L: 10 — 1 = l§3, ie,lszg =3

25 15 =5 5
15 18 0 = 3
-5 0 11 —1

conclusion:
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Solving equations with positive definite A

Az =0 (A positive definite of order n)

algorithm

m factor A as A = LL7T
m solve LLTz =b

m forward substitution Lz = b
m back substitution LTz = z

cost: (1/3)n3 flops
m factorization: (1/3)n?

m forward and backward substitution: 2n?2
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Topic

problem condition
solving large-scale linear systems
gradient and Hessian

solving nonlinear equations
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Sources of error in numerical computation

example: evaluate a function f: R — R at a given z (e.g., f(z) = sinz)
sources of error in the result:

m z is not exactly known

® measurement errors
m errors in previous computations

— how sensitive is f(x) to errors in x7?
m the algorithm for computing f(z) is not exact

m discretization (e.g., the algorithm uses a table to look up f(x))
m truncation (e.g., f is computed by truncating a Taylor series)
m rounding error during the computation

— how large is the error introduced by the algorithm?

Linear algebra for EE Jitkomut Songsiri 171 / 203



The condition of a problem

sensitivity of the solution with respect to errors in the data
m well-conditioned: if small errors in the data produce small errors in the result

m ill-conditioned: if small errors in the data may produce large errors in the result

example: function evaluation: y = f(x),y + Ay = f(z + Ax)
m absolute error
|Ay| ~ | f'(z)||Az]
ill-conditioned with respect to absolute error if |f/(z)| is very large

m relative error

Ayl [ (@)]]z] |Ax|
vl [f(@)] |zl

ill-conditioned w.r.t relative error if | f'(x)||x|/|f(z)| is very large
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Condition of a set of linear equations

assume A is nonsingular and Ax = b

if we change b to b+ Ab, the new solution is x + Ax with
A(x + Az) =b+ Ab

the change in x is
Az =A"'Ab

condition of the equations: a technical term used to describe how sensitive the
solution is to changes in the righthand side

m the equations are well-conditioned if small Ab results in small Az

m the equations are ill-conditioned if small Ab can result in large Ax
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Example of ill-conditioned equations

1 1 1 . 1—10'0
A=511+10 0 1—10—10]’ A _[1+1010

m solution for b= (1,1) is z = (1,1)
m change in z if we change b to b+ Ab:

Aby — 1010(Aby — Aby)

_ A1 _
Ar=ATAb= { Aby + 1010(Ab; — Aby)

small Ab can lead to extremely large Az
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Bound on absolute error

suppose A is nonsingular and Az = A71Ab

upper bound on ||Az||
|Az]| < ATH[[|Ab]

(follows from property of operator norm)

m small |A~!|| means that |Az|| is small when ||Ab|| is small
m large ||[A!| means that ||Az|| can be large, even when ||Ab]| is small
m for any A, there exists Ab such that |Ax|| = [[A7!||||Ab]| &
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Bound on relative error
suppose A is nonsingular, Az = b with b # 0, and Az = A~1Ab

upper bound on |Az||/||z]|:

[Az] _
]

(follows from [|Az|| < [|A~[[|Ab]| and [[b]] < [|Alll=]])

|AD]
el

< 1A A5

k(A) = || A||||A~Y| is called the condition number of A

m small kK(A) means ||Az||/||z|| is small when [|Ab]|/]|b]| is small
m large k(A) means ||Az||/||x|| can be large, even when ||Abl|/||b]] is small
m for any A, there exist b, Ab such that ||Az||/||x|| = &(A)|Ab]|/||b]
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Condition number

k(A) = [l Af[A7

defined for nonsingular A
K(A)>1forall A

m A is a well-conditioned matrix if x(A) is small (close to 1):
the relative error in x is not much larger than the relative error in b

A is badly conditioned or ill-conditioned if k(A) is large:
the relative error in = can be much larger than the relative error in b
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Large sparse linear systems

consider solving Az = b when A is sparse and the dimension of A is huge

U

% k.

nz =107 nz =135 nz =135

factorization methods are sometimes not a good technique because

m the number of non-zero entries in the factors is increased due to fill-in
m storing the factors L and U will require much more storage
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Application on solving PDE

large sparse matrices arise in the numerical solution of PDE/ODE

—u"(z) = f(2), 0<z<l, where 4(0) and u(1) are given
discretize the system with step A and obtain Au = b with unknowns uq,. .., u,_1
(2 -1 ] [ h2f(21) +u(0) ]
12 - 12 (a)
_ " h2f(z
Ao 1 2 . . f'( 3)
1 :
1 2 -1 h? f(2-2)
_ Ny (12 (rnma) + u(D)

m by making h small, the solution is more accurate, but # of variables increases
m we can show that A is nonsingular (and pdf), hence the solution is unique
m A is tri-diagonal (extremely sparse)
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Solving large linear systems

outline of available methods
m splitting method: A = M — N (split to easy M)

g * D) = M= Nz®) 4 M~ (until convergence which depends on M~!N)
m Jacobi iteration: A =D — (D — A) (split to diagonal + residual)
(k+1) (I D™ 1A) (k) _}_Dflb
m Gauss-Seidal iteration: A =L — (L — A) (split to lower triangular)
2 ) = (1 — L7 A) 2™ + L1
convergence of Jacobi and Gauss-Seidal depends on A (diagonally dominant, psdf)
further reading: D. Kincaid and W. Cheney, Numerical analysis, Brooks/Cole, 2022
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Derivative and Gradient

Suppose f: R® — R™ and z € int dom f

the derivative (or Jacobian) of f at z is the matrix D f(x) € R™*™:

ofi
Df(x)i; = gs)a

i=1,....m, j=1,....,n

m when f is scalar-valued (i.e.,, f: R — R), the derivative D f(z) is a row vector
m its transpose is called the gradient of the function:

Vi) = DI, Vi) =T

=1,
ox;

n

which is a column vector in R”
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Second Derivative

suppose f is a scalar-valued function (i.e., f: R = R)

the second derivative or Hessian matrix of f at z, denoted V2f(x) is

L Pf(=)

i =
J al‘iax]”

V2 f(z)

i=1,....n, j=1,...,n

example: the quadratic function f : R” — R
f(z) = (1/2)2" Pz +q"w +r,

where P S",ge R", andr € R
m Vf(x)=Pxr+q
m V2f(z)=P
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Chain rule

assumptions:

m f:R" — R™ is differentiable at = € int dom f
m g: R™ — RP is differentiable at f(z) € intdom g
m define the composition h : R™ — RP by

then h is differentiable at x, with derivative

Dh(x) = Dg(f(z))Df(x)

special case: f:R" = R, g: R— R, and h(z) = g(f(z))

Vh(z) = g'(f(2))V ()
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Example of chain rule

h(z) = f(Az +b)

Dh(z) = Df(Az +b)A = Vh(z)= ATV f(Az +b)

h(z) = (1/2)(Az — b)" P(Az —b)
Vh(z) = ATP(Ax —b)
h(z) = (max(0,a’z + b))?

2amax(0,a’x +b), aTz+b>0
Vh(z) =10, a’z+b<0
not defined, alz+b=0
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Exercises

find the gradient of the following functions

probit log-likelihood: variable = 6, ® is Gaussian cdf, (z,y) is data

N
£(0) = Zy log(® (27 0) + (1 — y;) log[L — ®(70)])

Poisson log-likelihood: variable = 3, (z,y) is data

N

f(B) = Z —eti P4 yirl B — log ;!

i=1
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Function of matrices
we typically encounter some scalar-valued functions of matrix X €
m f(X) =tr(ATX) (linear in X)
m f(X) =tr(XTAX) (quadratic in X)

definition: the derivative of f (scalar-valued function) with respect to X is

RmX’I’L

or af .. of
or11 0x12 8331n
or af .. of
87‘]0 — | Ox21 Ox22 0%2n
0X : . :
of of ... _9of
81‘m1 8J:m2 81‘mn

note that the differential of f can be generalized to

f(X+dX) - f(X)= <%’dX> -+ higher order term

see more on the matrix cookbook by Petersen and Pedersen, https://ece.uwaterloo.ca/~ece602/MISC/matrixcookbook.pdf
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Derivative of a trace function
let f(X) =tr(ATX)
fX) = Z(ATX)n‘ = ZE};(AT)MXM
= izk:A'“X'“ Z

then we can read that g—f = A (by the definition of derivative)

we can also note that
f(X 4+dX) — f(X) =tr(AT(X +dX)) — tr(ATX) = tr(ATdX) = (dX, A)

of __
then we can read that 5% = A
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Examples
m f(X)=tr(XTAX)

f(X +dX) - f(X) = tr((X+dX)TAX +dX)) — tr(XTAX)
~ tr(XTAdX) + tr(dXTAX)
= (dX,ATX) + (AX,dX)

then we can read that g—X =ATX + AX
m f(X)=||Y — XH|% where Y and H are given

f(X +dX) = tr((Y —XH —dXH)'(Y — XH — dXH))
f(X4+dX)—f(X) =~ —tr(H'dXT(Y — XH)) —tr((Y — XH)TdXH)
= —tr(Y = XH)HTdX") —tr(H(Y — XH)TdX)
= —2((Y - XH)HT dX)

then we identifiy that 92 = —2(Y — XH)H”
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Derivative of a log det function
let f:S™ — R be defined by f(X) = logdet(X)

logdet(X +dX) = logdet(XV?(I + X 12dx X1/ X1/?)
= logdet X + logdet(] + X~ Y2dXx X1/?)

= logdet X + Z log(1 4+ ;)
i=1

where )\; is an eigenvalue of X ~1/2dX X ~1/2

Q

f(X +dX) - f(X) Z)\ (log(1 +z) ~ x, = — 0)

= tr(X 12gx x—1/2)
tr(X1dX)

we identify that af =X!
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Example: Gaussian log-likelihood

suppose y1, . ..,yn are Gaussian vectors N (p,X)
L X
L(w,%) = log et T7" + o= > (e — 1) (s — )
=1
LN
2 logdetZ ! —tr(Cx! Z (e — 1) (g — )
N=

£ logdet X —tr(CX)

what is the gradient of £ w.r.t. X 7
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Notes on gradients

many machine learning and optimization problems use gradients for
m training model parameters

m finding solution that satisfies the optimality condition

further reading on the topics
m backpropagation algorithm (apply chain rule) in deep NN

m automatic differentiation (a numerical technique to find V f by working with
intermediate variables)
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Nonlinear equations

root finding problem: find x € R such that f(z) =0, eg,
mflz)=z—e"
m f(z) =log(x) +x
m f(x) = 2% — sin(7)

fl@)=z—e" f(z) =log(z) + f(z) = 2® — sin(x)
08 1 10
0.6 05 s
0.4
0
02 6
0 05
4
02 1
04 2
15
-0.6
08 2 °
-1 2.5 2
0 0.2 0.4 06 0.8 1 0 0.2 04 0.6 08 1 0 1 2 3
T T T

Linear algebra for EE Jitkomut Songsiri 192 / 203



Methods of finding roots

example of methods: bisection, Newton, secant, fixed point
methods are iterative

m generate a sequence of points (%), k =0,1,2,... that converge to a solution;
%) is called the kth iterate; () is the starting point

computing z(*+1) from z(¥) is called one iteration of the algorithm

m each iteration typically requires one evaluation of f (or f and f’) at z(k)

algorithms need a stopping criterion, e.g., terminate if

| F(#™))] < specified tolerance

speed of the algorithm depends on:

m the cost of evaluating f(z) (and possibly, f/(z))
m the number of iterations

Linear algebra for EE Jitkomut Songsiri 193 / 203



Bisection

% e

if f(1)f(u) <0, then the interval [I,u] contains at least one zero

intermediate value theorem: Let f € C([a,b]) and assume p is a value between
f(a) and f(b), that is

fla) <p < f(b), or [f(b)<p< fla)
then there exists a point ¢ € [a, b] for which f(c) =p
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Bisection algorithm

given [, u with I < u and f(1)f(u) < 0; a required tolerance d,e > 0
repeat

x:=(l+u)/2.

Compute f(x).

if f(z) =0, return .

if f(z)f(l) <0, u:=uz, else, [ :=z.
until wu — [ < eor|f(z) <o
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Newton's method

m make affine approximation of f around z using Taylor series expansion:

fa(y) = f(x) + f'(x)(y — x)

m solve the linearized equation f.(y) = 0 and take the solution y as z:

vt =2~ f(@)/f2)
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Newton's algorithm

f : R— R, differentiable

given initial z, required tolerance € > 0
repeat

Compute f(x) and f'(x).
if |f(z)| <e, return z.
z =z — f(x)/f'(z).

until maximum number of iterations is exceeded

properties:
m Newton's method has quadratic convergence
m require f and f’

m it may not work if we start too far from a solution
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Numerical example

i Bisection f(z)=€e"—e™™  Newton
10 10
Y IRk R ST
10° h 10° .
bA Y . .
107 ‘ e . 107 N
g v 5 \
8w S o : m f(z) =e® — e which
e -
107 B 107 | h H * 0
\ as a unique zero r- —
[}
107 5 10 & 15 20 25 L ka 0 12 14 m start bisection method
10° 0 withl=—-1, u=21
T el m start Newton with
10°F & 10” e
= ., =
107 ’ \"'\’,-\ 107
107 “‘."*-\ :
'OEO 5 10 15 20\ 25 ‘omo 2 4 6 8 10 12 14
k k
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Nonlinear systems

let f:R™ — R™, find x € R" such that f(z) =0

example 1:
1 —x
201 —x9+ —e "t = —1
9
1
—x1 + 2z + §6712 =1
example 2:

3xy — cos(waxz) —1/2 =

22 — 81(zy +0.1)% +sin(x3) +1.06 = 0

10m — 3
e—x1x2+20x3+ 7['3 -0
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Applications

most typical example is to solve uncontrained optimization
minimize g(x) <= find 2* such that Vg(z*) =0
xX

zero gradient condition of nonlinear least-squares

N

curv fitting: miniﬁmize Z(yl — Bosin(Bit + B2))?
i=1

zero gradient condition of maximum likelihood estimate

N
Poisson likelihood: maximizeg L(f) = Z —exp(z] B) + yixl B — logy;!
i=1

where {z;,y;}}¥, are data and variable is 3 € R"
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Newton's method for nonlinear systems
consider a function f: R® — R"
let * = 2 + h and use the affine approximation of f about z
0=f(z") = flx+h)= f(z)+ Df(x)h

where D f(x) is the Jacobian matrix of f, i.e., Df(x);; = %x(f)
then, solve h from

h=—Df(z)""f(a)

provided that the Jacobian matrix is nonsingular

Newton's method is summarized by
240 = 30— (D ()] (o)

which follows the same treatment for single equation
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Softwares

m MATLAB: fsolve
m algorithm: trust-region, Levenberg-Marquardt
m input = function, initial point zg

m python: scipy.optimize.fsolve

m many other available methods for large scale problems
m Broyden's method: approximate Jacobian matrix
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