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Lagrangian multiplier theorem

Constrained problems Jitkomut Songsiri Lagrangian multiplier theorem 3 / 33



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Constrained problems

a general contrained optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

inequality constraints can be converted to equality constraints
introduce additional variables z1, . . . , zm

constraints fi(x) ≤ 0 for i = 1, . . . ,m, are equivalent to

f1(x) + z21 = 0, . . . , fm(x) + z2m = 0

a problem with inequality constraints can be regarded as the problem with
equality contraints only
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Equality-constrained optimization

this lecture consider problems with equality constraints of the form

minimize f(x)
subject to hi(x) = 0, i = 1, . . . , p

we can consider two approaches of handling the equality constraints
penalty approach
elimination approach
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Lagrangian function

the Lagrangian function L : Rn → Rn+p is defined by

L(x, λ) = f(x) +

p∑
i=1

λihi(x)

denote x⋆ a local minimizer of f

the subspace of first-order feasible directions is defined as

S = {y ∈ Rn | ∇hi(x
⋆)T y = 0, i = 1, 2, . . . , p }

y ∈ S if y is orthogonal to all p gradients of constraint functions
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Lagrange multiplier theorem
regularity assumption: ∇h1(x

⋆), . . . ,∇hp(x
⋆) are linearly independent

if x⋆ is a local minimizer of the problem on page 5 then
first-order condition: there exists a unique λ⋆ ∈ Rp called a Lagrange
multiplier vector such that

∇f(x⋆) +

p∑
i=1

λ⋆
i∇hi(x

⋆) = 0

at optimum, ∇f(x⋆) is a linear combination of ∇ihi(x
⋆)

equivalent to the zero gradient of L forming a total n+ p equations in (x, λ)

second-order necessary condition
moreover, if f and h are twice continuously differentiable, we have

yT

(
∇2f(x⋆) +

p∑
i=1

λ⋆
i∇2hi(x

⋆)

)
y ≥ 0, ∀y ∈ S
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Second-order sufficient condition

assume that f and h are twice continuously differentiable

if x⋆ and λ⋆ satisfy the zero-gradient condition of L:

∇xL(x
⋆, λ⋆) = 0, ∇λL(x

⋆, λ⋆) = 0

and satisfy the second-order condition:

yT∇2
xL(x

⋆, λ⋆)y > 0, ∀y ̸= 0 and y ∈ S

then x⋆ is a strict local minimum of f subject to hi(x) = 0 for i = 1, . . . , p

this provides a sufficient condition for local optimality of x
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Example
minimize 2x1 − 3x2 subject to x21 + x22 = 25

the zero-gradient conditions of L are

∇xL =

[
2
−3

]
+ 2λ

[
x1
x2

]
= 0, ∇λL = x21 + x22 − 25 = 0

solving the first-order condition gives

x⋆ =

(
− 10√

13
,
15√
13

)
, λ⋆ =

√
13

10

and the second-order condition is

yT∇2
xL(x

⋆, λ⋆)y = 2λ⋆yT y > 0, ∀y ̸= 0
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the necessary condition suggests that at optimum, ∇f(x⋆) must be a linear
combination of ∇h(x⋆)

such linear combination exists if λ⋆ exists
the sufficient condition guarantees that x⋆ is locally optimal
the sufficient condition only requires that yT∇xL(x

⋆, λ⋆)y > 0 for all y that
perpendicular to ∇h(x⋆)

yT∇h(x⋆) = 0 ⇒ y ∈ span{(3, 2)}

(but in this example, the positiveness of ∇2
xL(x

⋆, λ⋆) holds for all y ̸= 0)
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No Lagrange multiplier
the Lagrange multiplier might not exist in some problem

minimize x1 + 2x2
subject to (x1 − 1)2 + x22 = 1

(x1 − 2)2 + x22 = 4

there is only one feasible point at x⋆ = 0

∇h1(x
⋆) and ∇h2(x

⋆) are not independent
there is no λ⋆ for the necessary condition to
hold
we cannot express ∇f(x⋆) as a linear
combination of ∇h1(x

⋆) and ∇h2(x
⋆)

from the necessary first-order condition, in order for a Lagrange multiplier to exist,
∇f(x⋆) must be orthogonal to S (subspace of first-order feasible variation)
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Quadratic program with linear equality constraint
given A ∈ Rp×n of rank p, consider

minimize
x

(1/2)xTPx− qTx subject to Ax = b

assume that P is positive definite on the nullspace of A (more relaxed)
results:

1 it can be shown that the KKT matrix
[
P AT

A 0

]
is non-singular (please verify)

2 the zero-gradient of Lagrangian condition is the system of n+ p equations[
P AT

A 0

] [
x
λ

]
=

[
q
b

]
from 1) and gives a unique x⋆ as the global minimizer

ý QP with linear equality constrained is solved from a linear system
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to show the result
1 ∇h(x) = A is full row rank (regularity assumption holds); S is the nullspace of A;

and ∇2
xL = P which is positive definite on S (by assumption)

2 from the second-order sufficient condition, a solution x⋆ to the linear system is a
local minimizer

3 from 2), since the linear system has a unique solution, the local minimizer of this
problem is also a global minimizer

4 typically, a gloal minimum is obtained when the problem is convex
5 we did not assume that the problem is convex because the positive definiteness of

P is not required on Rn

Constrained problems Jitkomut Songsiri 13 / 33



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example: least-squares with linear constraints

given a full rank A ∈ Rp×n

minimize (1/2)∥Fx− g∥22 subject to Ax = b

the zero-gradient of the Lagrangian: L(x, λ) = (1/2)∥Fx− g∥22 + λT (Ax− b) is[
F TF AT

A 0

] [
x
λ

]
=

[
F T g
b

]
a set of n+ p linear equations in variables x and λ

ý no need to use iterative algorithms
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Example: least-norm problem

given a fat and full row rank A

minimize (1/2)∥x∥22 subject to Ax = y

meaning: find x that lies on intersections of hyperplanes and is closest to the origin

. after applying the Lagrange multiplier theorem,

x = AT (AAT )−1y

the least-norm problem has a closed-form solution
. the condition for AAT to be invertible is from the full rank assumption of A
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Equality constraint elimination
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Parametrization

when the linear constraints are all linear

minimize f(x) subject to Ax = b

(A ∈ Rm×n, m < n) we parametrize the affine feasible set

{x | Ax = b } = { Fz + x̂ | z ∈ Rn−p }, F ∈ Rn×n−p

where x̂ is a particular solution to Ax = b and range(F ) ∈ N (A)

we reparametrize and obtain an eliminated optimization problem:

minimize f̃(z) = f(Fz + x̂)

the optimization variable is z ∈ Rn−p (with lower dimension)
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Example: least-norm problem with a simplex constraint

minimize ∥x∥22 subject to 1Tx = 1

is equivalent to solving

minimize x21 + x22 + · · ·+ x2n−1 + (1− x1 − · · · − xn−1)
2

with n− 1 variables

example: solve the problem

minimize −x1x2x3
subject to x1

a1
+ x2

a2
+ x3

a3
= 1

where a1, a2, a3 > 0
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Convex constraints
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Optimization over a convex set
we consider a special case of convex-constrained problem

minimize f(x) subject to x ∈ C

where f is continuously differentiable over a closed-convex set C

optimality condition: if x⋆ is a local minimizer of f over C then

∇f(x⋆)T (x− x⋆) ≥ 0, ∀x ∈ C
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Projection onto a convex set
definition: a problem of finding x in C that is closest to a given vector u

minimize
x

∥u− x∥22 subject to x ∈ C

the projection of u on C is denoted by ΠC(u)

here, ℓ2-norm is used to measure the distance, but this concept can be re-defined
using other norms
when C is convex, some theoretical results are available
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Projection theorem
let C be a non-empty closed-convex set

for every u ∈ Rn, the projection ΠC(u) exists and is unique
the mapping g : Rn → C defined by g(u) = ΠC(u) is continuous and nonexpansive

∥g(u)− g(v)∥ ≤ ∥u− v∥, ∀u, v ∈ Rn

given u ∈ Rn, a vector x⋆ ∈ C is equal to the projection ΠC(u) if and only if

(u− x⋆)T (x− x⋆) ≤ 0, ∀x ∈ C

in case where C is a subspace, x⋆ is equal to ΠC(u) if and only if

(u− x⋆)Tx = 0, ∀x ∈ C
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Projection on simple convex sets
a closed-form projection can be obtaind if C is simple

non-negative orthant: C = Rn
+, we have ΠC(z) = z+ := max(0, z)

box or hyper-rectangle: C = {x | l ≤ x ≤ u }

(ΠC(z))k =


lk, zk ≤ lk

zk, lk ≤ zk ≤ uk

uk, zk ≥ uk

ℓ∞-norm ball: C = {x | ∥x∥∞ ≤ λ }

[ΠC(z)]i =


λ, zi > λ,

zi, |zi| ≤ λ,

−λ, zi < −λ
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Projection on simple convex sets

euclidean unit norm ball: C = {x | ∥x∥2 ≤ 1 }

ΠC(z) =

{
z/∥z∥2, ∥z∥2 ≥ 1,

z, ∥z∥2 ≤ 1

simplex: C = {x | x ⪰ 0,1Tx = 1 }

ΠC(z) = (z − ν1)+ ≜ max(0, z − ν1)

for some ν ∈ R (can find ν using bisection to solve 1T (z − ν1)+ = 1)
more expressions can be found in Parikh et al. 2013
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Gradient projection methods
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Gradient projection methods
a simple gradient projection method takes the form

x(k+1) = ΠC [x
(k) − tk∇f(x(k))]

tk can be fixed, by diminishing rule or by line search (see Bertsekas Chapter 2)
it takes the gradient-descent direction and project it on C
the method is practical if the projection is fairly simple
the convergence properties are essentially the same as those of unconstrained
steepest descent method
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Step size selection

fixed step size: 0 < t < 2/L where L is a Lipschitz constant of ∇f

diminising step size: tk → 0 and
∑∞

k=0 tk = ∞
Armijo rule along the projection arc: given factors β, α ∈ (0, 1), initialize t

1 compute a new projection point with step size t

x+ = ΠC(x
(k) − t∇f(x(k)))

2 check if the condition is satisfied

f(x+) ≤ f(x(k))− α∇f(x(k))T (x(k) − x+)

3 if the above condition does not hold, decrease t := βt and repeat step 1)
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Scaled gradient projection

a basic scaled version of gradient projection is

x(k+1) = argmin
x∈C

{
∇f(x(k))T (x− x(k)) +

1

2tk
(x− x(k))THk(x− x(k))

}
where Hk is a positive definite matrix (of iteration k) to be chosen by user

the update step can be regarded as a generalized projection problem

minimize
x∈C

(x− u)THk(x− u) where u = x(k) − tkH
−1
k ∇f(x(k))

it is equivalent to the problem in transformed coordinate as

minimize
y

f(H
−1/2
k y) subject to y ∈ {v | H−1/2

k v ∈ C }
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the convergence rate is governed by the smallest and largest eigenvalues of
H

−1/2
k ∇2f(x(k))H

−1/2
k

this suggests that one should choose Hk ≈ ∇f2(x(k)) but in a diagonal form to
maintain simplicity of the generalized projection step
if ∇2f(x(k)) ≻ 0 for all x ∈ C, we can use

Hk = ∇2f(x(k))

and this is called constrained Newton’s method which has a superlinear
convergence for tk = 1 (see more results in Bertsekas ex 2.3.2)
a non-diagonal scaling can improve the convergence but the projection step may
not be longer simple
for non-negative orthant set, a two-metric projection method uses a
non-diagonal scaling matrix while maintaining the simplicity of the projection on
the orthant
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Example: quadratic over non-negative orthant
minimize f(x) = (1/2)(x− c)TH(x− c) over R2

+ with H =

[
γ 0
0 1

]
and γ = 20,

c = (−1, 50)

0 10 20 30 40 50

iteration

0

500

1000

1500

2000

2500

Gradient projection

scaled

-10 -5 0 5 10
-10

0

10

20

30

40

50

Gradient projection

scaled

(1/2) ( a  ( x -x
0

(1))
2

+( y -x
0

(2))
2

)

the gradient projection was implemented with t = 1.9/γ (Lipschitz constant is γ)
the scaled version used Hk = ∇2f = H and t = 1 (converged faster)
both methods was initialized with x(0) = (10, 1); the optimum must occur at
x⋆ = (0, c2) (geometrically)
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Example: algorithm update details
the scaled gradient projection step is to minimize (over R2

+)

(1/2)(x− x(k))THk(x− x(k)) + t∇f(x(k))T (x− x(k))

= (1/2)[(x− x(k) + tH−1
k ∇f(x(k)))THk(x− x(k) + tH−1

k ∇f(x(k)))

≜ (1/2)(x− u)THk(x− u), u = x(k) − tH−1
k ∇f(x(k))

this is a generalized projection on Rn
+ using a weighted euclidean norm

when choosing Hk = H (which is diagonal in this example), the projection has
the same closed-form as when Hk = I (a diagonal choice simplifies projections)
gradient projection step (to Rn

+) for this example is

x+ = Π(x− tH(x− c))

the scaled gradient projection step (to Rn
+) is

z+ = Π(z − tH−1
k H(z − c)) = Π(z − t(z − c))

Constrained problems Jitkomut Songsiri 31 / 33



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General constrained problems

most of the methods required tools in duality theory and approximation methods
penalty method
the method of multipliers
Lagrangian methods
Newton-like method
sequential quadratic programming (SQP)
interior-point methods

Lagrange multiplier theory can be read in Bertsekas Chapter 3.3

connections among these methods are given in Bertsekas Chapter 4
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