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a general contrained optimization problem
minimize  fo(x)

subject to  f;(x) <

inequality constraints can be converted to equality constraints
introduce additional variables z1,..., z;,

constraints f;(xz) <0 for i =1,...,m, are equivalent to
fl(fE)‘l‘Z%:O, ) fm(m)+z72n:0

a problem with inequality constraints can be regarded as the problem with
equality contraints only
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this lecture consider problems with equality constraints of the form

minimize  f(z)
subject to h;(x) =0, i=1,...,p

we can consider two approaches of handling the equality constraints
penalty approach
elimination approach
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the Lagrangian function L : R” — R™"? is defined by

p

L, \) = f(2) + 3 Ahi(a)

=1

denote x* a local minimizer of f

the subspace of first-order feasible directions is defined as

S={yeR"|Vhi(z*)y=0, i=1,2,...,p}
y € S if y is orthogonal to all p gradients of constraint functions
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regularity assumption: Vhy(z*),..., Vhy(z*) are linearly independent
if £* is a local minimizer of the problem on page 5 then

first-order condition: there exists a unique \* € RP called a Lagrange
multiplier vector such that

p
Vi) 4+ A Vhi(a*) =0
=1

at optimum, V f(z*) is a linear combination of V;h;(z*)
equivalent to the zero gradient of £ forming a total n + p equations in (x, \)
second-order necessary condition

moreover, if f and h are twice continuously differentiable, we have
P

y" <V2f(x*) +> A?Vth(x*)> y>0, VyeSs
i=1
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assume that f and h are twice continuously differentiable

if * and \* satisfy the zero-gradient condition of L:
VoL(x*,A\*) =0, V, L(z*,\*)=0
and satisfy the second-order condition:

yIV2L(z*, M)y >0, Yy#0 andye S

then x* is a strict local minimum of f subject to h;(z) =0 fori=1,...

this provides a sufficient condition for local optimality of x
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minimize 2x1 — 39 subject to ZL'% + :L“% =25

the zero-gradient conditions of L are

V,L = [23] 2\ [il] =0, ViL=22+22-25=0

- 2
‘}q\&@ solving the first-order condition gives
=

|
N V4 v
il NGE

* = <_10 15> =
\ V13’ V13’ 10
\ v/t TLZ;] and the second-order condition is

9 7 (
¥ B

y'VIL(z* Ny =2y y >0, Vy#£0

Jitkomut Songsiri 9/33



the necessary condition suggests that at optimum, V f(2*) must be a linear
combination of VA(z*)

such linear combination exists if A* exists
the sufficient condition guarantees that x* is locally optimal

the sufficient condition only requires that y” V. L(x*, \*)y > 0 for all y that
perpendicular to Vh(x*)

y'Vh(z*) =0 = yecspan{(3,2)}

(but in this example, the positiveness of V2L(x*, \*) holds for all y # 0)
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the Lagrange multiplier might not exist in some problem
minimize z1 + 2x9

subject to (1 —1)2+ 23 =1
(r1 —2)? +23=4

{09 = Kraky

ofog- (4] there is only one feasible point at 2* =0
Koot Vhi(z*) and Vhy(z*) are not independent
o 3] S there is no \* for the necessary condition to
hold
W (4] we cannot express V f(x*) as a linear
o combination of Vh(z*) and Vhy(z*)
(-2t~ 1

from the necessary first-order condition, in order for a Lagrange multiplier to exist,
V f(x*) must be orthogonal to S (subspace of first-order feasible variation)
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given A € RP*" of rank p, consider

minimize (1/2)z” Pz —q"x subject to Az =b
x

assume that P is positive definite on the nullspace of A (more relaxed)
results:

. [P AT] . :

it can be shown that the KKT matrix A ol non-singular (please verify)

the zero-gradient of Lagrangian condition is the system of n + p equations

P AT [z g
A 0] |X |b
from 1) and gives a unique z* as the global minimizer

» QP with linear equality constrained is solved from a linear system
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to show the result
Vh(x) = Ais full row rank (regularity assumption holds); S is the nullspace of A;
and V2L = P which is positive definite on S (by assumption)

from the second-order sufficient condition, a solution x* to the linear system is a
local minimizer

from 2), since the linear system has a unique solution, the local minimizer of this
problem is also a global minimizer

typically, a gloal minimum is obtained when the problem is convex

we did not assume that the problem is convex because the positive definiteness of
P is not required on R"
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given a full rank A € RP*"

minimize (1/2)||Fz — g||3 subject to Az =b

the zero-gradient of the Lagrangian: L(x,\) = (1/2)||Fz — g||3 + AT (Az —b) is
FTF AT) [z]  [FTg
A 0O [|A] | b
a set of n + p linear equations in variables x and A

® no need to use iterative algorithms
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given a fat and full row rank A
minimize (1/2)||z|3 subject to Az =1y
meaning: find x that lies on intersections of hyperplanes and is closest to the origin

® after applying the Lagrange multiplier theorem,

z=AT(AAT) Yy

the least-norm problem has a closed-form solution

%, the condition for AAT to be invertible is from the full rank assumption of A
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when the linear constraints are all linear
minimize f(z) subjectto Az =10
(A € R™" m < n) we parametrize the affine feasible set
{z|Az=b}={Fz+2|2z€eR" P} FeRY"P
where # is a particular solution to Az = b and range(F) € N(A)
we reparametrize and obtain an eliminated optimization problem:
minimize f(z) = f(Fz + )

the optimization variable is z € R"™? (with lower dimension)
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minimize ||z||3 subject to 17z =1
is equivalent to solving
minimize 2+ 224+ + 22 (1 -2 — - —xy)?
with n — 1 variables
example: solve the problem

minimize —x1x2x3

H T x r3 __
subject to Tt + 32 + 7% =

where a1, a9,a3 > 0
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we consider a special case of convex-constrained problem
minimize f(x) subjectto z €C

where f is continuously differentiable over a closed-convex set C

consTrabit

set conshakil se

(onvex) nsm—cavex)
sblevel \v
ublevel \ -
szs of \7/

T -
W) 0e-X) Yo, vee & aree, Vi) (e-x) <o

optimality condition: if x* is a local minimizer of f over C then
Vi) (xz—2*) >0, Vrel
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Projection onto a convex set
definition: a problem of finding x in C that is closest to a given vector u

minimize |u — z||3 subject to z €C
x

: ; -

= the projection of u on C is denoted by Il¢(u)

m here, £5-norm is used to measure the distance, but this concept can be re-defined
using other norms

m when C is convex, some theoretical results are available
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let C be a non-empty closed-convex set
for every u € R™, the projection Il¢(u) exists and is unique

the mapping g : R” — C defined by g(u) = Il¢(u) is continuous and nonexpansive
lg(u) = g()|| <lu—=vl], Yu,veR"

given u € R", a vector z* € C is equal to the projection Il¢(u) if and only if

(u—a2*)(xz—2*) <0, VzecC

in case where C is a subspace, z* is equal to Il¢(u) if and only if
(u—a2)Te=0 VeeC
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a closed-form projection can be obtaind if C is simple
non-negative orthant: C = R}, we have Il¢(z) = 24 := max(0, 2)

box or hyper-rectangle: C={z | [ <z <u}

lgy 2 <l
Me(2)e = S 26, e < 2 < ug
Uk, 2k = Uk

loo-norm ball: C ={z | |[|z]|cc < A}

A, zZi > A,
[Me()li = 26 ol <A,
=X oz < —A
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euclidean unit norm ball: C = {z | ||z]2 <1}

>1
Lo(s) = {z/uzuz, lzll > 1,

z, lzll2 <1
C={r|z>=0,1Tx =1}

He(2) = (2 — v1)4 £ max(0,z — v1)

for some v € R (can find v using bisection to solve 17(z — v1), = 1)

more expressions can be found in Parikh et al. 2013
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a simple gradient projection method takes the form

) = e[z — 1,V f (™)

A D)

t;. can be fixed, by diminishing rule or by line search (see Bertsekas Chapter 2)
it takes the gradient-descent direction and project it on C

the method is practical if the projection is fairly simple

the convergence properties are essentially the same as those of unconstrained

steepest descent method
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fixed step size: 0 < t < 2/L where L is a Lipschitz constant of V f

diminising step size: t;, — 0 and > .7t = 00

Armijo rule along the projection arc: given factors 3, « € (0, 1), initialize ¢
compute a new projection point with step size ¢

check if the condition is satisfied
f@t) < f@®) = aVf@®)T (@8 - o)

if the above condition does not hold, decrease ¢ := /3t and repeat step 1)
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a basic scaled version of gradient projection is

2+ = argmin {Vf(:c(k))T(az — ) 4 %(m — 2N Hy (z — ) }
zeC k

where Hj, is a positive definite matrix (of iteration k) to be chosen by user
the update step can be regarded as a generalized projection problem

minirrcﬁze (x —u)THy(x —u) where u =z — tka_IVf(x(k))
zEe

it is equivalent to the problem in transformed coordinate as

minimize f(H,

1/23/) subject to y € {v| H,;lmv eC}
Y
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the convergence rate is governed by the smallest and largest eigenvalues of
—1/2 —1/2

this suggests that one should choose Hy ~ VfQ(:c(k)) but in a diagonal form to

maintain simplicity of the generalized projection step

if V2f(2®)) >~ 0 for all z € C, we can use
Hy, = V2 f(z™)

and this is called constrained Newton’s method which has a superlinear
convergence for ¢t = 1 (see more results in Bertsekas ex 2.3.2)

a non-diagonal scaling can improve the convergence but the projection step may
not be longer simple

for non-negative orthant set, a two-metric projection method uses a
non-diagonal scaling matrix while maintaining the simplicity of the projection on
the orthant
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minimize f(z) = (1/2)(z — ¢)TH(z — c) over R% with H = B J and vy = 20,
¢ =(—1,50)
50
2500 \‘
——Gradient projection w
2000 —=—scaled
| 1500 | \
é\ g 2 \\\ § o
s Wb N T
500 of = \S[::‘:l:nlpm]echan , '77—77,_4, N
SSee T (112) (a (xx, (1) 24y %, (2)%)
0 10 \20 30 40 50 4040 -5 0 5 10
iteration z1

the gradient projection was implemented with ¢t = 1.9/~ (Lipschitz constant is )
the scaled version used Hy = V2f = H and t = 1 (converged faster)

both methods was initialized with (®) = (10,1); the optimum must occur at

x* = (0,c2) (geometrically)
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the scaled gradient projection step is to minimize (over R%)
(1/2)(z — "N Hy(x — ™) + 19 f (@) (z — 2V)
= (1/2)[(z — 2™ 4 tH 'V f ()T Hy(z — ¥ + tH 1V f ()
2 (1/2)(x — w) Hy(z —w), u=2a® —tHAVf®)

this is a generalized projection on R’} using a weighted euclidean norm

when choosing Hy, = H (which is diagonal in this example), the projection has
the same closed-form as when Hj, = I (a diagonal choice simplifies projections)

gradient projection step (to R'}) for this example is
v =M(z —tH(x —c))
the scaled gradient projection step (to R"}) is
2 =T(z —tH 'H(z — ¢)) =T(2 — t(z — ¢))
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most of the methods required tools in duality theory and approximation methods
penalty method
the method of multipliers
Lagrangian methods
Newton-like method
sequential quadratic programming (SQP)
interior-point methods
Lagrange multiplier theory can be read in Bertsekas Chapter 3.3

connections among these methods are given in Bertsekas Chapter 4
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Chapter 3 and 4 in D.P. Bertsekas, Nonlinear Programming, Athena Scientific,
2nd edition, 2003

Chapter 11 in D.G. Luenberger and Y. Ye, Linear and Nonlinear Programming,
4th edition, Springer, 2008

Chapter 6 in N. Parikh and S. Boyd, Proximal Algorithms, Foundations and
Trends in Optimization, 2013

Jitkomut Songsiri 33 /33



	Lagrangian multiplier theorem
	Equality constraint elimination
	Convex constraints
	Gradient projection methods

