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Problem setting
(mathematical) optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
(P1)

x = (x1, . . . , xn): optimization variable
f0 : Rn → R: objective function
fi : Rn → R, i = 1, . . . ,m: inequality constraint functions
hi : Rn → R, i = 1, . . . , p: equality constraint functions

constraint set: C = {x ∈ Rn | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p }

domain of the problem: D =
⋂m

i=0 dom fi ∩
⋂p

i=1 domhi
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Optimal value

p⋆ = inf {f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, , i = 1, . . . , p }

we say x is feasible if x ∈ dom f0(x) and x ∈ C
p⋆ = ∞ if the problem is infeasible
p⋆ = −∞ if the problem is unbounded below
a feasible x is called optimal if f0(x) = p⋆; there can be many
x is locally optimal if ∃ϵ > 0 such that x is optimal for

minimize f0(z)
subject to z ∈ C, ∥z − x∥2 ≤ ϵ

in other words, a locally optimal point is the best solution in a neighborhood
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Terminology
some equivalent definition/setting

setting: another way of representing (P1)

minimize f0(x) subject to x ∈ C (P2)

optimal point: we can also say x⋆ is a global minimizer of f0 over C

f0(x) ≥ f0(x
⋆) ∀x ∈ C

local optimal point: we can also say x⋆ is a local minimizer of f0 over C

∃ϵ > 0 such that f0(x) ≥ f0(x
⋆) ∀x ∈ C ∩ ∥x− x⋆∥ < ϵ

the standard form has an implicit constraint: x ∈ D
the constraint set C contains explicit constraints
the problem is called unconstrained if it has no explicit constraints
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Feasibility problem
a feasibility problem

find x subject to x ∈ C

can be considered as a special case of the general problem with f0(x) = 0

minimize 0 subject to x ∈ C

p⋆ = 0 if constraints are feasible; any feasible x is optimal
p⋆ = ∞ if constraints are infeasible

examples: C1 has two-, C2 has infinitely many feasible points, while C3 is infeasible

C1 = {x ∈ R2 | (x1 − 1)2 + x22 = 1, x1 + x2 = 1 }
C2 = {x ∈ R2 | (x1 − 1)2 + x22 ≤ 1, x1 + x2 = 1 }
C3 = {x ∈ R2 | (x1 − 1)2 + x22 ≤ 1, x1 + x2 = −3 }
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Problem types

we can categorize optimization problems by

constraints
unconstrained problem
constrained problems

variable types
continuous optimization
discrete optimization

linearity of objective and
constraints

linear program
nonlinear program

convexity of objective and
constraint set

convex problem
non-convex problem

smoothness of the objective
smooth problem
non-smooth problem

parameter randomness
stochastic optimization
deterministic optimization

this course focuses on continuous and deterministic optimization
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Optimization
Problems

Parameter
Randomness

Deterministic
Optimization

Stochastic
Optimization

Variables 
Continuous
Optimization

Discrete
Optimization

Constraints

Constrained
Problems

Unconstrained
Problems

Convexity

Non-convex
problems

Convex Problems

Linear Program

Quadratic
Program

Second-order
Cone Program

Geometric
Program

Semidefinite
Program

Linearity

Linear Program
(LP)

Nonlinear
Program (NLP)

Smoothness of
the objective

Smooth Problem
Non-smooth

Problem

other specific problem types are integer programming, vector optimization.
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Optimality of unconstrained problems
assumption: f is twice continuously differentiable (smooth objective)

1st-order necessary condition:

if x⋆ is a local minimizer of f then ∇f(x⋆) = 0

2nd-order necessary condition: if x⋆ is a local minimizer of f then ∇f(x⋆) = 0
and ∇2f(x⋆) ⪰ 0 (positive semidefinite)
2nd-order sufficient condition: if ∇f(x⋆) = 0 and ∇2f(x⋆) ≻ 0 (pdf)

then x⋆ is a strict local minimizer of f

local minimizers can be distinguished from other stationary points by examining
positive definiteness of ∇2f

example: f(x) = x4 has x⋆ = 0 as a local minimizer; ∇2f(x⋆) = 0 (hence, 2nd-order
sufficient condition fails)
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Convex optimization
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Convex sets

a set C is said to be convex if for any x, y ∈ C we have

θx+ (1− θ)y ∈ C, for all 0 ≤ θ ≤ 1

which of the following sets are convex ?

fact: an intersection of convex sets is convex (even infinitely many number of
intersections)
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Convex functions

convex function: f : Rn → R is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y in the domain of f and 0 ≤ θ ≤ 1

loosely speaking, f is convex if it has an upward shape

examples on R:
affine: ax+ b for any a, b ∈ R
exponential: eax for any a ∈ R
powers of absolute value: |x|p for p ≥ 1

negative entropy: x log x on R++
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Examples of convex functions on Rn

affine: aTx+ b

norm functions: ∥x∥
norms of affine: ∥aTx+ b∥
quadratic: xTPx+ qTx when P ⪰ 0

negative entropy:
∑n

i=1 xi log xi on Rn
++

fact: a set of inequality constraints described by convex functions is convex

C = {x ∈ Rn | fi(x) ≤ 0, i = 1, 2, . . . ,m }

is a convex set if all fi’s are convex functions
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First- and second-order conditions of convex functions
suppose f is differentiable; then f is convex if and only if

dom f is convex and f(y) ≥ f(x) +∇f(x)T (y − x), ∀x, y ∈ dom f

the first-order Taylor approximation of f is a global underestimator of f if and
only if f is convex
if ∇f(x) = 0 then for all y ∈ dom f, f(y) ≥ f(x),i.e., x is a global minimizer of f

assume that ∇2f exists at each point in dom f ; then f is convex if and only if

dom f is convex and ∇2f(x) ⪰ 0, ∀x ∈ dom f

f is convex if and only if its Hessian matrix is positive semidefinite
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Convex programs

convex optimization problem is one of the form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

where
objective and constraint functions are convex
equality constraint functions hi(x) = aTi x− bi must be affine

result: an optimal solution of a convex program is a global minimizer
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Properties of convex problems

convex problems are of interest due to some desirable properties
many operations preserve convexity of a convex set

intersection
image (and inverse image) of affine mapping
image (and inverse image) of perspective mapping

many operations preserve convexity of a convex function
non-negative weighted sum
composition with affine mapping, composition rules
pointwise maximum and supremum, minimization over one variable
perspective of a function
conjugate function (important role in duality theory)

KKT conditions are sufficient and necessary for optimality

many optimization problems in engineering are convex programs
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Linear program (LP)

a general linear program has the form

minimize cTx
subject to Gx ⪯ h

Ax = b

where G ∈ Rm×n and A ∈ Rp×n

example: minimize the cheapest diet that satisfies the nutritional requiremenets
x = (x1, . . . , xn) is nonnegative quantity of n different foods
each food has a cost of cj ; cost objective is cTx

one unit quantity of food j contains dij amount of nutrients i

constraints are Dx ⪰ h and x ⪰ 0
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Geometrical interpretation

hyperplane: solution set of a linear equation with coefficient vector a ̸= 0

{x | aTx = b }

halfspace: solution set of a linear inequality with coefficient vector a ̸= 0

{x | aTx ≤ b }

we say a is the normal vector
polyhedron: solution set of a finite number of linear inequalities

{x | aT1 x ≤ b1, aT2 x ≤ b2, . . . , aTmx ≤ bm } = {x | Ax ≤ b }

intersection of a finite number of halfspaces
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extreme point of C

a vector x ∈ C is an extreme point (or a vertex) if we cannot find y, z ∈ C both
different from x and a scalar α ∈ [0, 1] such that x = αy + (1− α)z
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Properties of LP

another standard form: minimize cTx subject to Ax = b, x ⪰ 0

an LP may not have a solution (constraints are inconsistent or the feasible set is
unbounded)
we assume A is full row rank; if not, considering Ax = b

depending on A, the system could be inconsistent (hence, no extreme points), or
Ax = b contains redundant equations, which can be removed

if a standard LP has a finite optimal solution then

a solution can always be chosen from among the vertices of the feasible set

(called basic feasible solutions)
the dual of an LP is also an LP
solutions of some simple LPs can be analytically inspected
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Quadratic program (QP)

a quadratic program (QP) is in the form

minimize (1/2)xTPx+ qTx
subject to Gx ⪯ h

Ax = b,

where P ∈ Sn, G ∈ Rm×n and A ∈ Rp×n

convex QP

linear constraints
example: constrained least-squares

minimize ∥Ax− b∥22
subject to l ⪯ x ⪯ u

QP has linear constraints
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Properties of QP

an unconstrained QP is unbounded below if P is not positive definite
an unconstrained QP has a unique solution: x = −P−1q when P ≻ 0

a QP is a convex problem if P is positive semidifinite definite
if P ⪰ 0 then a local minimizer x⋆ is a global minimizer (by convexity)
if P ≻ 0 then x⋆ is a unique global solution (by strictly convexity)

the feasible set (polyhedron) may be empty (hence, the problem is infeasible)
the feasible set can be unbounded (but if P ≻ 0 it implies boundedness)
solution of a QP may not be at a vertex
the dual of a QP is also a QP
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Contour of quadratic objective
consider three cases of P and different feasible sets
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QCQP

a quadratically constrained quadratic program (QCQP) is in the form

minimize (1/x)xTP0x+ qT0 x
subject to (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

Ax = b,

where Pi’s are positive semidefinite, G ∈ Rm×n and A ∈ Rp×n

QCQP has both linear and quadratic constraints
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Global optimum

consider a convex optimization problem: f is convex and C is a convex set

minimize
x

f(x) subject to x ∈ C (1)

Theorem: (Ghaoui book, section 8.3.1)
any locally optimal solution is also globally optimal
the set Xopt of optimal points is convex
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Proof

f0(x) = inf{f0(z) | z is feasible, ∥z − x∥2 ≤ R } for some R > 0
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Proof of global minimum
proof: let x⋆ be a local minimizer and p⋆ = f(x⋆)

for any y ∈ C then we can write z ∈ C as a convex sum: z = θy + (1− θ)x⋆

by the convexity of f

f(z) ≤ θf(y) + (1− θ)f(x⋆) ⇒ f(z)− f(x⋆) ≤ θ(f(y)− f(x⋆))

since x⋆ is a local minimizer, LHS is non-negative if θ is small enough, then RHS
is also non-negative
we obtain f(z)− f(x⋆) ≥ 0 for any z ∈ C – x⋆ is also global optimal
the optimal set can be written as the p⋆-sublevel set

Xopt = {x ∈ C | f(x) ≤ p⋆ }

since a sublevel set of a convex function is convex, and f is convex, we have Xopt

is convex as claimed
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Existence of solutions

Weierstrass extreme value theorem:

every continuous function f : Rn → R on a non-empty compact (closed and bounded)
set attains its extreme values on that set

Theorem: sufficient condition for the existence

if C ⊆ dom f is nonempty and compact and f is continuous on C then the problem
(1) attains an optimal solution x⋆

note that this theorem is not applicable to an unconstrained convex problem (because
C = Rn which is not compact)
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Coercive function

Definition: coercive functions
a function f : Rn → R is said to be coercive if for any sequence {xk} ⊂

∫
dom f

tending to the boundary of dom f , it holds that the function value sequence {f(xk)}
tends to +∞ 1

Lemma:
a continuous function with open domain is coercive if and only if all its sublevel sets
Sα = {x | f(x) ≤ α}, α ∈ R are compact

1Ghaoui book, section 8.3.2
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Existence of solutions (Coercive function)

Lemma: unconstrained optimization
if C = Rn and f is continuous and coercive, then the convex optimization (1) attains
an optimal solution x⋆

proof: take α that Sα is non-empty and follows the Weierstrass theorem

Lemma: constrained optimization
if C ⊆ dom f is non-empty and closed, and f is continuous on C and coercive, then
the convex problem (1) attains an optimal solution x⋆
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Strictly convex function

a function f is said to be strictly convex if

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for all x ̸= y in the domain of f and 0 ≤ θ ≤ 1

a strictly convex f satisfies the convexity condition with strict inequality
f(x) = aTx+ b is convex but not strictly convex
intuitively, a convex function that has a ’flat’ area is not strictly convex
what about ϵ-insensitive loss function in SVR ?
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Strongly convex

a function f : Rn → R is said to be strongly convex on S if

∃m > 0 such that f(x)− m

2
∥x∥22

is convex on S

related definition: if f is twice differentiable and

∇2f(x) ⪰ mI, for all x ∈ S

then f is said to be strongly convex
example: f(x) = xTPx with P ≻ 0

a linear function f(x) = aTx+ b is not strongly convex
fact: . a sum of convex and strongly convex functions is strongly convex
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Strong convexity implies strict convexity
by convexity of f(x)− m

2 ∥x∥
2, that is

f(θx+ (1− θ)y)− m

2
∥θx+ (1− θ)y∥22

≤ θf(x) + (1− θ)f(y)− θm∥x∥2

2
− (1− θ)m∥y∥2

2

move the squared norm to the RHS and simplify

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− m

2
θ(1− θ)[∥x∥2 − 2xT y + ∥y∥2]

≤ θf(x) + (1− θ)f(y)− m

2
θ(1− θ)∥x− y∥22︸ ︷︷ ︸
>0 for all x ̸= y

clearly, strong convexity implies strict convexity
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Uniqueness of the optimal solution
Theorem:

if f is strictly convex in the problem (1), and x⋆ is an optimal solution, then x⋆ is the
unique optimal solution

proof: let’s prove by contradiction; let x⋆ be an optimal point and there exists another
y⋆ ̸= x⋆ that is also optimal

both x⋆ and y⋆ are feasible and f(x⋆) = f(y⋆) = p⋆

let θ ∈ (0, 1) and let z = θx⋆ + (1− θ)y⋆

by convexity of C, z must be also feasible
by strict convexity of f ,

f(z) < θf(x⋆) + (1− θ)f(y⋆) = p⋆ ⇒ z achieves a lower function value

this contradicts to the assumption that x⋆ is globally optimal
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Strict convexity by regularization

let’s add a quadratic term to a convex objective function

f̃(x) = f(x) + γ∥x− c∥22

clearly, ∥x− c∥22 is strongly convex
a sum of convex and strongly convex is strongly convex
hence, f̃ is strongly convex and also strictly convex
minimizing f̃ over a convex set attains a unique optimal solution
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Implications of strong convexity

obtain a quadratic lower bound on f (which is better)

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y − x), for z ∈ [x, y]

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
∥y − x∥22, for x, y ∈ S

when m = 0, it reduces to the first-order condition for convexity
strong convexity provides a higher lower bound than from convexity alone
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Implications of strong convexity
obtain a quadratic upper bound for f on S

to see this, let x ∈ dom f and y ∈ S = {y|f(y) ≤ f(x)} (x is a fixed point)

y ∈ S ⇒ 0 ≥ f(y)− f(x) ≥ ∇f(x)T (y − x) +
m

2
∥y − x∥22︸ ︷︷ ︸

A

a set of y such that A ≤ 0 is the region inside a bounded ellipsoid
then, the sublevel set S is contained in a bounded ellipsoid, so S is bounded
when ∇2f is assumed to be continuous, it is bounded on a bounded set
there exists M > 0 such that ∇2f(y) ⪯ MI for all y ∈ S

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
∥y − x∥22, ∀x, y ∈ S
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Bounds on the optimality gap

for a strongly convex f and twice differentiable, it holds that

mI ⪯ ∇2f(x) ⪯ MI, ∀x ∈ S

and two inequalities for any points x, y ∈ S

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
∥y − x∥22

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
∥y − x∥22
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Problem transformation
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one can be obtained from
the solution of the other, and vice versa

examples: P1 and P2 are equivalent (but they are not the same)

minimize ∥Ax− y∥2 (P1)

maximize 1
∥Ax−y∥2 (P1)

maximize |f(x)| (P1)

minimize ∥Ax− y∥22 (P2)

minimize ∥Ax− y∥22 (P2)

maximize log |f(x)| (P2)

using monotonically increasing property of squared and log functions
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Transformation that yield equivalent problems

some transformations are useful for problem re-formulation

eliminating equality constraints
introducing slack variables
epigraph form
minimizing over some variables
using indicator function to represent constraints
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Eliminating equality constraints

the problem
minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to
minimize f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some x0
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Example: eliminating equality constraints

equality constraint in the form of Ax = b (non-trivial when A is fat)

minimize ∥Hx− y∥2 (P1) minimize ∥H̃x− y∥2 (P2)
subject to x1 + x2 = 0 where H̃ =

[
h1 − h2 h3 · · · hn

]
find the nullspace of A and its basis vectors

dimN (A) = r ⇔ ∃F ∈ Rn×r such that AF = 0 and F is full column rank

find a particular solution of Ax = b, says x0
a general solutions to Ax = b is expressed as x = Fz + x0 for any z
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Introducing slack variables

the problem
minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

is equivalent to
minimize f0(x)
subject to fi(x) + si = 0, i = 1, . . . ,m

si ≥ 0, i = 1, 2, . . . ,m
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Epigraph form
the epigraph of a function f0 is the area above the graph f0

epi epi

epi

the standard problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0,

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

we minimize t over the epigraph of f0 (objective is now linear of (x, t))
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Example: epigraph form

example 1: ∥z∥∞ ≤ t if and only if |zi| ≤ t for all i

minimizex ∥Ax− y∥∞ (P1) minimize(x,t) t (P2)
subject to −t ≤ aTi x− yi ≤ t , i = 1, . . . ,m

example 2: for a symmetric F , ∥F∥2 ≤ t if and only if −tI ⪯ F ⪯ tI

given symmetric matrices Fi for i = 0, 1, . . . , n

minimizex ∥F0 + x1F1 + x2F2 + · · ·+ xnFn∥2 (P1)
minimize(x,t) t (P2)
subject to −tI ⪯ F0 +

∑n
i=1 xiFi ⪯ tI
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Minimizing over some variables

the problem
minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

is equivalent to
minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

where f̃0(x1) = infx2 f0(x1, x2)

if the objective can be minimized over one variable easily, we can reduce the problem
dimension
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Example: minimizing over one variable
given gi : Rn → R, yi ∈ R for i = 1, . . . , N , consider the problem

minimize
x,d

−N log

[
1

d

]
+

1

d

N∑
i=1

(gi(x)− yi)
2

first, we can minimize over d by setting the gradient w.r.t. 1/d to zero

d =
1

N

N∑
i=1

(gi(x)− yi)
2

the reduced problem is

minimize
x

log

[
1

N

N∑
i=1

(gi(x)− yi)
2

]
⇐⇒ minimize

x

N∑
i=1

(gi(x)− yi)
2
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Constraints expressed as indicator functions

introduce the indicator function associated with a set C

IC(x) =

{
0, x ∈ C
+∞, x /∈ C

the minimization of f0(x) subject to x ∈ C is equivalent to

minimize
x

f0(x) + IC(x)

note that IC : Rn → R ∪ {+∞} is extended-value function

we express the original constrained problem as an unconstrained problem usign IC
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Structured convex problems
some structures that are amenable for parallel and distributed algorithms

separable sum

minimize
x1,...,xm

f(x) :=

m∑
i=1

fi(xi)

it is obvious that we can minimize over xi independently
global consensus

minimize
x

f(x) :=

m∑
i=1

fi(x)

fi is a local objective; x is the global variable
consensus form: add a consensus constraint that makes all local xi’s agree

minimize
x1,...,xm

m∑
i=1

fi(x) subject to x1 = x2 = · · · = xm
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Structured convex problems
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Structured convex problems

global exchange

minimize
x

m∑
i=1

fi(xi) subject to
m∑
i=1

xi = 0

interpretation: xi’s are quantities of commodities exchanged among m agents
goal: minimize total social cost subject to the market clearing
allocation

minimize
x

m∑
i=1

fi(xi) subject to xi ≥ 0,

m∑
i=1

xi = b

interpretation: xi’s are non-negative resources allocated to m activities

goal: minimize each activity cost while the total resource is limited to a budget
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Distributed model fitting

a problem of fitting y using a linear model Ax using a loss function l

minimize
x

l(Ax− y) + r(x)

l(Ax− y) =
∑N

i=1 li(a
T
i x− yi) represents the model cost due to error Ax− y

r is a separable function representing regularization, e.g., ∥ · ∥1, ∥ · ∥22

this is an example of global consensus

a common model parameter x that makes the model fits with all data samples
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Nonsmooth optimization

a function is smooth if it is differentiable and the derivatives are continuous

example: f(x) = |x| is not smooth at x = 0

example: f(x) = ∥x∥ is not smooth at x = 0

a problem is called nonsmooth if the objective or constraints are nonsmooth functions

example: lasso problems

minimize ∥Ax− b∥2 + γ∥x∥1

then the methods relying on the gradient should be carefully revisited
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Scalarized multi-objective optimization

a common form of multi-objective problem: for a given γ > 0,

minimize f(x) + γg(x)

we desire both f and g to be small but they are weighed in by a given weight, γ
(or often called penalty parameter)
as γ is higher, we penalize more on g, then the minimized g is smaller; in this
case, we care less about f

appear in model performance evaluation where two diffferent metrics are desired
to be small
example 1: minimize model error + model complexity
example 2: minimize system tracking error + input power

Convex Optimization Jitkomut Songsiri 56 / 68



Multi-objective optimization

setting: minimizing f0 : Rn → Rm (vector-valued function) over a feasible set

minimize f0(x)
subject to x ∈ C

a vector optimization has a vector-valued objective function
example: f0(x) = (fuel,time) the energy used and time spent of a vehicle
parameter x
require a generalized inequality definition for comparing any two vectors of f0(x)[

5
2

]
⪯

[
10
3

]
but

[
5
2

]
⪯̸

[
2
4

]
here, for f0(x) ∈ Rn, we typically use the non-negative orthant to define ⪯
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Achievable objective values
define O = {f0(x) | x ∈ C } the set of objective values of feasible points

u is said to be the minimum element of O if u ⪯ v, for every v ∈ O
u is said to be a minimal element of O if v ∈ O, v ⪯ u only if v = u

if O has a minimum point (then it is unique) and

∃ feasible x such that f0(x) ⪯ f0(y), for all feasible y

then we say x is optimal
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Pareto optimal points
consider when O does not have a minimum element

x is called Pareto optimal (or efficient) if f0(x) is a minimal element of O
a technique to extract pareto optimal points: scalarization (more on this later)
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Optimality conditions
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Unconstrained optimality
assumption: f is twice continuously differentiable (smooth objective)

necessary condition: if x⋆ is a local minimizer of f then
1 ∇f(x⋆) = 0

2 ∇2f(x⋆) ⪰ 0 (positive semidefinite)
sufficient condition: if ∇f(x⋆) = 0 and ∇2f(x⋆) ≻ 0 (positive definite), then x⋆

is a strict local minimizer of f
when f is convex and differentiable, any stationary point x⋆ is a global minimizer
of f

example: the Rosenbrock function:

f(x) = 100(x2 − x21)
2 + (1− x1)

2

verify that x⋆ = (1, 1) is the only local minimizer of f

Convex Optimization Jitkomut Songsiri 61 / 68



Constrained optimality
first, define the Lagrangian function

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

where λ, ν are called the Lagrange multipliers for inequality and equality constraints

the KKT conditions are necessary conditions for optimality
1 zero-gradient condition of L: ∇xL(x

⋆, λ⋆, ν⋆) = 0

2 primal and dual feasibility

fi(x
⋆) ≤ 0, i = 1, . . . ,m, hi(x

⋆) = 0, i = 1, . . . , p, λ⋆ ⪰ 0

3 complementary slackness condition: λifi(x) = 0 for i = 1, 2, . . . ,m

fact: for convex problems, KKT conditions are sufficient and necessary for optimality
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Optimality of contrained LS
derive KKT conditions for

minimize
x

(1/2)∥Ax− y∥22 subject to l ⪯ x ⪯ u

the Lagrangian is L(x, λ1, λ2) = (1/2)∥Ax− y∥22 + λT
1 (l − x) + λT

2 x− u)

KKT conditions are
1 zero-gradient of L: AT (Ax− y)− λ1 + λ2 = 0

2 primal feasibility: l ⪯ x ⪯ u

3 dual feasibility: λ1, λ2 ⪰ 0

4 complementary slackness condition:

λ1i(li − xi) = 0, λ2i(xi − ui) = 0, i = 1, 2, . . . , n
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Intro to duality theory
some quick facts

define the dual function as the infimum of the Lagrangian over primal variables

g(λ, ν) = inf
x∈domD

L(x, λ, ν)

for any λ ⪰ 0, the dual function provides a lower bound for p⋆, i.e., g(λ, ν) ≤ p⋆

any optimization problem (called a primal problem) has its dual problem

maximize
λ,ν

g(λ, ν) subject to λ ⪰ 0

which is the problem of finding the best lower bound, denoted as d⋆, for p⋆

more theoretical results about relations between primal and dual problems – when
d⋆ = p⋆, we say we have strong duality
solving the dual can be more beneficial in some cases
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Numerical methods
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Overview of available methods

unconstrained problems: gradient descent, Newton, quasi Newton, trust-region
convex programs: interior point, gradient projection, ellipsoid method
convex programs of certain structures: proximal methods
linear programming: simplex, interior point
quadratic programming: interior point, active set, conjugate gradient, augmented
Lagrangian

Convex Optimization Jitkomut Songsiri 66 / 68



Softwares

MATLAB: cvx
CVX is a MATLAB-based modeling system for convex optimization
http://cvxr.com/cvx/

Python
CVXPY: Python-embedded modeling language for convex optimization problems
available at https://www.cvxpy.org/ by Stephen Boyd group
CVXOPT: Python-based package for convex optimization available at
http://cvxopt.org/ by M. Andersen, J. Dahl and L. Vandenberghe
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