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consider the problem
minimmize f(z) subjectto z€C:=Cy xCa X -+ xXCnp
where x can be partitioned as blocks: = = (x1,z2,...,Zm)
when f has loose coupling, it is possible to minimize f w.r.t. each block xy
e.g., while other of z;'s are fixed, minimization w.r.t. z;, becomes fairly easy
example: QP with a box constraint
minimize (1/2)z” Pz +¢"2 subjectto | <z <u

e.g., appears in dual of soft-margin SVM
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dual of QP: minimize (1/2)2” Px + q%x subject to Az < b is
minimize (1/2)ATGA+ sT\ subjectto A >0

where G = AP71AT and s = b+ AP~ !¢ (dual has simpler constraints)

nonnegative matrix factorization: not jointly convex but bi-convex

minimize [|ZX — Al|%  subjectto Z>0,X >0

factorize A into a product of two matrices having non-negative entries

given closed convex sets C; for ¢ = 1,2,...,m and find a point in their intersections —
equivalent to the problem with variables x, 1, ¥2,...,ym € R"
m
T 2 . n .
minimize (1/2) Z lly; — x||> subjectto z€R", y,€C;y i=1,2,...,m
i=1

notes: in these examples, calculation of minimum along each block can be simplified
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denote z;7, ; the next and current iteration of the ith block of x (out of m blocks)
repeats the following m-updates in cyclic order

Jr o .
x] = argmin f(z,22,23,...,%m)
z€Cy
+ - +
ry = argmin f(x],z,23,...,%m)
2€Co
+ : + +
x] = argmin f(z,..., 2 1,2, %it1,...,Tm)
zeC;
+ : + ot +
x,), = argmin f(z],z3,...,2) 1,2)
ZECm,

each iteration the cost is minimized w.r.t. each block coordinate
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Examples
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given ¢ € R", P > 0 with pz-T as each row of P
minimize (1/2)z” Pz + ¢z subjectto | <z <u
xT

minimizing along x; is simple; first finding the zero-gradient condition w.r.t. x;

0 1
af:(Pﬂf)iJrqz':O = plr+qg=0=>I=—— qz‘+ZPik$k
L4 Dii ki

with the box constraint on ith coordinate: [; < z; < w; then the minimizer is
Uiy, Ti > U
r; = Mpox(T3) = § @i, 1 <7 <y
L, x; <l

the update on the ith coordinate is simply a projection onto a box
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example: results show with z(9) = (=1, —2)

T
2 1 1 1 3
T
- <z=
fay=a21 2y gzt |4 & | 3e3
2r .
1 ,
o—,’//
o~ a
8 [ !
_1,\
2+
., i
-3 2 1 0 1 2 3 4
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e given closed convex sets C; fori =1,2,...,m

2 find a point in their intersections
minimize  (1/2) S s — o3
subjectto x€R", y; €C;, 1=1,2,...,m
s with variables y;, z € R"

when z is fixed, the updates on y;'s are separable (cyclic order is then not needed)
y =1, (z), i=1,2,...,m

after y;'s are updated and fixed, the minimization w.r.t. x is just averaging
1 m
+_ +
1=
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example: C; is an ellipsoid of the form: 0.5(x — ¢;)T Pi(x — ¢;) < oy

2 -1 3 -2 5 1
R

Cc1 = (1,1),62 = (1,2),63 = (0, 1),&/1 = 2,042 = 2,a3 =3

projection onto an ellipsoid is not trivial

but 3 projections can be done in parallel

results shown with three different initial points (three lines are y1, y2, y3 sequences)
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Convergence
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assumptions:
f is convex and differentiable, C;'s are closed and convex

for each x = (x1,...,2,) € C and each i
flxi, 2o, ..., xi—1,2,Tix1,...,&m) viewed as a function of z

attains a unique minimum over C;

results: every limit points of sequence generated by BCD minimizes f over C

proof follows from D.P. Bertsekas (convex optimization algorithms) on page 371
show that a limit point  satisfies V f(z)"(z —z) >0, Vo € C
BCD may fail to converge for non-smooth f even it is convex
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example: minimize f(z) = (1/2)(z% + 23) + |21 — 22| (non-differentiable)

2® = (=1,-1), 2z =(=1,-1),..., while the optimum is at z* = (0,0)

Contour of (1/2)(a} + a3) + |21 — a2

py
,
15 Y
/
/
11/
05
g 0
05
Nip.
15 L /
-2
2 1 0 1 2

a type of fused lasso where the surface has corners (and sequence is stuck there)

Jitkomut Songsiri 14 /29



example: minimize f(z) = (1/2)(z% + 23) + |21| + |z2| (non-differentiable)

) Contour of (1/2)(a? + 22) + |21| + |22

the BCD sequences converge to the optimum at z* = (0, 0)
the non-differentiable part seems to have some structure — here it's separable
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a convergence result from Tseng 2001, Theorem 4.1 (a) — recap in Hastie 2015

assumptions:

f@) =g(@) + 3202 hi(w:)

g is convex and differentiable, each h; is convex but can be non-differentiable
initial level set Sy = {z | f(z) < f(z(©) } is compact

f has regularity condition on the directional derivative along Ax

f(z;e;) >0, i=1,2,....m = f'(x,Ax)>0, VAz €R"

f' along each coordinate give sufficient information that moving to other
directions will also further increase f

results: every limit point of sequences generated by BCD minimizes f over C
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BCD

only gain information about directions of the forme;, j =1,2,...,m

(1/2)( +23) + |21 — 2| (1/2)(ad +3) + s | + ||

if reaching a point where f increases along each of all e;'s, moving to any other
direction should not possibly decrease f — what we called regular

fused lasso objective is not regular; f increases along both e; and e but there are
some direction that f decreases

lasso objective is regular; information where f increases in some direction can be

sufficiently obtained from info of f’ along some ¢;
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f(z) =g(x) + >~ hi(z;) (the non-differentiable part is separable)
lasso formulation: minimize (1/2)||y — Az||3 + Al|z||1

logistic regression (soft-max cose) with £,-norm regularization

N
minimize (1/N) > log(1+ e % @) + |||
X
=1

where ||z||d = > |24]9, for 0 < ¢ <1 (non-convex for ¢ < 1)
soft-margin SVM using hinge cost (hinge primal problem)

N
minimize (1/2)[|w|3 + A max(0,1 — y;(2] w + b))
=1
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recall the first-order condition for convexity in f

f) > fx)+ V(@) (y—=), Vyecdomf

definition: g is a subgradient of a convex function f at x € dom f if

fly) > f@)+g"(y—=x), Vy€domf

Fig)- v\ /P%):M”/ﬂ,y)

¢ f)
For79-0)
Aifferentia| {" £00 <8710 1) 9,y T
37y B9 Zary

f(y) = f(x) + g" (y — x) is an affine function that is a lower bound for f(y) at «
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the concept of subgradients is generalized for for non-differentiable f
a subgradient of at x is not necessarily unique
f(y) = |y|, subgradient of f at y =0 is any g € [—1,1]
f(y) = max(0,y), subgradient of f at y =0 is any g € [0, 1]
f(y) = |ly||2, subgradient of f at y =0 is any g with ||g|j2 <1

F@) =1llyll2 = £(0) + g7 (y — 0) = g7y when [|g|]2 <1

(from Cauchy-Schwarz inequality)
definition: the subdifferential 0f(x) of f at x is the set of all subgradients
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optimality condition for unconstrained problem

x* minimizes f(x) if and only if 0 € Jf(z*)
fly) = f@) +0"(y—a*), ¥y <= 0€df(a")

f(z*) is smallest iff O is one of the subgradients (follow from the definition of g)
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minimize y — Az||5 + A||x||1 where A € ,Y € ,A >0 are given
inimize (1,2 Az|)3+ A here A € R™*" R™A>0 i
let a;, t =1,2,...,n be columns of A

f() = (1/2)|ly — (ar@1 + agwa + -+ + an@n) |5 + A(|z1] + |22 + -+ + |2a])

minimization of f over x; (while other x}'s are fixed) is to minimize

f(x) = (1/2)|lr — a3 + M|, r=y— Zakxk (partial residual)
ki

optimality condition: zero is one of the subgradients of f w.r.t. to z;

1, z; >0
_ T T ... e L
=—a;r+a;a;x; +As; =0, s,=¢—1, z; <0

of
8561'

any value in [-1,1], z; =0
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three cases at optimality (at kth iteration, and the update of ith block)

T,
>0, —alr+ a2 +2-1=0, = o7 =22
D4\
27 <0, —alr+ faifPar 44120, = af= TR

xf =0, —aiTr+||aiH2~0+)\'si:O, = |aiTr]:)\\si\§)\

x;" is then obtained by soft-thresholding operator

7

T

air—XA T
. IlT‘_li\7 aiT’>)\ 1 .
T = & rTA T — =——S5 |a (y— arx
R e = gl (o0 S
0, |a;fp1“| <A !

we apply soft-thresholding to the ith block in cyclic order
each coordinate update, it takes O(m) to update r, and O(m) to update alr;
hence, in one cycle, it costs O(mn) flops
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example: lasso with 4 € R¥2%5% and \ = 0.1\ max (20 instances)

[—ADMM
[—eco

L |
25 30 35 40 45
iterations

all methods were initialized with z(9) = 0

ADMM was implemented with p = 3,€?5 = 1074, ¢ = 103

BCD stopped when [|zT — z|| < 1073 (relative difference can be used also)
both methods had comparable performances in this example
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assumptions:
f is continuously differentiable, C;'s are closed and convex

for each x = (x1,...,2,,) € C and each i
flxi, 2o, ..., xi—1,2,Tiy1,...,%m) viewed as a function of z

attains a unique minimum Z over C;
monotonically non-increasing in the interval from x; to z

results: every limit point T of sequence generated by BCD satisfies the optimality
condition
V@) (z—-2)>0, VreC

no convexity in f is needed but extra condition on monotonicity is required
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Variants

Coordinate descent Jitkomut Songsiri Variants 27 /29



more literature and further reading on
applying the coordinate descent in the context of dual problem (where constraint

involves R’}
combination of coordinate descent with the proximal algorithm
the use of an irregular order instead of a fixed cyclic order (e.g., randomization)

see references in Bertsekas 2015 and Wright 2015
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Chapter 6.5, D.P. Bertsekas, Convex Optimization Algorithms, Athena Scientific,
2015

Chapter 2.7, D.P. Bertsekas, Nonlinear Programming, 2nd edition, Athena
Scientific, 1999

Chapter 12.5, G. Calafiore and L. El Ghaoui, Optimization Models, Cambridge
University Press, 2014

Chapter 5.4, T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning
with Sparsity : The Lasso and Generalizations, CRC Press, 2015

P. Tseng, Convergence of a block coordinate descent method for nondifferentiable
minimization, Journal of optimization theory and applications, 2001

S. J. Wright, Coordinate descent algorithms, Mathematical Programming, 2015
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