

Outline

- 1 Lagrangian and dual function
- 2 Dual problem
- 3 Slater's condition
- 4 Karush-Kuhn-Tucker (KKT) conditions
- 5 Projection onto probability simplex
- 6 Soft-margin SVM
- 7 Conjugate function
- 8 Importance of KKT conditions
- 9 Exercises

uality Jitkomut Songsiri 2 / 43

Lagrangian and dual function

General setting

(mathematical) optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x) = 0, \quad i=1,\ldots,p \end{array}$$

- $= x = (x_1, \dots, x_n)$: optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function (generally, nonlinear)
- $f_i: \mathbf{R}^n \to \mathbf{R}, i=1,\ldots,m$: inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}, i=1,\ldots,p$: equality constraint functions

domain of the problem: $\mathcal{D} = \bigcap_{i=0}^m \operatorname{dom} f_i \cap \bigcap_{i=1}^p \operatorname{dom} h_i$

4 / 43

ality Jitkomut Songsiri

Lagrangian

Lagriangian $L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$ with $\operatorname{\mathbf{dom}} L = \mathcal{D} \times \mathbf{R}^n \times \mathbf{R}^p$

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- L is a weighted sum of objective and constraint functions
- $oldsymbol{\mathsf{a}}$ $\lambda \in \mathbf{R}^m_+$ is the Lagrange multiplier corresponding to inequality constraints
- $\mathbf{P} = \mathbf{P} = \mathbf{R}^p$ is the Lagrange multiplier corresponding to equality constraints

ロト 4回 ト 4 恵 ト 4 恵 ト) 恵 ・ 夕久で

ty Jitkomut Songsiri 5 / 43

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave and can be $-\infty$ for some λ, ν

lower bound property: if $\lambda \succeq 0$ then $g(\lambda, \nu) \leq p^*$

 \blacksquare if \tilde{x} is feasible and $\lambda \succeq 0$ then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

■ minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣९○

6 / 43

y Jitkomut Songsiri

Least-norm solution of linear equations

problem: minimize $(1/2)x^Tx$ subject to Ax = b

dual function

- Lagrangian is $L(x,\nu)=(1/2)x^Tx+\nu^T(Ax-b)$
- \blacksquare to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x, \nu) = x + A^T \nu = 0 \quad \Rightarrow \quad x = -A^T \nu$$

 \blacksquare substitute x in L to obtain g

$$g(\nu) = L(-A^T \nu, \nu) = -(1/2)\nu^T A A^T \nu - b^T \nu$$

which is concave in u

lower bound property: $p^* \ge -(1/2)\nu^T A A^T \nu - b^T \nu$ for all ν

ty Jitkomut Songsiri 7 / 43

Standard form LP

Lagrangian is

$$L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$

= $-b^T \nu + (c + A^T \nu - \lambda)^T x$

 \blacksquare since L is affine in x

$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu) = \begin{cases} -b^T \nu, & \text{if } A^T \nu - \lambda + c = 0 \\ -\infty, & \text{otherwise} \end{cases}$$

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0 \}$, hence concave

lower bound property: $p^* \ge -b^T \nu$ if $A^T \nu + c \succeq 0$

4 D > 4 B > 4 E > 4 E > 9 Q O

Dual problem

The dual problem

Lagrange dual problem

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$

- we find the best lower bound on p^* obtained from Lagrange dual function
- \blacksquare a convex problem (even if the primal is non-convex); optimal value denoted d^*
- λ, ν are dual feasible if $\lambda \succeq 0$ for $(\lambda, \nu) \in \operatorname{\mathbf{dom}} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{\mathbf{dom}} g$ explicit

example: standard form LP and its dual

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \succeq 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T \nu \\ \text{subject to} & A^T v + c \succeq 0 \end{array}$$

(dual of LP is an LP)

Weak and strong duality

weak duality: $d^* \leq p^*$ (always holds for convex and non-convex problems)

- can be used to find non-trivial lower bounds for difficult problems
- \blacksquare if the primal in unbounded below $(p^\star=-\infty),$ then $d^\star=-\infty$ (the dual is infeasible)
- \blacksquare if the dual is unbounded above $(d^\star=\infty),$ we have $p^\star=\infty$ (the primal is infeasible)
- lacksquare $p^{\star}-d^{\star}$ is called the **duality gap** and always non-negative

strong duality: $d^* = p^*$

- strong duality does not hold in general but usually holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's condition

Slater's constraint qualification

strong duality holds for a convex problem

minmize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,2,\ldots,m$ $Ax=b$

if it is strictly feasible, i.e.,

$$\exists x \in \mathbf{int} \, \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, 2, \dots, m, \quad Ax = b$$

 \blacksquare strong duality also guarantees that the dual optimum is attained (if $p^{\star} > -\infty$)

$$\exists$$
 a dual feasible $(\lambda^{\star}, \nu^{\star})$ with $q(\lambda^{\star}, \nu^{\star}) = d^{\star} = p^{\star}$

lacktriangle weak form of Slater's condition: strong duality holds when some of f_i 's are affine

$$f_i(x) \le 0, \quad i = 1, 2, \dots, k, \quad f_i(x) < 0, \quad i = k + 1, \dots, m, \quad Ax = b$$

Inequality form LP

primal problem (P)

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$

dual function

$$g(\lambda) = \inf_{x} [(c + A^T \lambda)^T x - b^T \lambda] = \begin{cases} -b^T \lambda, & \text{if } A^T \lambda + c = 0 \\ -\infty, & \text{otherwise} \end{cases}$$

dual problem (D)

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0, \ \lambda \succeq 0 \end{array}$$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x} (primal is feasible)
- lacksquare in fact, $p^{\star}=d^{\star}$ except when primal and dual are infeasible
- $lue{}$ we can verify that the Lagrange dual of problem D is equivalent to the primal P

uality Jitkomut Songsiri 14 / 43

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^n$)

$$\begin{array}{ll} \text{minimize} & x^T P x \\ \text{subject to} & A x \leq b \end{array}$$

dual function

$$g(\lambda) = \inf_{x} (x^{T} P x + \lambda^{T} (Ax - b)) = -\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda - b^{T} \lambda$$

dual problem

$$\begin{array}{ll} \text{maximize} & -(1/4)\lambda^TAP^{-1}A^T\lambda - b^T\lambda \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

• from Slater's condition: $p^{\star} = d^{\star}$ if $A\tilde{x} \prec b$ for some \tilde{x}

(ロト 4 🗗 ト 4 호 ト 4 호 ト · 호 · か 9 0

Jitkomut Songsiri 15 / 43

Complementary slackness

assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*) \quad \text{(because } h_i(x) = 0 \text{ and } \lambda_i f_i(x^*) \leq 0 \text{)}$$

hence, the two inequalities hold with equality and we must have

- $\blacksquare x^{\star}$ minimizes $L(x, \lambda^{\star}, \nu^{\star})$
- $\quad \blacksquare \ \lambda_i^\star f_i(x^\star) = 0 \text{ for } i = 1, 2, \ldots, m \text{ (known as complementary slackness)}$

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(x^{\star}) = 0, \quad f_i(x^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$$

□ ト ◆ 個 ト ◆ 差 ト ◆ 差 ・ 夕 Q ()

Karush-Kuhn-Tucker (KKT) conditions

Karush-Kuhn-Tucker (KKT) conditions

for a problem with differentiable f_i, h_i , the four conditions are called **KKT**

- **I** primal feasibility: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i = 0$, $i = 1, \ldots, p$
- **2** dual feasiblity: $\lambda \succeq 0$
- **3** complementary slackness: $\lambda_i f_i(x) = 0$, i = 1, 2, ..., m
- **4 zero gradient of Lagrangian** with respect to x

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

KKT as necessary conditions: if strong duality holds and $(x^{\star}, \lambda^{\star}, \nu^{\star})$ are optimal, then they must satisfy the KKT conditions (follow from page 16)

(ロト 4 🗗 ト 4 호 ト 4 호 ト · 호 · か 9 0

18 / 43

Duality

KKT conditions for convex problems

if $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from the 1st KKT: \tilde{x} is primal feasible
- from the 2nd KKT $(\lambda_i \geq 0)$ and convexity: $L(x, \tilde{\lambda}, \tilde{\nu})$ is convex in x
- $\qquad \text{from the 4th KKT: } \tilde{x} \text{ minimizes } L(x,\tilde{\lambda},\tilde{\nu}) \text{ over } x \Rightarrow g(\tilde{\lambda},\tilde{\nu}) = L(\tilde{x},\tilde{\lambda},\tilde{\nu})$
- lacksquare from the 3rd KKT (complementary slackness) and $h_i(ilde{x})=0$

$$g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}) = f_0(\tilde{x}) + \sum_{i=1}^m \tilde{\lambda}_i f_i(\tilde{x}) + \sum_{i=1}^p \tilde{\nu}_i h_i(\tilde{x}) = f_0(\tilde{x})$$

conclusion: \tilde{x} and $(\tilde{\lambda}, \tilde{\nu})$ have zero duality gap and are primal and dual optimal

for **convex** problems, KKT conditions are **sufficient** for optimality

<ロ > → □

ty Jitkomut Songsiri 19 / 43

if Slater's condition is satisfied for convex problems

- from page 13, it implies duality gap is zero and the dual optimum is attained
- so, x is optimal if and only if there are (λ, ν) , together with x, satisfy the KKT conditions

Ouality Jitkomut Songsiri 20 / 43

Projection onto probability simplex

Dual of projection onto the probability simplex

consider the problem of projecting \boldsymbol{a} onto the probability simplex:

minimize
$$(1/2)\|x-a\|_2^2$$
 subject to $x \succeq 0$, $\mathbf{1}^T x = 1$

- Lagrangian: $L(x,\lambda,\nu)=(1/2)\|x-a\|_2^2-(\lambda-\nu\mathbf{1})^Tx-\nu$
- use the fact that $(1/2)\|x-a\|_2^2-y^Tx$ is minimized over x when x=y+a and the minimum is $-(1/2)\|y\|_2^2-y^Ta$
- the dual problem is QCQP

$$\max_{\lambda} \min \mathsf{ze} \quad g(\lambda,\nu) := -(1/2) \|\lambda - \nu \mathbf{1}\|_2^2 - (\lambda - \nu \mathbf{1})^T a - \nu \quad \text{subject to} \quad \lambda \succeq 0$$

KKT conditions:

primal feasibility: $x^{\star} \succeq 0$, $\mathbf{1}^T x^{\star} = 1$, dual feasibility: $\lambda^{\star} \succeq 0$, zero-gradient: $x^{\star} = \lambda^{\star} - \nu^{\star} \mathbf{1} + a$, complimentary slackness: $\lambda_i^{\star} x_i = 0$, $\forall i$

Duality

the dual probelm can be further simplified

$$-g(\lambda,\nu) = (1/2)\|\lambda - (\nu\mathbf{1} - a)\|_2^2 + \nu - (1/2)\|a\|_2^2 \triangleq \tilde{g}(\lambda,\nu)$$

(completing square in λ) – which can be minimized over λ first

$$\lambda^{\star} = \begin{cases} \nu \mathbf{1} - a, & \nu \mathbf{1} - a \ge 0, \\ 0, & \text{otherwise} \end{cases} \triangleq \max(0, \nu \mathbf{1} - a) \triangleq (\nu \mathbf{1} - a)^{+}$$

the dual problem becomes the minimization of $\tilde{g}(\lambda^\star, \nu)$ given by

$$\tilde{g}(\lambda^*, \nu) = (1/2) \| (\nu \mathbf{1} - a)^+ - (\nu \mathbf{1} - a) \|_2^2 + \nu - (1/2) \| a \|_2^2$$
$$= (1/2) \| (a - \nu \mathbf{1})^+ \|_2^2 + \nu - (1/2) \| a \|_2^2$$

(we have used
$$z = z^+ - z^-$$
 and $z^- = -\min(0, z) = \max(0, -z) = (-z)^+$)

23 / 43

Dualit

there is an efficient way to find ν^* ; one of them is to find the subgradient

$$\partial \tilde{g} = [(a - \nu \mathbf{1})^+]^T g + 1 =$$

where $g=(g_1,g_2,\ldots,g_n)$ and $g_k=-1$ if $a_k-\nu>0$ and $g_k=0$ otherwise

then zero is one of the subgradients (optimality condition) – find u such that

$$\partial \tilde{g} = 1 - \operatorname{sum}(a - \nu \mathbf{1})^{+} = 0$$

once we obtain ν^{\star} , we solve x^{\star} from KKT

$$x^* = \lambda^* - \nu^* \mathbf{1} + a = (\nu^* - a)^+ - (\nu^* \mathbf{1} - a) = (a - \nu^* \mathbf{1})^+$$

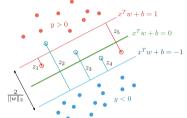
lity Jitkomut Songsiri 24 / 43

Soft-margin SVM

Soft-margin SVM

problem parameters: $x_i \in \mathbf{R}^n$ and $y_i \in \{1, -1\}$ for $i = 1, \dots, N, C > 0$ optimization variables: $w \in \mathbf{R}^n, b \in \mathbf{R}, z \in \mathbf{R}^N$

$$\begin{array}{ll} \text{minimize} & (1/2)\|w\|_2^2 + C\mathbf{1}^Tz\\ \text{subject to} & y_i(x_i^Tw+b) \geq 1-z_i, \quad i=1,\dots,N\\ & z \succeq 0 \end{array}$$



- ullet z_i is called a *slack variable*, allowing some of the hard constraints to be relaxed
- lacksquare if $z_i^{\star}>0$, the ith data point is relaxed to lie on the wrong side of its margin
- $\sum_i z^*$ is the total distance of points on the wrong side of their margin (called margin errors)
- lacktriangle the penalty parameter C controls the trade-off between maximizing the margin and the margin errors

Dual of soft-margin SVM

dual problem of soft-margin SVM: with variable $\alpha \in \mathbf{R}^N$

$$\begin{aligned} & \text{maximize}_{\alpha} & \quad \mathbf{1}^{T}\alpha - (1/2)\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}^{T}x_{j} \\ & \text{subject to} & \quad \sum_{i=1}^{N}\alpha_{i}y_{i} = 0, \quad 0 \leq \alpha_{i} \leq C, \quad i = 1, 2, \dots, N \end{aligned}$$

let α and λ be Lagrange multipliers (w.r.t. 1st and 2nd inequalities on page 26)

$$L(w, b, z, \alpha, \lambda) = \frac{1}{2} \|w\|_{2}^{2} - \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}^{T} w - b \sum_{i=1}^{N} \alpha_{i} y_{i} + (C\mathbf{1} - \alpha - \lambda)^{T} z + \mathbf{1}^{T} \alpha$$

note that L is quadratic in $w\colon \frac{1}{2}\|w\|_2^2 - d^Tw$ and L is linear in b and z

 \bullet $\inf_w L$ occurs when $w = d = \sum_i \alpha_i y_i x_i$ and the infimum is

$$-(1/2)\|d\|_2^2 = -(1/2)d^Td = -(1/2)\sum_i \sum_i \alpha_i \alpha_j y_i y_j x_i^T x_j$$

ロト(御ト(注)(注) 注 りへの

Duality Jitkomut Songsiri

lacksquare since L is linear in z,b, $\inf_z L$ and $\inf_b L$ exist (and are zero) only when

$$\sum_{i} \alpha_i y_i = 0, \quad C\mathbf{1} - \alpha - \lambda = 0$$

- dual function: $g(\alpha) = -(1/2) \sum_i \sum_j \alpha_i \alpha_j y_i y_j x_i^T x_j + \mathbf{1}^T \alpha$
- KKT conditions of SVM primal problem are

primal feasiblity:
$$\begin{aligned} y_i(x_i^Tw+b) &\geq 1-z_i, \quad i=1,2,\dots,N, \\ z &\succeq 0 \\ \sum_{i=1}^N \alpha_i y_i = 0, \\ 0 &\leq \alpha_i \leq C, \quad i=1,2,\dots,N \\ \text{or equivalently,} \quad \lambda \succeq 0, \quad \alpha = C\mathbf{1} - \lambda \\ \text{zero-gradient of } L: & w &= \sum_{i=1}^N \alpha_i y_i x_i \\ \text{complementary slackness:} & \alpha_i [y_i(x_i^Tw+b) - (1-z_i)] = 0 \\ \lambda_i z_i &= 0, \quad i=1,2,\dots,N \end{aligned}$$

Implications of SVM's KKT

dual feasibility and complementary slackness characterize three groups of points

$$\alpha_i = C - \lambda_i, \ \lambda_i z_i = 0, \ \alpha_i [y_i(x_i^T w + b) - (1 - z_i)] = 0$$

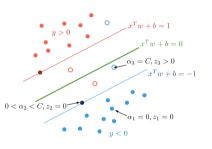
correct side of the margin

$$\alpha_i = 0, \ \lambda_i = C, \ z_i = 0, \ y_i(x_i^T w + b) \ge 1$$
 edge of the margin

$$0 < \alpha_i < C, \quad \lambda_i > 0, \quad z_i = 0, \quad y_i(x_i^T w + b) = 1$$

wrong side of the margin

$$\alpha_i = C, \ \lambda_i = 0, \ y_i(x_i^T w + b) = 1 - z_i, \ z_i > 0$$



- the observations i for which $\alpha_i > 0$ are called **support vectors** because w is a linear combination of only those terms: $w = \sum_{i=1}^{N} \alpha_i y_i x_i$
- margin points: $y_i(x_i^T w + b) = 1 \Leftrightarrow b = -x_i^T w + y_i$ (averaging all solutions)

uality Jitkomut Songsiri 29 / 43

a compact form of SVM dual

minimize
$$(1/2)\alpha^T G\alpha - \mathbf{1}^T \alpha$$

subject to $\alpha^T y = 0, \ 0 \leq \alpha \leq C\mathbf{1}$

where $G \in \mathbf{R}^{N \times N}$, $G_{ij} = \langle y_i x_i, y_j x_j \rangle$ (called a **Gram** matrix); clearly, $G \succeq 0$

- it is a QP with a linear constraint and a box constraint
- this formulation is called *C*-SVC (*C*-support vector classification)
- available algorithms:
 - quadratic programming solvers (active-set, interior-point) on the dual
 - sequential minimal optimization (SMO) on the dual (used in fitcsvm by MATLAB and libsvm library, which supports nonlinear classifiers)
 - coordinate descent on the dual (large-scale linear SVM, used in liblinear)

lity Jitkomut Songsiri 30 / 43

Conjugate function

Conjugate function and Lagrange dual

conjugate function:
$$f^*(y) = \sup_{x \in \mathbf{dom} f} (y^T x - f(x))$$

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Ax \preceq b, \quad Cx = d \end{array}$$

dual function

$$g(\lambda, \nu) = \inf_{x \in \mathbf{dom} f_0} \left[f_0(x) + (A^T \lambda + C^T \nu)^T x \right] - b^T \lambda - d^T \nu$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

if conjugate of f_0 is known, it can simplify the derivation of dual

examples:

- entropy: $f_0(x) = \sum_{i=1}^n x_i \log x_i$, $f_0^*(y) = \sum_{i=1}^n e^{y_i-1}$
- \blacksquare quadratic: $f_0(x) = (1/2)||x a||_2^2$, $f_0^*(y) = (1/2)||y||_2^2 + y^T a$

Ouality Jitkomut Songsiri 32 / 43

Importance of KKT conditions

Importance of KKT conditions

many important roles of KKT conditions

■ it is possible to solve KKT analytically in some problems

minimize:
$$(1/2)x^TPx + q^Tx + r$$
 subject to $Ax = b$ (where $P \in \mathbf{S}_+^n$)

KKT conditions are system of linear equations: $Ax^* = b$ and $Px^* + q + A^T\nu^* = 0$

- many algorithms for convex optimization can be interpreted as methods for solving KKT conditions
- the dual problem can be easier to solve than the primal once (λ^*, ν^*) is obtained, it is possible to compute a primal optimal from a dual optimal solution
- (λ^*, ν^*) provide information for perturbation and sensitivity analysis how the primal objective changes under a problem parameter perturbation

Duality

Solving the primal solution via the dual

suppose we have strong duality and a dual optimal $(\lambda^\star, \nu^\star)$ is known

- lacksquare any primal optimal point is also a minimizer of $L(x,\lambda^\star,\nu^\star)$
- suppose that the solution of

minimize
$$L(x, \lambda^*, \nu^*) := f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x)$$
 (1)

is unique (for example, when $L(x, \lambda^*, \nu^*)$ is strictly convex in x)

- if the solution of (1) is primal feasible, it must be primal optimal
- lacksquare if the solution of (1) is not primal feasible, then no primal optimal point can exist
 - that is, the primal optimum is not attained

ty Jitkomut Songsiri 35 / 43

Entropy maximization

minimize
$$f_0(x) := \sum_{i=1}^n x_i \log x_i$$

subject to $Ax \leq b$
 $\mathbf{1}^T x = 1$

dual problem:

$$\begin{array}{ll} \text{maximize}_{\lambda,\nu} & -b^T\lambda - \nu - e^{-\nu - 1} \sum_{i=1}^n e^{-a_i^T\lambda} \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

- assume (weak) Slater's condition holds; hence, strong duality holds
- suppose we have solved the dual and obtain $(\lambda^{\star}, \nu^{\star})$ to form

$$L(x, \lambda^{\star}, \nu^{\star}) = \sum_{i=1}^{n} x_i \log x_i + \lambda^{\star T} (Ax - b) + \nu^{\star} (\mathbf{1}^T x - 1)$$

which is strictly convex on \mathcal{D} and bounded below

< ロト 4 個 ト 4 恵 ト 4 恵 ト 夏 - 夕 Q ()

Entropy maximization

 \blacksquare minimization of $L(x,\lambda^\star,\nu^\star)$ has a unique solution x^\star given by

$$x^* = 1/\exp(a_i^T \lambda^* + \nu^* + 1), \quad i = 1, 2, \dots, n$$

 $(a_i \text{ are the columns of } A)$

- \blacksquare if x^* is primal feasible, it must be the optimal solution of the primal problem
- lacktriangle if x^{\star} is not primal feasible, then the primal optimum is not attained

ality Jitkomut Songsiri 37 / 43

Sensitivity analysis

a perturbed optimization problem:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq u_i, \quad i=1,2,\ldots,m \\ & h_i(x) = v_i, \quad i=1,2,\ldots,p \end{array}$$

$$p^\star(u,v) = \inf \; \{ \; f_0(x) \mid \exists x \in \mathcal{D}, \; f_i(x) \leq u_i, i=1,2,\ldots,m, \; h_i(x) = v_i, i=1,2,\ldots,p \; \}$$

- when $u_i \geq 0$, we *relax* the *i*th inequality constraint
- when $v_i \neq 0$, we change the equality constraint
- lacksquare $p^{\star}(u,v)$ is defined the optimal value of the perturbed problem
- we have $p^{\star}(0,0) = p^{\star}$ (optimal value of unperturbed system)
- fact: when the original problem is convex, p^* is a convex function of u and v

(□ > ∢∰ > ∢ ≧ > ∢ ≧ > ≧ • ?) <

Global inequality

for all u and v, it can be shown that

$$p^{\star}(u,v) \ge p^{\star}(0,0) - \lambda^{\star T} u - \nu^{\star T} v$$

- if λ_i^* is large and $u_i < 0$ (tighten the *i*th inequality), then $p^*(u, v)$ is guaranteed to increase greatly
- if λ_i^* is small and $u_i > 0$ (loosen the *i*th inequality), then $p^*(u, v)$ will not decrease much
- \blacksquare if ν_i^\star is large and positive and $v_i<0$), then $p^\star(u,v)$ is guaranteed to increase greatly
- if ν_i^{\star} is small and positive and $v_i > 0$, or if ν_i^{\star} is small and negative and $v_i < 0$, then $p^{\star}(u,v)$ will not decrease much

4日 > 4団 > 4 畳 > 4 畳 > 1 里 9 9 ()

39 / 43

Duality

Local sensitivity analysis

suppose $p^*(u, v)$ is differentiable at u = 0, v = 0

if strong duality holds, the optimal dual $\lambda^{\star}, \nu^{\star}$ are related to

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \quad \nu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

- tightening the *i*th inequality ($u_i \le 0$ and small) yields an *increase* in p^* of approximately $-\lambda_i^* u_i$
- loosening the *i*th inequality ($u_i \ge 0$ and small) yields an *decrease* in p^* of approximately $\lambda_i^* u_i$

Duality

Exercises

Exercises

derive the dual problem and KKT conditions; some of them has x^{\star} in closed-form

- \blacksquare minimize $(1/2)\|x-v\|_2^2$ subject to $x_1=x_2=\cdots=x_N$
- $extbf{2}$ minimize $(1/2)\|x-v\|_2^2$ subject to $a^Tx \leq b$ (given that $a^Tv \geq b$)
- \blacksquare minimize $(1/2)\|Ax-b\|_2^2$ subject to $x\succeq 0$

ty Jitkomut Songsiri 42 / 43

References

duality theory

- I S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Press, 2004
- L. Vandenberghe, Lecture notes of EE236B Convex Optimization, UCLA

algorithms for SVM

- Chih-Chung Chang and Chih-Jen Lin, libsvm: a Library for support vector machines, https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
- Rong-En Fan et.al., liblinear: a Library for large linear classifiers, https://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
- Cho-Jui Hsieh et.al, Dual coordinate descent method for large-scale linear SVM, https://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf
- 4 fitcsvm by MATLAB,
 https://www.mathworks.com/help/stats/fitcsvm.html