


Outline

B EEN

~ o

Lagrangian and dual function

Dual problem

Slater’s condition

Karush-Kuhn-Tucker (KKT) conditions
Projection onto probability simplex
Soft-margin SVM

Conjugate function

Importance of KKT conditions

Exercises

Duality Jitkomut Songsiri

2/ 43



Lagrangian and dual function

Duality

Jitkomut Songsiri Lagrangian and dual function

40> «F>r « >

«E>»

nae



(mathematical) optimization problem

minimize  fo(x)
subject to  fi(x) <0, i=1,...,m
hi(x)=0, i=1,....p

x = (x1,...,x,): optimization variable
fo: R™ — R: objective function (generally, nonlinear)
fi :R®" = R,i=1,...,m: inequality constraint functions

h; : R" = R,i=1,...,p: equality constraint functions
domain of the problem: D =\ dom f; N(_, domh;
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Lagriangian L : R" x R™ x R” - R with dom L =D x R" x RP
P

L(z,\v) —1—2)\ fi(z +ZVihi(ﬂU)
i=1

L is a weigthed sum of objective and constraint functions
A € R is the Lagrange multiplier corresponding to inequality constraints

v € R? is the Lagrange multiplier corresponding to equality constraints
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Lagrange dual function: g : R™ x R? — R,

— inf L
g(\v) inf (z,\,v)

m p
= inf <fo($) +D Nifil@) + ) Vz‘hi(%))
=1 =1

g is concave and can be —oo for some A, v

*

lower bound property: if A\ = 0 then g(A\,v) <p
if T is feasible and A = 0 then

fol#) 2 L@ A, v) 2 inf Lz, \v) = g(\v)

minimizing over all feasible & gives p* > g(\, v)
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problem: minimize (1/2)z”x subject to Az = b

dual function
Lagrangian is L(z,v) = (1/2)2x + vT(Ax — b)

to minimize L over x, set gradient equal to zero:

Vol(z,v) =2+ ATv=0 = z=-ATv
substitute = in L to obtain g

g(v) = L(=ATv,v) = —(1/2wT AATY — b1y
which is concave in v

lower bound property: p* > —(1/2)vT AATY — b for all v
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minimize c'x
subjectto Ax=b, x>0

Lagrangian is
Lz, \v) = ca+vT(Az—b) - Nz
b+ (e+ ATv - Nz

since L is affine in =
by, ATy —X4+¢=0

g\, v) =inf L(z,\,v) = { _
4 —00, otherwise

g is linear on affine domain {(\,v) | ATv — X+ ¢ =0}, hence concave

lower bound property: p* > —b'v if ATv4+¢>0
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Lagrange dual problem
maximize g(\,v)
subjectto A =0

we find the best lower bound on p* obtained from Lagrange dual function

a convex problem (even if the primal is non-convex); optimal value denoted d*

A, v are dual feasible if A > 0 for (\,v) € domg

often simplified by making implicit constraint (\, ) € dom g explicit
example: standard form LP and its dual

T

minimize ¢ x maximize —blv
subjectto Az =10 subject to ATw 4+ ¢ >0
x>0

(dual of LP is an LP)
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weak duality: d* < p* (always holds for convex and non-convex problems)
can be used to find non-trivial lower bounds for difficult problems

if the primal in unbounded below (p* = —oc0), then d* = —oo (the dual is
infeasible)

if the dual is unbounded above (d* = o0), we have p* = oo (the primal is
infeasible)

p* — d* is called the duality gap and always non-negative
strong duality: d* = p*
strong duality does not hold in general but usually holds for convex problems

conditions that guarantee strong duality in convex problems are called constraint
qualifications
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strong duality holds for a convex problem

minmize  fo(x)
subject to  fi(z) <0, i=1,2,....m
Ax =b

if it is strictly feasible, i.e.,

JreintD: fi(z)<0, i=1,2,...,m, Az=>b

strong duality also guarantees that the dual optimum is attained (if p* > —o0)
3 a dual feasible (\*,v*) with g(A*,v*) =d* = p*
weak form of Slater's condition: strong duality holds when some of f;'s are affine
fi(z) <0, i=1,2,....k, fi(x)<0, i=k+1,....,m, Az=1b
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primal problem (P)

minimize c¢lx

subject to Ax <b

dual function

TN, ifATA+c=0

g(\) = inf[(c+ ATV Tz —bT'\] = { _
x —o00,  otherwise

dual problem (D)
maximize —bT\
subject to ATA4+¢=0, >0

from Slater's condition: p* = d* if Az < b for some Z (primal is feasible)
in fact, p* = d* except when primal and dual are infeasible
we can verify that the Lagrange dual of problem D is equivalent to the primal P
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primal problem (assume P € S} )

minimize 27 Px
subject to Ax <b

dual function

1
g(\) =inf (z" Pz + \'(Az—b)) = —ZATAP‘lAT)\ — T\

xT

dual problem
maximize —(1/4)ATAP7TAT) — b7\
subjectto A >0

from Slater's condition: p* = d* if AZ < b for some &
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assume strong duality holds, z*

fo(x®) =g\, v*) = mf ( )+ Z A fi(z) + Z Vﬁh@))
=1
< folah) + Z X fi(a®) + Z vihi(z*)
i=1 i=1

< fo(z*) (because h;(z) =0 and \;f;(z*) < 0)

is primal optimal, (A*,v*) is dual optimal

hence, the two inequalities hold with equality and we must have
x* minimizes L(x, \*, v*)
A fi(e*) =0fori=1,2,...,m (known as complementary slackness)

A >0= fi(z*) =0, fi(z")<0= A =0
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for a problem with differentiable f;, h;, the four conditions are called KKT
primal feasibility: f;(z) <0,i=1,...,m, h;=0,i=1,...,p
dual feasiblity: A > 0
complementary slackness: \;f;(z) =0,i=1,2,...,m
zero gradient of Lagrangian with respect to x

V folw +Z/\ Vfi(x +Zuzwl

KKT as necessary conditions: if strong duality holds and (x*, A\*, v*) are optimal,
then they must satisfy the KKT conditions (follow from page 16)
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if z, :\, U satisfy KKT for a convex problem, then they are optimal:
from the 1st KKT: Z is primal feasible
from the 2nd KKT ()\; > 0) and convexity: L(x,\,#) is convex in x
from the 4th KKT: & minimizes L(z, A, 7) over z = g(\, 7)) = L(&, \, D)
from the 3rd KKT (complementary slackness) and h;(Z) = 0

1 =1

g()\,ﬁ) = L(£75‘a17) = fO(i') +

IR

(2

conclusion: Z and (:\,17) have zero duality gap and are primal and dual optimal

for convex problems, KKT conditions are sufficient for optimality
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if Slater’s condition is satisfied for convex problems
from page 13, it implies duality gap is zero and the dual optimum is attained

so, z is optimal if and only if there are (\,v), together with z, satisfy the KKT
conditions
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consider the problem of projecting a onto the probability simplex:

minimize (1/2)||z —al|3 subjectto >0, 1Tz =1
x

Lagrangian: L(z,\,v) = (1/2)||z —al|3 — (A —v1)Tz —v
use the fact that (1/2)||z — a3 — yTz is minimized over = when = = y + a and

the minimum is —(1/2)(|y||2 — v"a
the dual problem is QCQP

maxi)\mize g\ v) = —(1/2)IN = v1|3 = (A —v1)Ta — v subject to A >0

KKT conditions:
primal feasibility: z* = 0, 1T2* =1, dual feasibility: \* = 0,
zero-gradient: 2* = \* — v*1 + a, complimentary slackness: \;x; =0, Vi
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the dual probelm can be further simplified
—g(\v) = 1/2)|A = (1 =)l +v — (1/2)llal; = g(\v)
(completing square in A) — which can be minimized over A first

1- 1—a>0
)\*:{V G ovima=t s max(0,v1 —a) = (vl—a)"

0, otherwise
the dual problem becomes the minimization of g(A*,v) given by

g\ v) = (1/2)[I(1 — )t = (V1 = )3 +v — (1/2)]al3
= (1/2)[[(a = v1)*[I3 + v — (1/2)]Jall3

(we have used z = 2t — 27 and 27 = —min(0, 2) = max(0, —z) = (—2)7)
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there is an efficient way to find v*; one of them is to find the subgradient
0§ =(a—v1)"flg+1=

where g = (91,92,...,9n) and gy = —1 if ax — v > 0 and g = 0 otherwise

then zero is one of the subgradients (optimality condition) — find v such that
0§ =1-sum(a—v1)tT =0
once we obtain v*, we solve z* from KKT

=N —-v"14+a=0"-a)t -1 -a)=(a—v1)"
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problem parameters: z; € R" and y; € {1,—1} fori=1,...,N,C >0

optimization variables: w € R",b ¢ R,z ¢ RV

(] 2Tw+b=1

tTw+b=0

vTw+b=—1

minimize  (1/2)|lw||3 + C17 2
subject to yi(xiTw+b) >1—2z, 1=1,...,N
z>=0

z; is called a slack variable, allowing some of the hard constraints to be relaxed
if 27 > 0, the ith data point is relaxed to lie on the wrong side of its margin

> ;2" is the total distance of points on the wrong side of their margin (called
margin errors)

the penalty parameter C' controls the trade-off between maximizing the margin
and the margin errors
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dual problem of soft-margin SVM: with variable @ € R

maximize, 17a — (1/2) 2N, Z ", oyl T
subject to Zf\ilalyz—(), 0<o; <C, i=1,2,...,N

let @ and A be Lagrange multipliers (w.r.t. 1st and 2nd inequalities on page 26)
L(w,b, z,a, \) ]w||2 Zazylx w—bZalyl +(C1l—a-NTz24+1"a
note that L is quadratic in w: ||wl||3 — d”w and L is linear in b and z

inf,, L occurs when w = d = ), a;y;x; and the infimum is

—(1/2)[1d])3 = —(1/2)d"d = —(1/2) Y > ciajyiyja] z;

g
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since L is linear in z,b, inf, L and inf, L exist (and are zero) only when
>oiyi=0, Cl—a—-A=0

dual function: g(a) = —(1/2) 32, >, aioagyiyielz; + 1o
KKT conditions of SVM primal problem are

primal feasiblity: yi(zFw+b) >1—2, i=1,2,...,N,
z>=0
dual feasiblity: Zfil o;y; = 0,

0<o<C, i=1,2,...,N

or equivalently, A =0, a=C1—- X\
zero-gradient of L: w = Efil QYT
complementary slackness:  a;[y; (27w +b) — (1 — 2)] =0

Nz =0, i=1,2,...,N
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dual feasibility and complementary slackness characterize three groups of points

ai=C—X, Nzi=0, ayi(zlw+b) —(1-2)]=0

correct side of the margin o * o O Tyip=1
ai — 07 )\Z — C, ZZ‘ — O, yz(xZTw + b) 2 1 o. ° /// 2Tw+b=0

az=0C,23 >0

edge Of the margin s 2Tw+b=-1

O<a; <C, \i>0, 2z =0, yi(szw—i-b):I

wrong side of the margin * e
oa; =C, N\ =0, y@-(w;frw—i—b) =1-—2z, 2z >0
the observations ¢ for which «; > 0 are called support vectors because w is a
linear combination of only those terms: w = Zivzl QY T;
margin points: y;(zlw +b) =1 < b= —zlw + y; (averaging all solutions)
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a compact form of SVM dual

minimize  (1/2)a’Ga — 1T«
subject to o’y =0, 0<a=C1

where G € RVXV, Gij = (yizs, yjxj) (called a Gram matrix); clearly, G = 0
it is a QP with a linear constraint and a box constraint
this formulation is called C-SVC (C-support vector classification)

available algorithms:

quadratic programming solvers (active-set, interior-point) on the dual

sequential minimal optimization (SMO) on the dual (used in fitcsvm by MATLAB
and libsvm library, which supports nonlinear classifiers)

coordinate descent on the dual (large-scale linear SVM, used in liblinear)
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conjugate function: f*(y) = sup,cdom r(¥’ = — f(z))

dual function

g()‘71/) =

minimize  fo(x)
subject to Az <b, Cx=d

inf  [fo(z) + (ATA+ CTv)Ta] —bTA —dTv

z€dom fo

—f(=ATXN = CTv) — b A —dTv

if conjugate of fy is known, it can simplify the derivation of dual

examples:

entropy: fo(z) =Y wilogz;, fi(y) = evi~l
quadratic: fo(x) = (1/2)[lz — all3, f5(y) = (1/2)llyl5 + y"a

Jitkomut Songsiri

32/ 43



Importance of KKT conditions

Duality

Jitkomut Songsiri Importance of KKT conditions

40> «Fr «

it

v

a
U

nae



many important roles of KKT conditions

it is possible to solve KKT analytically in some problems
minimize: (1/2)2” Pz +q¢ "z +r subjectto Az =b (where P €S")

KKT conditions are system of linear equations: Az* = b and Pz* + ¢+ ATv* =0

many algorithms for convex optimization can be interpreted as methods for
solving KKT conditions

the dual problem can be easier to solve than the primal — once (\*,v*) is
obtained, it is possible to compute a primal optimal from a dual optimal solution

(X*,v*) provide information for perturbation and sensitivity analysis — how the
primal objective changes under a problem parameter perturbation
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suppose we have strong duality and a dual optimal (A*,v*) is known
any primal optimal point is also a minimizer of L(z, \*, ")

suppose that the solution of

m p
minimize L(z, \*,v*) := fo(z) + Z A fi(x) + Z vihi(x) (1)
i=1 i=1
is unique (for example, when L(z, \*,v*) is strictly convex in x)
if the solution of (1) is primal feasible, it must be primal optimal

if the solution of (1) is not primal feasible, then no primal optimal point can exist
— that is, the primal optimum is not attained
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minimize fo(ﬂc) e 2?21 z; log z;
subject to Az <b
17z =1
dual problem:
maximize,\w TN —p —e V1 Z?:l e_aiTA
subject to A>0

assume (weak) Slater's condition holds; hence, strong duality holds
suppose we have solved the dual and obtain (A*,v*) to form

Lz, \*,v%) = Z zilogz; + N (Azx —b) + v (172 — 1)
i=1

which is strictly convex on D and bounded below
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minimization of L(xz, \*,v*) has a unique solution z* given by
¥ =1/exp (eI XN +v*+1), i=1,2,...,n

(a; are the columns of A)
if * is primal feasible, it must be the optimal solution of the primal problem

if * is not primal feasible, then the primal optimum is not attained
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a perturbed optimization problem:
minimize  fo(
subject to  fi(x)

hi(

p*(u,v) =inf { fo(x) | Iz € D, fi(x) <wi=1,2,...

when u; > 0, we relax the ith inequality constraint

when v; # 0, we change the equality constraint

p*(u,v) is defined the optimal value of the perturbed problem

we have p*(0,0) = p* (optimal value of unperturbed system)

fact: when the original problem is convex, p* is a convex function of u and v
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for all © and v, it can be shown that

p*(u,v) > p*(0,0) = Ny — Ty

if \* is large and u; < O (tighten the ith inequality), then p*(u,v) is guaranteed
to increase greatly

if ¥ is and u; > 0 (loosen the ith inequality), then p*(u,v)

much
if v* is large and positive and v; < 0 ), then p*(u, v) is guaranteed to increase
greatly

if v is small and positive and v; > 0, or if v is small and negative and v; <0,
then p*(u, v) will not decrease much
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suppose p*(u,v) is differentiable at u = 0,v =0

if strong duality holds, the optimal dual \*, v* are related to

e 0.0 9(0,0)

¢ auz ’ ¢ avi

tightening the ith inequality (u; < 0 and small) yields an increase in p* of
approximately — A\ u;

loosening the ith inequality (u; > 0 and small) yields an decrease in p* of
approximately \Ju;
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derive the dual problem and KKT conditions; some of them has x* in closed-form
minimize (1/2)||z — v||3 subject to 1 = x5 = --- = w1y
minimize (1/2)||z — v||3 subject to a’x < b (given that a’v > b)
minimize (1/2)||Az — b||3 subject to z = 0
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duality theory
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Press, 2004
L. Vandenberghe, Lecture notes of EE236B — Convex Optimization, UCLA

algorithms for SVM

Chih-Chung Chang and Chih-Jen Lin, libsvm: a Library for support vector
machines, https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

Rong-En Fan et.al., 1iblinear: a Library for large linear classifiers,
https://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

Cho-Jui Hsieh et.al, Dual coordinate descent method for large-scale linear SVM,
https://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf

fitcsvm by MATLAB,
https://www.mathworks.com/help/stats/fitcsvm.html
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