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a general linear program has the form

minimize clz
subject to Gz < h

Az =D
where G € R™*" and A € RP*"

n optimization variables: z = (z1,...,z,) € R"

the objective function: ¢’z = o G

the inequality constraint: Z?Zl gijx; < h;fori=1,2,...,m
the equality constraint: > 0 a;jo; = b; fori=1,2,....p
the objective function and constraint functions are linear in x

called linear program (LP) or linear optimization problem
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LP can also be represented in another form
minimize c¢lz
subject to Ax =b
x>0

using the facts that
any x € R can be written x = 2+ — 2~
aTx§b<:>aTa:+s:b, s=0

note: we assume A is fat and has full row rank

exercise: transform into the two general forms

minimize 2x1 — x9 + T3
subject to —3z1 + 9 — 523 <3
229 + Txs > 10
3x9 +4x3 =2
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if z € Z™ (integers) the problem on page 4 is called an integer linear programming
(ILP)

if some components of x are integers and some are real numbers, the problem is called
a mixed integer linear programming

examples of integer programing:
x represents quantities, countable units (pieces)
number of sale products
number of persons assigned on a work schedule
x € {0,1}: binary integer programming

x is status of a functioning unit in factory, '1" is on, '0’ is off
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hyperplane: solution set of a linear equation with coefficient vector a # 0
{z|aTz =0}

halfspace: solution set of a linear inequality with coefficient vector a # 0
{z|aTz<b}

we say a is the normal vector
polyhedron: solution set of a finite number of linear inequalities

x angbl, aT:r:Sbg, ceey aTbem =1z | Az <b
1 2 m

intersection of a finite number of halfspaces
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ag Qs
Pol Mr""
extreme point of C

a vector x € C is an extreme point (or a vertex) if we cannot find y, z € C both
different from x and a scalar a € [0, 1] such that z = ay + (1 — )z
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LP 1 (left) and LP 2 (right, with non-negative constraints)

\\, Ty —x3=3

minimize ¢z

T

Ty +10=06

subject to z1 + 22 <6
1+ 322 =6 Tr1 — T2 Sg
1+ 322 > 6

T

minimize c'x
subject to x1 + 22 <6

171—1'2§3
x1+3x9 > 6
x1,22 20

LP 1: feasible set is unbounded but the problem is bounded below for some ¢

c=(0,1),z*= c¢=(-1,0),2"*= c=(-1,1),

LP 2: feasible set is a bounded polyhedron
z* = wif
z* = if
x* is not unique if
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the directions of ¢ that lead LP 1 to have z* at vertices + or x

\ e N

SN AN

for other directions of ¢ than the two cases above, the problem is unbounded
below

for 2-dimensional problems, solutions can be sketched graphically
LP properties depend on both the objective direction and the feasible set
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Properties and simple LPs
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refer to the standard form on page 5

an LP may not have a solution (constraints are inconsistent or the feasible set is
unbounded)
we assume A is full row rank; if not, considering Az = b
depending on A, the system could be inconsistent (hence, no extreme points), or
Az = b contains redundant equations, which can be removed

if a standard LP has a finite optimal solution then
a solution can always be chosen from among the vertices of the feasible set

(called basic feasible solutions)
the dual of an LP is also an LP
solutions of some simple LPs can be analytically inspected
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T2 over each of these simple sets

minimize ¢
we can derive an explicit solution of these LPs
box constraint: [ <z < u
probability simplex (or budget allocation): 172 = 1,2 =0
not all budget is used: 17z < 1,2 >0
halfspace: a7z <b

draw the constraint set and inspect the solution for a given ¢
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example 1: functions that involve #; and £, norms
minimize ||Fz — g||1 subject to [|z]lc <1

(minimize a cost measured by 1-norm having a worst-case budget constraint )

by introducing u; imposing the constraint: —u < Fx — g < u; and noting that

m
[Fz =gl =) _|flz— gl <1Tu
i=1

the problem is equivalent to the LP
minimize 17w

subject to —u = Fax — g =X u,
—-1=<z=x1
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finding a probability mass function (pmf) of a discrete random variable y
y takes n possible values as a; fort =1,2,...,nwith 0 <a; <ag <--- < ay
p = (p1,p2,...,pn) is a pmf of y: prob(y =a;) =p; fori=1,2,...,n

given scalar parameters, a € R™, a > 0 and b, find p € R" from the optimization

maximize prob(y > «)
subject to E[y] =b

(find the pmf of y that maximizes the probability and satisfies a given mean)
express the problem as LP with variable p

(recognize that the objective and constraint are linear in p)
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Applications
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piecewise-linear minimization
£1-norm and {..-norm approximation
sparse recovery

separating two sets using hyperplane
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a problem of minimizing a piecewise-linear function is in the form:

qTX‘M alcels
Ty eb
L T g X2
minimize f(z):= ma a; T+ b;
() i=1,2,...,m( g ) oocebs

f:R"™ — Ris called a piecewise-linear function

f is obtained by taking a point-wise maximum of m affine functions (convex)
it is equivalent to LP (with variables = and auxiliary scalar variable t)

minimize t
subject to a;frx—kbi <t, i=12,...,m
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minimize ¢’z subjectto Gz <h

where
a{ —1 —bl
T
Z‘M’C_H’G_ TN R
al  —1 —bm
example: minimize > max{0,alz + b;} (related to ReLU function)
can be cast as an LP
minimize  17¢
subject to 0 <t
a?m—i—bigti, 1=1,2,...,m

with variable ¢ € R™
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given A € R™*" and b € R™
/1-norm approximation: minimize ||Ax — bl|1

equivalent LP:
minimize 17
subjectto —u<Azx—b=<u
with variable = and auxiliary variable u
loo-norm (or Chebyshev) approximation: minimize ||Az — b/

equivalent LP:
minimize t
subjecto —f1 < Ax—b=<tl

with variable x and auxiliary variable ¢

Jitkomut Songsiri 20 /33



compare histograms of residuals Az — b for

x)s = argmin | Az — blle, x; = argmin ||Az — b||1, %o = argmin |[|Az — b~

Hlslograms of residuals

o]l
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example o ~ . resiauals o norm apprOX|mat|on IS concentrated at zero
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fitting f(t) = o + (Bt to data containing 10% outliers

o data,

£1-norm| 7|

f(t)

£o-norm approximation tends to reduce large residuals occurred from outliers
£1-norm has less penalty than /5 when residuals are large; it is more robust to
outliers
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given A € R™*" (sensor matrix) with m < n and y € R™ (measurements)

minimize ||z /

subject to Az =y /

estimate a sparse signal x that gives the model output matched with
measurements

—

the constraint makes sense when A is fat (many feasible points)
equivalent LP (with variables z,u € R™)
minimize 174
subjectto —u =z =<u
Ax =y
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given A € R100x200 4, c R100 \ith yy = Az + noise

the ground-truth signal x has 30 nonzero components
£1-norm estimate is sparse while £o-norm estimate is generally dense
estimated sparsity is close to the true zero locations

true signal
nz =150
sparse signal
nz = 100
2-norm solution
0 20 40 60 80 100 120 140 160 180 200

nz =200
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£1-norm estimate is generally sparser than £s-norm estimate

Histogram of solutions
T T

[¢;-norm solution|
[1¢s-norm solution|

05— —

Normalized frequency
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given: a set of points {x1,..., 2N} with binary labels y; € {—1,1}

problem: find a hyperplane that strictly separates the two data classes

Wb

wlz; +b>0, if y =1
wlz; +b <0, if y; = —1

Yi (% +b) 7 1
the two sets of inequalities can be merged into a single set of IV inequalities

yi(wai—f—b) >1, 1=1,2,...,N

since the inequality is homogenous in w and b
many feasible solutions can be found (if the two sets are separable)
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when two sets cannot be strictly separable
N

minimize ZZ;max{ 1 —yi(w'x; +b)}

equivalent LP: with variables w € R",b € R,z ¢ RY
minimize 17z
subject to 1 —yi(afw+b) <z, i=12,...,N
z>0, 1=1,2,...,N

no penalization when y;(w”z; +b) > 1

it is a heuristic method for minimizing # of misclassified points
a piecewise-linear minimization problem with variables w, b
related to a soft-margin SVM (but no cost on the hyperplane margin)
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Algorithms
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accept linear programs in standard notation
recognize problems that can be converted to LPs

express the problem in the format required by LP solvers
examples of modeling packages

CVX, YALMIP (on MATLAB)

CVXPY, CVXOPT (on Python)

AMPL
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simplex (by Dantzig): move along the vertices of polyhedron when the objective is
decreasing
interior-point: move through the interior points of the feasible region

many libraries/solvers (both commercial and open-source) on the market
linprog in MATLAB
Pulp or scipy.optimize.linprog in Python
Gurobi
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Sentivity analysis
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perturbed version of the standard LP

minimize c¢Lx

subject to Gx < h+u
Az =b+wv

question: we aim to get information about the sensitivity of the solution with respect
to changes in problem data

how does p*(u,v) of the perturbed problem change upon the values of u; and v; ?

if u; > 0, the inequality is loosen, but if u; < 0, the inequality is tighten
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the analysis requires the duality result of LP

A, v are Lagrange mulipliers corresponding to inequality and equality, respective

global analysis: we can derive a lower bound of the perturbed optimal value
p*(u,v) > p*(0,0) = XTu — Ty
local analysis: Lagrange multipliers give the rate of change in p*(u,v) at (0,0)

W00 . w00,

ou; ov;

N
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