

Outline

- 1 Standard form
- 2 Properties and simple LPs
- 3 Applications
- 4 Algorithms
- 5 Sentivity analysis

Standard form

Standard form

a general linear program has the form

minimize
$$c^T x$$

subject to $Gx \leq h$
 $Ax = b$

where $G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$

- \blacksquare n optimization variables: $x=(x_1,\ldots,x_n)\in \mathbf{R}^n$
- the objective function: $c^T x = \sum_{i=1}^n c_i x_i$
- the inequality constraint: $\sum_{j=1}^{n} g_{ij}x_j \leq h_i$ for $i=1,2,\ldots,m$
- the equality constraint: $\sum_{i=1}^{n} a_{ij}x_j = b_i$ for $i = 1, 2, \dots, p$
- lacktriangle the objective function and constraint functions are *linear* in x

called linear program (LP) or linear optimization problem

Another standard form

LP can also be represented in another form

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \succeq 0 \end{array}$$

using the facts that

- \blacksquare any $x \in \mathbf{R}$ can be written $x = x^+ x^-$
- $a^T x \le b \iff a^T x + s = b, \ s \succeq 0$

note: we assume A is fat and has full row rank

exercise: transform into the two general forms

$$\begin{array}{ll} \text{minimize} & 2x_1 - x_2 + x_3 \\ \text{subject to} & -3x_1 + x_2 - 5x_3 \leq 3 \\ & 2x_2 + 7x_3 \geq 10 \\ & 3x_2 + 4x_3 = 2 \end{array}$$

Mixed integer programming

if $x \in \mathbf{Z}^n$ (integers) the problem on page 4 is called an **integer linear programming** (ILP)

if some components of x are integers and some are real numbers, the problem is called a **mixed integer linear programming**

examples of integer programing:

- x represents quantities, countable units (pieces)
- number of sale products
- number of persons assigned on a work schedule
- **•** $x \in \{0,1\}$: binary integer programming
- \blacksquare x is status of a functioning unit in factory, '1' is on, '0' is off

Geometrical interpretation

lacktriangle hyperplane: solution set of a linear equation with coefficient vector a
eq 0

$$\{x \mid a^T x = b \}$$

lacktriangle halfspace: solution set of a linear inequality with coefficient vector a
eq 0

$$\{x \mid a^T x \le b \}$$

we say a is the **normal vector**

polyhedron: solution set of a finite number of linear inequalities

$$\{x \mid a_1^T x \le b_1, \ a_2^T x \le b_2, \dots, \ a_m^T x \le b_m \} = \{x \mid Ax \le b \}$$

intersection of a finite number of halfspaces

extreme point of C

a vector $x \in \mathcal{C}$ is an extreme point (or a vertex) if we cannot find $y,z \in \mathcal{C}$ both different from x and a scalar $\alpha \in [0,1]$ such that $x = \alpha y + (1-\alpha)z$

Solving LPs graphically

LP 1 (left) and LP 2 (right, with non-negative constraints)

$$\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & x_1+x_2 \leq 6 \\ & x_1-x_2 \leq 3 \\ & x_1+3x_2 \geq 6 \end{array}$$

$$\begin{array}{ll} \text{minimize} & c^Tx\\ \text{subject to} & x_1+x_2\leq 6\\ & x_1-x_2\leq 3\\ & x_1+3x_2\geq 6\\ & x_1,x_2\geq 0 \end{array}$$

 $lue{}$ LP 1: feasible set is unbounded but the problem is bounded below for some c

$$c = (0,1), x^* = c = (-1,0), x^* = c = (-1,1), x^* = c = (1,3), x^* = (1,3),$$

LP 2: feasible set is a bounded polyhedron

$$x^* = x$$
 if

$$x^* = x$$
 if

$$lacksquare x^{\star}$$
 is not unique if

$$x^{\star} = x$$
 if

$$\iota - x$$

$$x^{\star} = \underline{x}$$
 if

the directions of c that lead LP 1 to have x^* at vertices x or x

- \blacksquare for other directions of c than the two cases above, the problem is unbounded below
- for 2-dimensional problems, solutions can be sketched graphically
- LP properties depend on both the objective direction and the feasible set

Properties and simple LPs

Properties

refer to the standard form on page 5

- an LP may not have a solution (constraints are inconsistent or the feasible set is unbounded)
- lacksquare we assume A is full row rank; if not, considering Ax=b
 - \blacksquare depending on A, the system could be inconsistent (hence, no extreme points), or
 - ullet Ax=b contains redundant equations, which can be removed
- if a standard LP has a finite optimal solution then

a solution can always be chosen from among the vertices of the feasible set

(called basic feasible solutions)

- the dual of an LP is also an LP
- solutions of some simple LPs can be analytically inspected

Simple linear programs

minimize c^Tx over each of these simple sets

we can derive an explicit solution of these LPs

- **box constraint:** $l \leq x \leq u$
- **probability simplex** (or budget allocation): $\mathbf{1}^T x = 1, x \succeq 0$
- not all budget is used: $\mathbf{1}^T x \leq 1, x \succeq 0$
- **a** halfspace: $a^T x \leq b$

draw the constraint set and inspect the solution for a given c

Some problems may not look like an LP

example 1: functions that involve ℓ_1 and ℓ_∞ norms

minimize
$$||Fx - g||_1$$
 subject to $||x||_{\infty} \le 1$

(minimize a cost measured by 1-norm having a worst-case budget constraint) by introducing u; imposing the constraint: $-u \leq Fx - g \leq u$; and noting that

$$||Fx - g||_1 = \sum_{i=1}^{m} |f_i^T x - g_i| \le \mathbf{1}^T u$$

the problem is equivalent to the LP

Example

finding a probability mass function (pmf) of a discrete random variable y

- y takes n possible values as a_i for $i=1,2,\ldots,n$ with $0 < a_1 < a_2 < \cdots < a_n$
- $\mathbf{p} = (p_1, p_2, \dots, p_n)$ is a pmf of y: $\mathbf{prob}(y = a_i) = p_i$ for $i = 1, 2, \dots, n$

given scalar parameters, $a \in \mathbf{R}^n$, $\alpha > 0$ and b, find $p \in \mathbf{R}^n$ from the optimization

(find the pmf of y that maximizes the probability and satisfies a given mean)

express the problem as LP with variable p

(recognize that the objective and constraint are linear in p)

Applications

Linear programs in applications

- piecewise-linear minimization
- lacksquare ℓ_1 -norm and ℓ_∞ -norm approximation
- sparse recovery
- separating two sets using hyperplane

Piecewise-linear minimization

a problem of minimizing a piecewise-linear function is in the form:

$$\text{minimize} \quad f(x) := \max_{i=1,2,\dots,m} (a_i^T x + b_i)$$

 $f: \mathbf{R}^n \to \mathbf{R}$ is called a **piecewise-linear** function

- $lue{f}$ is obtained by taking a point-wise maximum of m affine functions (convex)
- lacktriangleright it is equivalent to LP (with variables x and auxiliary scalar variable t)

minimize
$$t$$
 subject to $a_i^T x + b_i \leq t, \quad i = 1, 2, \dots, m$

Piecewise-linear minimization

minimize $c^T z$ subject to $Gz \leq h$

where

$$z = \begin{bmatrix} x \\ t \end{bmatrix}, c = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, G = \begin{bmatrix} a_1^T & -1 \\ a_2^T & -1 \\ \vdots & \vdots \\ a_m^T & -1 \end{bmatrix}, h = \begin{bmatrix} -b_1 \\ -b_2 \\ \vdots \\ -b_m \end{bmatrix}$$

example: minimize $\sum_{i=1}^{m} \max\{0, a_i^T x + b_i\}$

(related to ReLU function)

can be cast as an LP

minimize
$$\mathbf{1}^T t$$
 subject to $0 \leq t$ $a_i^T x + b_i \leq t_i, \quad i = 1, 2, \dots, m$

with variable $t \in \mathbf{R}^m$

19 / 33

ℓ_1 -norm and ℓ_∞ -norm approximations

given
$$A \in \mathbf{R}^{m \times n}$$
 and $b \in \mathbf{R}^m$

• ℓ_1 -norm approximation: minimize $||Ax - b||_1$

equivalent LP:

with variable x and auxiliary variable u

■ ℓ_{∞} -norm (or Chebyshev) approximation: minimize $\|Ax - b\|_{\infty}$

equivalent LP:

$$\begin{tabular}{ll} minimize & t \\ subjecto & -t{\bf 1} \preceq Ax - b \preceq t{\bf 1} \\ \end{tabular}$$

with variable x and auxiliary variable t

ℓ_1 - and ℓ_∞ -norm approximation results

compare histograms of residuals Ax - b for

$$x_{ls} = \operatorname{argmin} \|Ax - b\|_2, \quad x_1 = \operatorname{argmin} \|Ax - b\|_1, \quad x_{\infty} = \operatorname{argmin} \|Ax - b\|_{\infty}$$

example of $A \in \mathbf{R}^{200 \times 100}$: residuals of 1-norm approximation is concentrated at zero

Estimation with outliers

fitting $f(t) = \alpha + \beta t$ to data containing 10% outliers

- lacksquare ℓ_2 -norm approximation tends to reduce large residuals occurred from outliers
- lacksquare ℓ_1 -norm has less penalty than ℓ_2 when residuals are large; it is more robust to outliers

Sparse recovery

given
$$A \in \mathbf{R}^{m \times n}$$
 (sensor matrix) with $m < n$ and $y \in \mathbf{R}^m$ (measurements)

$$\begin{array}{ll} \text{minimize} & \|x\|_1 \\ \text{subject to} & Ax = y \end{array}$$

- lacksquare estimate a sparse signal x that gives the model output matched with measurements
- \blacksquare the constraint makes sense when A is fat (many feasible points)
- equivalent LP (with variables $x, u \in \mathbf{R}^n$)

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T u \\ \text{subject to} & -u \preceq x \preceq u \\ & Ax = y \end{array}$$

23 / 33

Example of sparse signal estimation

given
$$A \in \mathbf{R}^{100 \times 200}, y \in \mathbf{R}^{100}$$
 with $y = Ax + \text{noise}$

- lacktriangle the ground-truth signal x has 30 nonzero components
- ℓ_1 -norm estimate is sparse while ℓ_2 -norm estimate is generally dense
- estimated sparsity is close to the true zero locations

ℓ_1 -norm estimate is generally sparser than ℓ_2 -norm estimate

25 / 33

Seperating two sets using hyperplane

given: a set of points $\{x_1,\ldots,x_N\}$ with binary labels $y_i\in\{-1,1\}$

problem: find a hyperplane that strictly separates the two data classes

the two sets of inequalities can be merged into a single set of N inequalities

$$y_i(w^T x_i + b) \ge 1, \quad i = 1, 2, \dots, N$$

since the inequality is homogenous in w and b many feasible solutions can be found (if the two sets are separable)

Linear separation of non-separable sets

when two sets cannot be strictly separable

$$\begin{aligned} & \underset{w,b}{\text{minimize}} & \sum_{i=1}^{N} \max\{0, 1 - y_i(w^Tx_i + b)\} \\ & \text{equivalent LP: with variables } w \in \mathbf{R}^n, b \in \mathbf{R}, z \in \mathbf{R}^N \\ & \text{minimize} & \mathbf{1}^Tz \\ & \text{subject to} & 1 - y_i(x_i^Tw + b) \leq z_i, \quad i = 1, 2, \dots, N \\ & z_i \geq 0, \quad i = 1, 2, \dots, N \end{aligned}$$

- no penalization when $y_i(w^Tx_i + b) \ge 1$
- it is a heuristic method for minimizing # of misclassified points
- lacksquare a piecewise-linear minimization problem with variables w,b
- related to a soft-margin SVM (but no cost on the hyperplane margin)

Algorithms

Modeling softwares

- accept linear programs in standard notation
- recognize problems that can be converted to LPs
- express the problem in the format required by LP solvers
- examples of modeling packages
 - CVX, YALMIP (on MATLAB)
 - CVXPY, CVXOPT (on Python)
 - AMPL

Numerical methods

- simplex (by Dantzig): move along the vertices of polyhedron when the objective is decreasing
- interior-point: move through the interior points of the feasible region
- many libraries/solvers (both commercial and open-source) on the market
 - linprog in MATLAB
 - Pulp or scipy.optimize.linprog in Python
 - Gurobi

Sentivity analysis

Perturbed problem

perturbed version of the standard LP

question: we aim to get information about the sensitivity of the solution with respect to changes in problem data

- \blacksquare how does $p^{\star}(u,v)$ of the perturbed problem change upon the values of u_i and v_i ?
- lacksquare if $u_i>0$, the inequality is loosen, but if $u_i<0$, the inequality is tighten

Global and local sensitivity analysis

the analysis requires the duality result of LP

 $\lambda,
u$ are Lagrange mulipliers corresponding to inequality and equality, respective

global analysis: we can derive a lower bound of the perturbed optimal value

$$p^{\star}(u,v) \ge p^{\star}(0,0) - \lambda^{\star T} u - \nu^{\star T} v$$

 \blacksquare local analysis: Lagrange multipliers give the rate of change in $p^\star(u,v)$ at (0,0)

$$\frac{\partial p^{\star}(0,0)}{\partial u_i} = -\lambda_i^{\star}, \quad \frac{\partial p^{\star}(0,0)}{\partial v_i} = -\nu_i^{\star}$$

References

- L. Vandenberghe, *Linear programming*, Lecture notes of EE236A, UCLA
- D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, 1997
- I. Griva, S.G. Nash, and A. Sofer, Linear and Nonlinear Optimization, 2nd edition, SIAM, 2009
- 4 S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, 2004