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selected topics
power system

energy management system (EMS)
unit commitment
economic dispatch

traffic network
portfolio optimization
regression

linear leasts-quares and its variants
nonlinear least-squares: e.g. data fitting
neural networks

classification: logistic regression, SVM, ANN

regularization techniques: see separate handouts (optim_regularization.pdf)
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optimal load scheduling of generating plants involves 2 problems:
unit commitment: select generating units to meet the demand and provide a
reserve (design over a time period)
economic dispatch: allocate power generation from different units to minimize the
cost of supply under necessary constraints

two possible ways to formulate a problem
basic setting: neglect power system network equations (considered here)
optimization variables are power generations by n units (x)

realistic setting: there are relations among bus voltage (v), power line flow p,
power generations (x), and power demanded (d) by loads (as differential
equations)

variables are v, p, x,d

Jitkomut Songsiri 5 /57



how to design a command to charge/discharge EV battery
how to manage a power consumption according to TOU

information of available power generations is given, e.g., day-ahead solar
irradiance forecasts is obtained first (as a problem parameter)
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setting: there are n generating units and each is indexed by ¢

objective function: operating cost of power plant (generator)

n

f(x1, 2, ... xpn) = Z [ a; + bix; + (1/2)¢;z? ] ($/hour)

i=1
2 (1/2)27Cz + "z +1%a

often assumed as a quadratic function of power output (mainly the cost of fuel)
x = (x1,x2,...,2,) is the power output of n units

a;, b;, c; are positive coefficients of the cost function of ¢th unit

actual unit operating cost can be nonlinear in x;

incremental fuel cost of power plant: C% = b; + c;z; ($/MWh)
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variables and parameters

power output of n generators x = (z1,22,...,Ty) (variable)
power demanded by m loads d = (d1,da, ..., dn) (given parameters)

power flow equation: generated = demand + loss

iwi - idz —6(1‘1,1‘2,. . .,$n) =0
i=1 i=1

generation limit: Ty X T = Tmax
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minimize the cost of operating subject to power flow equation

minimize  f(x) :== > [ai + bz + (1/2)cia? |
subject to > " xi—> it di =0

vector formulation: given C,b,a,d (cost coef: C > 0,a,b,d > 0)

minimize f(z) := (1/2)2”Cz 4+ b2 +17a subject to 17z =17d
x

where
&) bo a2
C = . y b = . y a =
Cn, by, Qnp,
quadratic programming (QP) with a linear equality constraint (solve KKT system)
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minimize the cost of operating subject to power flow equation and generator limits

minimize  f(x) := (1/2)2"Cz +bTx +1"q
subject to 172 =17¢
Tmin X T = Tmax
given parameters: C, b, a,d, Tmin, Tmax
constraint set is smaller than ED problem on page 9, so the optimal value is higher
can be cast as a QP where the inequality constraints can be wrapped up as

1 $min:|
r <
|:_I:| o |:-Tmax

the inequality constraint is a box constraint and MATLAB has an option to
accept this form directly
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minimize the cost of operating subject to power flow equation and generator limits

minimize  f(x) := (1/2)27Cx + bz + 17a
subject to 1Tz —¢(z) —1Td =0
ZTmin X T = Tmax

¢(x) can be modeled as a quadratic function of x (more details in power system
on this assumption)

E(.ﬁlﬁ) = (1/2).1‘TL.%' = (1/2) Zlml‘? + Zliljlbil‘j
i i#]

the problem is nonlinear optimization (due to nonlinearity in ¢(x) )
the problem is more nonlinear when f(x) and ¢(x) are any nonlinear functions
fmincon in MATLAB solves the problem using the interior-point method
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ED1 ED2 ED3

generation limit

power flow eq

power flow eq x w/ line loss

quadratic cost

as the constraint is more stringent, the minimized cost is higher (optimal level set
is bigger)
as long as the cost is quadratic, the ED1 and ED2 are simple quadratic

programming, while ED1 does not require an iterative method, just solve linear
KKT system

the complication of ED3 solely depends on the line loss function
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Optimization in finance

Overview of optimization concept
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setting:
r=(r1,r,...,m) € R"; r; is the (random) return of asset i
the return has the mean 7 and covariance X

optimization variable: x € R™ where x; is the portion to invest in asset i
problem parameters: X = 0,7 € R", v > 0
minimize —7l 2 + vz Sz

subjectto x>0, 1Tz =1

var(rTx) = 27z is the risk of the portfolio
the goal is to maximize the expected return while minimize the risk
v is the risk-aversion parameter controlling the trade-off
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setting: consider returns of n assets in T" periods
R € RT*™: R,; is the gain of asset j in period i (%)
w € R™: asset allocation (or weight) where 17w = 1
r € RT: r; is the return (of all assets) in period i, so r = Rw
total portfolio value in period ¢ is

Vi=Vill+r)1+mr2) - (1 +r—1)

and can be approximated when r; is small as V1 =~ Vi + T avg(r)V;

unlike Markowitz that used statistical property of the returns, here we use a set of
actual (or realized) returns

as seen in Markowitz formulation, w that minimize risk for a given return is called
Pareto optimal
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goal: fix the return to a value p and minimize the risk over all portfolios
the portfolio return is given by avg(r) = (1/7)17 (Rw) = pTw = p
the risk is var[r] = (1/T)|r — avg(r)||?> = (1/T)||r — p1|?

the problem of minimizing the risk with return p is

minimize  ||Rw — p1|?

subject to {1T] w = [1}
put p

with variable w € R™ and parameters R, p, u

(no non-negative constraint in w — this gives quadratic programming with linear
equality)
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setting: ¢ = 1,2,...,n is an intersection node; road network topology is given
problem parameters:

t;j  travel time when traffice is light

a;; the rate at which travel time increases as the traffic gets heavier
¢;j  road capacity (a maximum number of cars per hour)

N aroad network (of interest) has a volume of N cars per hour

optimization variable: z;; is the number of cars entering the road per hour

prior knowledge: T;;, the travel time between node 7, j can be modelled by

Tiq
Tij = tij + i 7————
— @ij/cij

we wish to minimize the total travel time for a volume of N cars per hour
constraints can be derived from physical structures of road network
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minimize fo(ﬂf) = ZZ‘]‘ xijTij(fij) =

subject to zi12+ 13+ x4 =N
Ty — x93 — x24 =0 { “
I
213 + T3 — 234 = 0 ‘ W/

T14 + Tog4 + 234 = N L)
0<wj<cj—e¢ 1<i,5<n

the objective is to minimize the sum of travel times for all cars
the constraints indicate that all cars entering intersection also leave the
intersection

€ > 0 is introduced to avoid the objective function undefined
the objective function is nonlinear in x;;
the constraints are linear equalities and inequalities
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Classification problems

Overview of optimization concept
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logistic regression using cross-entropy cost (y = 0, 1)
logistic regression using softmax cost (y = +1)
hyberbolic tangent (y = +1)

the logistic sigmoid function

o) = — o "W):Hiww’ al<x>=1og(1fx>

a cdf of logistic distribution (so the value ranges from 0 to 1)
differentiable and a good approximation for the step function (by varying w)
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modeling: {(x;,v;)}, are explained and response variables where y; = 0, 1
use the logistic function to define P(y = 1); hence, the logit (log odds) is

Ply=1)

8 B =0) ~ o NPy =1)) = Bo+iz1+ -+ Bntn 2 278 where z = (1,z)

the log-likelihood of y; given x; is

Uyilzi; B) = yilog(a (= B)) + (1 — yi) log(1 — o (2] §))

the logistic regression with the cross-entropy loss is

minimize fo(8 Zyz log(a(z; 8)) + (1 —y;)log(1 — U(ZiTﬁ))

with variable § € R"*! and parameters y; € R, z; = (1, ;) € R™ ! for
i=1,...,N
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the gradient and Hessian of fy(3) are

N
Vsfo(B) = _Z(yi_g(ziTB))Zi,
Nz—l
V%fo(ﬂ) = Z ziz;fa(z;fﬁ)(l — J(z;[w))
i=1

the Hessian is positive semidefinite; hence fo(53) is convex

Jitkomut Songsiri
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soft-max and cross-entropy cost are equivalent upon the change of label to y; = +1
we employ the point-wise log error cost

9(8) = —log(o (2" B)), fy=1, and g(B)=—log(l —o(x’p)), ify=-1
use that 1 — o(z) = o(—=x) and combine the two cases of g into a single one

9(B) = —log(c(yz"B))

use the definition of sigmoid function to obtain the soft-max cost

N
minimize fo(B) = Zlog(l + e*yﬂiTﬁ)
i=1

(it can be shown that fy(/3) is convex)
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adjust the version of using sigmoid to approximate the step function

the hyperbolic tangent function is just a transform of o(z)

_ 1—e*

tanh =2 —1=
anh(x) o(x) e

(values range between -1 and 1)

the regression problem (used with labels y; = £1) is

N
minimize Z(tanh(l‘zrﬁ) —y)?
i=1

with variable 3 and problem parameters (x;, y;)

consider the shape of tanh(x) function (and then squared) — is the problem convex ?
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setting: given {(z;,v;)}Y; where z; € R" are data with label y; € {1, -1}
£ o=

Lwxlo ="\

2
\\/(,2\\7,

modeling;:
the goal is to find a hyperplane 27w + b to classify data into two classes
the distance between two hyperplanes 7w + b = +1 is 2/||w]|2
fori=1,2,..., N data from each class satisfy

yl-:l:miTw—i—bZI, andyi:—l:xfw+b§—1 = yi(w?w—i—b)Zl
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problem parameters: z; €c R" and y; ¢ Rfori=1,...,N

optimization variables: w € R",;b € R

minimize |jw|3 subject to y;(2]w+b) >1,i=1,2,...,N

data are classified by separating hyperplane with maximized margin (right figure)
if feasible, the data from two classes are separated perfectly

the decision boundary pass through points from both classes— these points are
called support vectors
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problem parameters: z; € R" and y; € Rfori=1,...,N,A >0

optimization variables: w € R",b € R,z ¢ RV

minimize  (1/2)|lwl|3 + A\172
subject to y;(zfw+b) >1—2, i=12,...,N
z>=0

z; is called a slack variable, allowing some of the hard constraints to be relaxed
if z; > 0 at optimum, the ith data point is relaxed to lie inside the buffer zone

the regularization (penalty) parameter A controls the trade-off between
maximizing the margin and the number of points in the tube
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the original hard constraint relates to the
yi(zTw +b) >1 <= max(0,1—y;(z]w+b)) =0

another formulation of soft-margin SVM is to use the hinge loss
N
yi(aTw4+b) >1—2, 11z2= Zmax((), 1 —y;(2Tw 4 b))
i=1

and put the formulation as a single cost function (aka hinge primal problem)
minimize (1/2)|wl3 + A Zfil max (0,1 — y;(z]w + b))

note that max function is non-differentiable at zero
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use ||wl1 in the objective

minimize, ,  Al|lw| + & SN max(0,1 — yi(zw + b))

the £1-norm encourages sparsity of the optimal w

for such a sparse w, the product w’z involves only a few entries in x (use less
feature)
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derived from duality theory, the dual problem of soft-margin SVM is

maximize 17a — (1/2) N, Z;Vzl izl zjosy;
subject to a =0, aly=0,
OziS)\, i=1,2,...,N

with variable a € RN

the dual can be recognized as having a quadratic cost because

D i wjogy; = o' Ga, Gy = (yimi, yjag)

? J

G is a Gram matrix (which is positive definite)

Jitkomut Songsiri
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Regression problems in ML

Overview of optimization concept
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Linear least-squares with constraints

regression coefficients are restricted to lie in a set

minimize ||Az — y||% subject to = € C

H= &

nonnegative orthant probability simplex norm ball

nonnegativity: C={x | x =0}

m variable bound: C={z | | Rz <u}

probability distribution: C ={x | x =0, 1Tz =1}
m norm ball constraint: C={x | ||z —xo|| <d}

Overview of optimization concept Jitkomut Songsiri 33 /57



given data {x;,y;}I¥,, fit g(z;0) to y

m|n|m|ze (1/2) g(x;; 6

Mz

z:l

polynomial: g(z) = a(z — b)™ where § = (a,b,n)
z—b)2

)
Gaussian: g(x) =ae” < +d where § = (a,b,c,d)
sum of exponential: g(z) = ae® + ce® where 6 = (a, b, c, d)

Fourier series: g(x) = ag + >, [ak cos(kwz) + by sin(kwx)] where

0= (ao,al,...,am,bl,. . .,bm,w)
2
i . _ _P1Z7+pox+ps —
rational model: g(x) = ot igmats Where 0 = (p1,p2,P3,41,92,93)
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consider the LS problem
minimize ||[Az — b||2
X

but A may have variation or some uncertainty

we can treat the uncertainty in A in different ways
A is deterministic but belongs to a set

A is stochastic

Jitkomut Songsiri

35 /57



describe the uncertainty by a set of possible values for A:
Ae ACR™™
the problem is to minimize the worst-case error:

minimize sup {||Az —yll2| A € A}
@ A

always a convex problem

its tractablity depends on the description of A

Jitkomut Songsiri
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given A={A+ E | |E||r < e}
meaning: each column in A corresponds to measurements of a variable recorded
thru a sensor given with noise RMS
define w = Az — y, the worst-case norm-2 can be calculated by

|Az — y||? = |Ex + w|?> = 2T ETEx + 2w” Bz + ||w|?

< Amax (BT B)|[z]|* + 2tr((wa™)" B) + w]]® (1)
< |EIE N2l + 2llwa” | I Ellp + [lw]|? (2)
< ol + 2efwlllz] + [[wll* = (ell]| + [[w])? (3)

the worst-case norm is attained when E = awz’ where o = e/||w||||z||

sup [|[Az — yll2 = [| Az — yll2 + el|z|]2
AcA

it is a second-order cone programming
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: A€ R?* and e = 0.1 (used for RLS estimation)

Random solution

@
1

7+ 8
3 ¢ a H g
26 & g § £ |
B |0 8 B
g
A . . -
i i
(L8 | | | | | | | | |
0.01 0.06 0.12 0.17 0.23 0.28 0.34 0.39 0.45 0.5

e

RLS and LS
T

worst-norm
& o o N

compare robust LS (RLS) with LS using A, A — 6, A+ 6 for § = 0.01

compute worst norm || Az — yl|2 + e||x||2 as e varies using = from various methods
(top) worst-norms of random solution x are high and widely spread

(bottom) worst-norms of RLS are relatively low and are not sensitive to e
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let U = [ul Uy - un]
uncertainty in A is prescribed as upper bounds of 2-norm of each columns in U

A={A+U||ujlla <aj, 5 =1,2,...,n}
it can be shown that

sup || Az —y + Uz|z = a” [z] + [ Az — g2

l[ujll2<a;

where the supremum is attained when each column of U is selected as

cjsign(xj)  + .
w=————-2--(Ax—y), j=12,...,n
1= =gl Y

the robust LS can be cast as a second-order cone programming
the term a”|z| can be viewed as a weighted ¢;-regularization
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setting: find supy; ||(Az — y|lcc Where uncertainty in A is prescribed as upper bounds
of co-norm of each columns in U

A={A+U | ||lujlloc <aj, 5=1,2,...,n}
it can be shown that

sup Az —y + Uzl = o’ 2| + | Az — yl|oo
llujlloo<ay
where the supremum is attained when

let j be the index for which ||w||sc = |wj]
for each column ug, for k =1,...,n, set all entries as zero, except the jth as

ak, if 5, and w; has the same sign

(uk); = sign(zpw;) - ai = { .
—ay, otherwise
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when A is a random variable, so we can describe A as
A=A+T,

where A is the average value of A and U is a random matrix

use the expected value of ||Az — y|| as the objective:
minimize E|Az — y|3
x
expanding the objective gives

E|Az —y[3 = (Az — y)" (Az — y) + Ea"UT Uz
= Az — y|3 + 2" P

where P = E[UTU]

Jitkomut Songsiri
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this problem is equivalent to

minimize || Az — yl|3 + | PY/2x||2
xT

with solution z = (AT A + P)~1ATy
a form of a regularized least-squares
balance making Az — y small with aiming to get a small
(so that the variation in Az is small)
Tikhonov regularization is a special case of robust least-squares:

when U has zero mean and uncorrelated variables, i.e., E[UTU] = §1

example: u;; ~ U(—a;,a;) and assume columns of U are uncorrelated

m
Pjj=0, P;= E[u;fuz] =E Zu%l = mvar|ug;] = ma?/?)
k=1
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two comparable formulations

robust LS: A€ A= {A+U | |uij| <aj, j=1,2,...,n}

stochastic LS: A = A+ U where u;; ~U(—aj,a;)

the ground truth A follows A = A + aly
columns of Uy is perturbed from A by 1-3%
vary a € [—5, 5]

we plot ||(A + aly)z — yl||2 where z are solutions from
ordinary LS

robust LS
stochastic LS
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ol —Ls
~— —Robust LS

Stochastic LS

1 .
-5 0 5
Uncertainty factor (a)

OLS is certainly the best when a = 0 (no uncertainty)

robust LS solution is most robust to uncertainty while LS solution is most
sensitive to « and stochastic LS performance lies in between
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structure and parameters
mathematical relations
loss functions
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fully connected L-hidden layers; each of which has n; units and the weight matrix W
L

Wi W 4 W,
x1 1 1 0
To d J:
2 2 § —>o2 :
E :%: £ ! : %ym
In ny ng & nr,

input layer hidden layer 1 hidden laye'r 2 ' hidden layer L output layer

x = (x1,22,...,Tp) is the input (assume the first element is constant)

y = (y1,%2,...,Ym) is the output (or target)

hidden-layer weight matrices: W7 € R"**P and W; € R%*™-1, j =2 ... L
output-layer weight: W, € R™* (£ +1)

h: R? — R% is an activation function for units in hidden layer

g : R™ — R™ is a transformation for output layer
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linear transform of input and pass through a nonlinear activation function

(Wh)i; is the weight of the kth layer that maps input i to output j
(assume x; =1, so (W});1 is a bias term)

the functions h and g are element-wise operations

activation function examples: step (heaviside), sigmoid, ReLU, tanh, RBF
example: single hidden-layer of n units; tanh activation:

tanh[(W1)11 - 1+ (Wh)iaze + - - - (W1)1p7,) ha
W) — tanh[(W7)er - 1 + (W%)zzm +o (W)l | hg
tanh[(W1)n1 - 14+ (Wh)naza + - - - (W) ppp) hy,

z = (WO)U -1 + (Wo)lhl + (Wo)2h2 + -+ (Wo)nhn S R™
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the transformation of output unit depends on the task of NN

regression: g is linear; y = z = W,h(Wix)

multi-class classification: g is softmax function: gi(z) = % k=1,...,m
=1

y = g(2) = g(Wo(h(W1z)))

(yx is the probability of classifying the input to class k)

binary classification: y has a single node; g reduces to the sigmoid function
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example of L hidden-layer: y = g(W,h(Wrh(Wr_1h(--- h(Whix)))))

to differentiate the notation of NN output from the true description y, we often use
§=[f(z:0)

as the output of NN
conceptually, a nonlinear function of x, parametrized by © = (W1,..., W, W,)
nonlinearity of a model is introduced via a choice of activation function

the overall number of parameters is specified by the depth (number of hidden
layers) and number of units
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let § = f(x;©) be the output of neural network using input data =
{;,y;})¥, are N-sample of input/output data; §; is a model output from sample i

regression: loss functions that are tied with the regression task

MSE: (1/N) 2% llyi — 3il13
MAE: (1/N) Zfil llyi — 9ill1
huber: (1/N) Zf\;l huber(r;) where r; =y — ¥;;

huber(z) = (1/2)a?, lz] < M
M(|lz| = M/2), «>M
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the output unit predicts the probability of one class

class labels have two choices: y € {1,—1} or y € {1,0}
y is modeled to have a Bernoulli distribution: p(y|z) = 7¥(1 — m)'~¥
the negative loglikelihood is aka cross-entropy:
-logp(ylz) = —[ylogm + (1 — y)(1 — 7)]
modeling: predict m = P(y = 1|x) using NN (or other models); replace 7 by
T =9(x;0)
loss functions used to train NN for binary classification

cross-entropy: labels are 0,1; §; = ;(x;;©) = P(y; = 1]x;) (classify to class 1)

N

loss = — > i log(#:) + (1 — yi) log(1 — ;)
=1
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hinge loss (or ReLU, perceptron cost): labels are 1, —1; normalize ; to (—1,1)

N
loss = Z max(0,1 —y; - ;), (when g; # y; the loss is 2)
i=1

scores motivated from F1 or dice similarity coefficient

_ 2TP
- 2TP +FP +FN’

meaning: TP =5, y;0;, FP =3 ".(1 —y:)9;, and FN = >, v;(1 — %)
minimizing these losses is similar to maximizing F1 score
N A~
N A~
> i (Wi +3i)

F1 (no TN, predicting majority samples correctly)

N ~
2 5 Yili

soft-dice loss =1 — =~ 2 2.
Zi:l(yi +9;)

, squared-dice loss =1 —

Jitkomut Songsiri 53 / 57



label y is a standard unit vector in RX

y=(y1,y2, -, YK)

(only one of y1,¥2,...,yx has value of 1; the rest is all zero)
denote 7y, the probability that y = (0,0, 1 ,0,...,0) where Zf; m=1
kth

generalize Bernoulli distribution to an K-dimensional binary variable y

p(ylz) = m{' s - miE

the (conditional) loglikelihood is called (multi-class) cross entropy
logp(y|x) = y1 logmi + yalogme + - - - + yi log Tk
modeling: NN has K-dimensional output units that predictds 7%'s
e =T ~m, k=1,...,K

Jitkomut Songsiri 54 / 57



let ¢ be a sample index, i =1,..., N

cross-entropy loss: j; is the output of the softmax function

N
loss = — Z yi110g(9i1) + vie log(gi2) + - - - + vir log(Pix)
i=1
i Z Zz correct class
= - 1Og(:‘)i,correct class = 10g
i=1 i=1 Zk; 1 €7k

z € R is predicted output from a model; before being mapped to probabilities

(alo referred to multi-class softmax cost, softplus cost, multi-class cross entropy loss)
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hidden units: properties and recent choices of activation functions
(leaky/parametric ReLU, softplus, etc.)

architecture design: determine overall structure of the network (theoretical result:
universal approximation theorem

recent advances in proposing new choices of

model training
gradient-based learning requires computing derivatives of the composition: concept
of based on chain rule in calculus
how a learning algorithm in optimization process affects a model capacity (which are
the effective capacity, and representational capacity; the latter defined by the
family of model)
computation: automatic differentiation, justification of non-differentiability of some
activation functions by numerical point of view, batch/

regularization: ¢ and /2, dropout
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Wijarn Wangdee, Chapter 8: Economic Operation of Power Systems, Lecture note on
Modern Power Grid Operation and Control.

Robust least-square is taken from Chapter 6 in Jitkomut Songsiri, System Identification,
Chula Press, 2022

C.C. Aggarwal, Linear Algebra and Optimization for Machine Learning: A Textbook,
Springer, 2020
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