
Overview of optimization concepts

Jitkomut Songsiri

Department of Electrical Engineering
Faculty of Engineering

Chulalongkorn University

CUEE

August 28, 2023

Overview of optimization concept Jitkomut Songsiri 1 / 110



Outline
1 Math background
2 General settings
3 Selected problem types in applications

Convex programs
Linear programming
Quadratic programming
Problem transformation
Stochastic optimization
Nonsmooth optimization
Multi-objective optimization

4 Optimality conditions
5 Overview of available methods
6 Optimization softwares

Overview of optimization concept Jitkomut Songsiri 2 / 110



Math background
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Required knowledge

please review backgrounds on

linear algebra with keywords:
system of linear equations, over-determined/under-determined, square systems
basic algebraic operations of vectors and matrices
vector and matrix norms
structured matrices (diagonal, symmetric, triangular, positive definite)
eigenvalue and eigenvector

calculus of several variables with keywords:
contour, gradient, Jacobian, Hessian
limit, continuity, differentiability
sequence, convergence

visualization of functions of several variables (surface, contour, tangent)
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Tangent plane
a tangent plane of f(x) at x0 is obtained by the first-order Taylor approximation

f(x) ≈ f(x0) +∇f(x0)
T (x− x0)
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f(x) = x21 + (1/4)x22

x0 = (1, 2), ∇f(x0) = (2, 1)

plane:2 + 2(x1 − 1) + (x2 − 2) = 0

the gradient of f is the normal vector of the tangent plane
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Contour and level set

definitions:
a contour of a function f is {x ∈ Rn | f(x) = α }
(also called a level set of f corresponding to α)
a sublevel set of f corresponding to a value α is

Sα = {x ∈ Rn | f(x) ≤ α }

∇f(x) is orthogonal to the
tangent line of the surface

∇f(x) is the rate of change in f ; hence, ∇f points to the direction that f(x) increases
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f(x) = 2− 12(x1 + x2) + x31 + x32 (f has a local maximum and minimum)
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notice the gradient directions toward the local maximum and minimum
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System of linear equations
a system of linear equations can be represented in a matrix form

y = Ax

setting: given y ∈ Rm and A ∈ Rm×n, find x that satisfies the equations
square system (m = n): a solution exists and unique if A is invertible
tall system (m > n): the existence of solution depends on A, y whether y ∈ R(A)

fat system (m < n): if a solution exists, then there are many solutions

if xp is a particular solution, and z ∈ N (A) then x = xp + z is a general solution

in optimizaiton context, linear equality constraints are usually given as a fat system

{ x ∈ Rn |
n∑

i=1

xi = 1 }
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Linear function
a linear function f : Rn → R is of the form

f(x) = aTx = a1x1 + a2x2 + · · ·+ anxn

a = (a1, a2, . . . , an) is a given parameter
the contour of f is a hyperplane with the normal vector a
∇f(x) = a (constant, not depend on x)
for b ̸= 0, f(x) = aTx+ b is called an affine function

the concept can be extended to a function of matrices: f : Rm×n → R

f(X) = tr(ATX) =
∑
ij

aijxij

conceptually, f is a linear function of each entry in the variable
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Quadratic function

given P ∈ Rn×n, q ∈ Rn, r ∈ R, a quadratic function f : Rn → R is of the form

f(x) = (1/2)xTPx+ qTx+ r

xTPx is aka an energy form (due to the quadratic form that appears in the
energy/power of some physical variables)
. verify that xTPx = xT (P+PT )x

2 ; then the energy term only takes the
symmetric part of P ; hence, we often consider P ∈ Sn (P is assumed to be
symmetric later on)
∇f(x) = Px+ q (derivative of quadratic function becomes linear)
the contour shape of f depends on the property of P (pdf, indefinite, magnitude
of eigenvalues, direction of eigenvectors)
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Quadratic function (positive definite)
let f(x) = (1/2)xTPx+ qTx where P ≻ 0

3

3.5

2

4

1.5

4.5

1

5

5.5

0.5

6

0

6.5

4.5

7

-0.5 4

3.5-1

3
-1.5

2.5

-2 2

1.5 -5 -4 -3 -2 -1 0 1 2 3

-2

0

2

4

6

8

10

12

since P is invertible, we can complete the square
f(x) = (1/2)[(x+ P−1q)TP (x+ P−1q)− qTP−1q]

ellipsoid parametrized by P−1 with center at −P−1q
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Quadratic function (positive semidefinite)
let f(x1, x2) = (1/2)(xTPx) + qTx with q = (1,−3) and two cases of P
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P ≻ 0: sublevel set of f is bounded (region inside the ellipsoid)
P ⪰ 0: sublevel set of f is unbounded
(if x = t(1,−1) ∈ N (P ) then f(x) = tqT (1,−1) = 4t → −∞ by choosing
t → −∞)
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Quadratic function (indefinite)
let f(x1, x2) = (1/2)(xTPx) + qTx with P =

[
2 1
1 −1

]
(and invertible)
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from f(x) = (1/2)(x+ P−1q)TP (x+ P−1q)+ constant, we can pick t, x
such that x+ P−1q = tv, Pv = λ−v, t → ∞; hence, f(x) = t2λ−∥v∥2 → −∞
f can be unbounded below along some direction of x
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General settings
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Optimization problem
an optimization is a problem of choosing a variable (x) that makes some objective
function reach an extremum (can be minimum or maximum)

objective level set

only allow     to stay in this region (constraint)

optimization of one variable

elements of optimization problem
optimization variable x: the quantity we choose to achieve the optimization goal
objective function f : a criterion that tells how objective varies upon x

constraints: restrictions on x (sometimes we cannot choose x freely)
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Examples of optimization

finding a resource allocation ratio that maximizes the profit while the budget
sum is less than a given value
finding a control action to an airplane system that minimizes the deviation from
the target while the control signal magnitude must be less than a value
finding a design of devices/structure that minimizes the cost/weight while the
size limit is from manufacturing conditions
finding parameters in a model that minimizes the error between model output
and observed data while the parameters must lie in a certain space, e.g., all
parameters are non-negative
reconstructing a transmitted signal that minimizes the deviation between
predicted and observed while the rate of change in the signal is bounded by a
given value
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Problem setting
(mathematical) optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
(P1)

x = (x1, . . . , xn): optimization variable
f0 : Rn → R: objective function
fi : Rn → R, i = 1, . . . ,m: inequality constraint functions
hi : Rn → R, i = 1, . . . , p: equality constraint functions

constraint set: C = {x ∈ Rn | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p }

domain of the problem: D =
∩m

i=0 dom fi ∩
∩p

i=1 domhi
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Optimal value

p⋆ = inf {f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, , i = 1, . . . , p }

we say x is feasible if x ∈ dom f0(x) and x ∈ C
p⋆ = ∞ if the problem is infeasible
p⋆ = −∞ if the problem is unbounded below
a feasible x is called optimal if f0(x) = p⋆; there can be many
x is locally optimal if ∃ϵ > 0 such that x is optimal for

minimize f0(z)
subject to z ∈ C, ∥z − x∥2 ≤ ϵ

in other words, a locally optimal point is the best solution in a neighborhood
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Example

1
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5.2

minimize subject to

1
53 6 9 9.8 11 13 15142

find achievable objective values, p⋆ and x⋆ for each C
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Basic examples

1 f0(x) = 1/x ; p⋆ = 0, no optimal point
2 f0(x) = − log x ; p⋆ = −∞ (unbounded below)
3 f0(x) = x log x ; p⋆ = −1/e, x = 1/e is optimal
4 f0(x) = x log x+ (1− x) log(1− x) ; p⋆ = − log 2, x = 1/2 is optimal
5 f0(x) = x3 − 3x; p⋆ = −∞, local optimum at x = 1
6 f0(x) = (x1 − 2)2 + (x2 − 2)2; p⋆ = 0, x = (2, 2) is optimal
7 minimize (x1 − 2)2 + (x2 − 2)2 s.t. x1 + x2 = 2; p⋆ = 2, x = (1, 1) is optimal
8 minimize (x1 − 2)2 + (x2 − 2)2 s.t. x1 + x2 = 4; p⋆ = 0, x = (2, 2) is optimal
9 minimize x1 s.t. x21 ≤ x2, x21 + x22 ≤ 2; p⋆ = −1, x = (−1, 1) is optimal
10 minimize 2x1 +2x2 s.t. |x1|+ |x2| ≤ 1 ; p⋆ = −2 , any x satisfying x1 + x2 = −1

is optimal (not unique)
for these examples, you can inspect a solution or find a solution in closed-form
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How objective and constraint functions are defined?
this is a process of problem formulation, motivated by an application

given: determine prices of a product for students and general audience, where the
number of sold products and hence, profit vary upon the prices
setting: let x = (x1, x2) x1 is the price for students; x2 is the price for general public

maximize (x1 − 2)e5.8−0.25x1 + (x2 − 1.5)e7.2−0.2x2 (profit)
subject to e5.8−0.25x1 + e7.2−0.2x2 ≤ 200, x1 ≥ 0, x2 ≥ 0

0 5 10 15 20
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no. of students

profit 1
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public price
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no. of public audiences

profit 2 blues: number of sold products;
exponentially decrease as the price goes up
aim to maximize the profit (as a function
of prices that are non-negative)
the objective is separable but the first
constraint is not
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example: given (A, y, x0, r) as problem parameters

minimize ∥Ax− y∥2 subject to ∥x− x0∥2 ≤ r

we aim to use a linear model Ax to approximate y while keeping such approximation
valid in a norm ball

2

500

1000

1 2

1500

0

2000

0
-1

-2 -2

Objective level sets and constraint

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Overview of optimization concept Jitkomut Songsiri 22 / 110



Terminology
setting: another way of representing (P1)

minimize f0(x) subject to x ∈ C (P2)

optimal point: we can also say x⋆ is a global minimizer of f0 over C

f0(x) ≥ f0(x
⋆) ∀x ∈ C

local optimal point: we can also say x⋆ is a local minimizer of f0 over C

∃ϵ > 0 such that f0(x) ≥ f0(x
⋆) ∀x ∈ C ∩ ∥x− x⋆∥ < ϵ

(strict local minimizer when f0(x) > f0(x
⋆))

the standard form has an implicit constraint: x ∈ D
the constraint set C contains explicit constraints
the problem is called unconstrained if it has no explicit constraints
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Example

1

find a local/strictly local/global minimizer
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Feasibility problem
a feasibility problem

find x subject to x ∈ C

can be considered as a special case of the general problem with f0(x) = 0

minimize 0 subject to x ∈ C

p⋆ = 0 if constraints are feasible; any feasible x is optimal
p⋆ = ∞ if constraints are infeasible

examples: C1 has two-, C2 has infinitely many feasible points, while C3 is infeasible

C1 = {x ∈ R2 | (x1 − 1)2 + x22 = 1, x1 + x2 = 1 }
C2 = {x ∈ R2 | (x1 − 1)2 + x22 ≤ 1, x1 + x2 = 1 }
C3 = {x ∈ R2 | (x1 − 1)2 + x22 ≤ 1, x1 + x2 = −3 }
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Review exercise

express the following problems in the standard form

problem parameters: l, u ∈ Rn

minimize f0(x) subject to l ⪯ x ⪯ u

problem parameters: A ∈ Rm×n, G ∈ Rp×n

maximize f0(x) subject to Ax ⪯ b, Gx = h

problem parameter: r ∈ Rn

minimize ∥x∥22 subject to |x| ⪯ r

(the notation ⪯ is elementwise inequality of all elements in x)
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Simple conclusions about optimization

consider a constrained problem: minimize f(x) subject to x ∈ C (optimal value is p⋆)

1 when the constraint functions are more stringent, the set C is smaller
2 what can you say about p⋆ if C is bigger (or smaller) ?
3 let g(x) ≤ f(x) for all x, and we minimize g(x) subject to x ∈ C; compare the

new optimal value with p⋆

4 the problem is equivalent to maximizing −f(x) subject to x ∈ C
P1, P2, P3 are the minimization of f(x) subject to C1, C2, C3 respectively

C1 = {x | 0 ≤ x1, x2 ≤ 1 }, C2 = {x | 1/2 ≤ x21 + x22 ≤ 1 },
C3 = {x | x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0 }

which pair of optimal values can be compared ?
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Problem types

we can categorize optimization problems by

constraints
unconstrained problem
constrained problems

variable types
continuous optimization
discrete optimization

linearity of objective and
constraints

linear program
nonlinear program

convexity of objective and
constraint set

convex problem
non-convex problem

smoothness of the objective
smooth problem
non-smooth problem

parameter randomness
stochastic optimization
deterministic optimization

this course focuses on continuous and deterministic optimization
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Optimization
Problems

Parameter
Randomness

Deterministic
Optimization

Stochastic
Optimization

Variables 
Continuous
Optimization

Discrete
Optimization

Constraints

Constrained
Problems

Unconstrained
Problems

Convexity

Non-convex
problems

Convex Problems

Linear Program

Quadratic
Program

Second-order
Cone Program

Geometric
Program

Semidefinite
Program

Linearity

Linear Program
(LP)

Nonlinear
Program (NLP)

Smoothness of
the objective

Smooth Problem
Non-smooth

Problem

other specific problem types are integer programming, vector optimization
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Unconstrained VS Constrained problems

easy example: variables in least-square problems are regarded as nonnegative values

minimize ∥Ax− b∥22
minimize ∥Ax− b∥22
subject to x ⪰ 0

solving unconstrained problems is based on the optimality condition:

∇f0(x) = 0

find x that make the gradient zero in the cost objective (necessary condition)
solving constrained problems depends on the type of constraint functions

linear equality: constraint elimination method
inequality equality: dedicated algorithms for some specific form
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Optimality of unconstrained problems
assumption: f is twice continuously differentiable (smooth objective)

1st-order necessary condition:

if x⋆ is a local minimizer of f then ∇f(x⋆) = 0

2nd-order necessary condition: if x⋆ is a local minimizer of f then ∇f(x⋆) = 0
and ∇2f(x⋆) ⪰ 0 (positive semidefinite)
2nd-order sufficient condition: if ∇f(x⋆) = 0 and ∇2f(x⋆) ≻ 0 (pdf)

then x⋆ is a strict local minimizer of f

local minimizers can be distinguished from other stationary points by examining
positive definiteness of ∇2f

example: f(x) = x4 has x⋆ = 0 as a local minimizer; ∇2f(x⋆) = 0 (hence, 2nd-order
sufficient condition fails)
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Unconstrained maximization

a problem of minimizing f is equivalent to maximizing −f

2nd-order conditions:
if x⋆ is a local maximizer of f then ∇f(x⋆) = 0 and ∇2f(x⋆) ⪯ 0 (negative
semidefinite)
if ∇f(x⋆) = 0 and ∇2f(x⋆) ≺ 0 (negative definite)

then x⋆ is a strict local maximizer of f

. conclusions:
a point at which the gradient is zero is a stationary point (aka critical point)
a stationary point may be a local minimizer of f , or a local maximizer, or neither,
in which case it is a saddle point
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Example: Rosenbrock function

given that f(x) = 100(x2 − x21)
2 + (1− x1)

2, the gradient and Hessian of f are

∇f(x) =

[
−400(x1x2 − x31)− 2 + 2x1

200(x2 − x21)

]
, ∇2f(x) =

[
−400(x2 − 3x21) + 2 −400x1

−400x1 200

]
. pls verify that ∇f(x) = 0 ⇔ x = (1, 1)

hence, (1, 1) is the only stationary point and because

∇2f(1, 1) =

[
802 −400
−400 200

]
≻ 0,

we conclude that (1, 1) is the only local minimizer of f
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Saddle point
f(x) = 8x1 + 12x2 + x21 − 2x22 has only one stationary point which is neither a
maximum nor a minimum, but a saddle point
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x = (−4, 3)
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⪰̸ 0
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Nonlinear least-squares (NLS)

NLS is a specific unconstrained problem of the form

minimize
x

f(x) := (1/2)

q∑
i=q

(ri(x))
2

where ri : Rn → R for i = 1, 2, . . . , q

often appear in curve fitting problems:

minimize
N∑
i=1

(yi − g(xi))
2

where g is a (nonlinear) function for fitting the data {(xi, yi)}Ni=1

. express the minimization of 10(x2 − x21)
2 + (1− x1)

2 as NLS
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Nonlinear least-squares (NLS)
fitting a Gaussian curve: g(x) = ae−(x−b)2/c2 + d to data points
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Data

Gaussian 1

Gaussian 2

Gaussian 3

optimization variable: θ = (a, b, c, d); explain how θ vary in the three Gaussian curves ?
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Nonlinear least-squares (NLS)
gradient and Hessian of the objective function

define r(x) = (r1(x), . . . , rm(x)) that maps Rn → Rm

let J(x) ∈ Rm×n be the Jacobian of r; then ∇f(x) = J(x)T r(x)

1st-order necessary condition is
m∑
i=1

∂ri(x)

∂x
· ri(x) = 0

finding a stationary point is the problem of finding roots of nonlinear equations
by product rule, the Hessian of f is given and approximated by

∇2f(x) = J(x)TJ(x) + S(x) ≈ J(x)TJ(x)

where S(x) involves the 2nd-order derivative of J
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Selected problem types in applications
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Selected problem types

brief concepts about the following problem types

1 convex optimization: see separate handouts (convex_optim.pdf)
2 stochastic optimization
3 nonsmooth optimization
4 scalarized multi-objective optimization
5 multi-objective optimization
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What to know about convex optimization

1 convex sets
2 convex functions
3 convex optimization: two common convex problems

linear programming
quadratic programming
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Convex sets

a set C is said to be convex if for any x, y ∈ C we have

θx+ (1− θ)y ∈ C, for all 0 ≤ θ ≤ 1

which of the following sets are convex ?

fact: an intersection of convex sets is convex (even infinitely many number of
intersections)

Overview of optimization concept Jitkomut Songsiri 41 / 110



Convex functions

convex function: f : Rn → R is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y in the domain of f and 0 ≤ θ ≤ 1

loosely speaking, f is convex if it has an upward shape

examples on R:
affine: ax+ b for any a, b ∈ R
exponential: eax for any a ∈ R
powers of absolute value: |x|p for p ≥ 1

negative entropy: x log x on R++
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Examples of convex functions on Rn

affine: aTx+ b

norm functions: ∥x∥
norms of affine: ∥aTx+ b∥
quadratic: xTPx+ qTx when P ⪰ 0

negative entropy:
∑n

i=1 xi log xi on Rn
++

fact: a set of inequality constraints described by convex functions is convex

C = {x ∈ Rn | fi(x) ≤ 0, i = 1, 2, . . . ,m }

is a convex set if all fi’s are convex functions

Overview of optimization concept Jitkomut Songsiri 43 / 110



First- and second-order conditions of convex functions
suppose f is differentiable; then f is convex if and only if

dom f is convex and f(y) ≥ f(x) +∇f(x)T (y − x), ∀x, y ∈ dom f

the first-order Taylor approximation of f is a global underestimator of f if and
only if f is convex
if ∇f(x) = 0 then for all y ∈ dom f, f(y) ≥ f(x),i.e., x is a global minimizer of f

assume that ∇2f exists at each point in dom f ; then f is convex if and only if

dom f is convex and ∇2f(x) ⪰ 0, ∀x ∈ dom f

f is convex if and only if its Hessian matrix is positive semidefinite
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Convex programs

convex optimization problem is one of the form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

where
objective and constraint functions are convex
equality constraint functions hi(x) = aTi x− bi must be affine

result: an optimal solution of a convex program is a global minimizer
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Linear program (LP)

a general linear program has the form

minimize cTx
subject to Gx ⪯ h

Ax = b

where G ∈ Rm×n and A ∈ Rp×n

example: minimize the cheapest diet that satisfies the nutritional requiremenets
x = (x1, . . . , xn) is nonnegative quantity of n different foods
each food has a cost of cj ; cost objective is cTx

one unit quantity of food j contains dij amount of nutrients i

constraints are Dx ⪰ h and x ⪰ 0
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Geometrical interpretation

hyperplane: solution set of a linear equation with coefficient vector a ̸= 0

{x | aTx = b }

halfspace: solution set of a linear inequality with coefficient vector a ̸= 0

{x | aTx ≤ b }

we say a is the normal vector
polyhedron: solution set of a finite number of linear inequalities

{x | aT1 x ≤ b1, aT2 x ≤ b2, . . . , aTmx ≤ bm } = {x | Ax ≤ b }

intersection of a finite number of halfspaces
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extreme point of C

a vector x ∈ C is an extreme point (or a vertex) if we cannot find y, z ∈ C both
different from x and a scalar α ∈ [0, 1] such that x = αy + (1− α)z
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Solving LPs graphically
LP 1 (left) and LP 2 (right, with non-negative constraints)

minimize cTx
subject to x1 + x2 ≤ 6

x1 − x2 ≤ 3
x1 + 3x2 ≥ 6

minimize cTx
subject to x1 + x2 ≤ 6

x1 − x2 ≤ 3
x1 + 3x2 ≥ 6
x1, x2 ≥ 0

LP 1: feasible set is unbounded but the problem is bounded below for some c

c = (0, 1), x⋆ = c = (−1, 0), x⋆ = c = (−1, 1), x⋆ = c = (1, 3), x⋆ =

LP 2: feasible set is a bounded polyhedron
x⋆ = x if x⋆ = x if
x⋆ = x if x⋆ = x if
x⋆ is not unique if
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Simple linear programs

minimize cTx over each of these simple sets

we can derive an explicit solution of these LPs
box constraint: l ⪯ x ⪯ u

probability simplex (or budget allocation): 1Tx = 1, x ⪰ 0

not all budget is used: 1Tx ≤ 1, x ⪰ 0

halfspace: aTx ≤ b

draw the constraint set and inspect the solution for a given c
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Some problems may not look like an LP
example 1: functions that involve ℓ1 and ℓ∞ norms

minimize ∥Fx− g∥1 subject to ∥x∥∞ ≤ 1

(minimize a cost measured by 1-norm having a worst-case budget constraint )
by introducing u; imposing the constraint: −u ⪯ Fx− g ⪯ u; and noting that

∥Fx− g∥1 =
m∑
i=1

|fT
i x− gi| ≤ 1Tu

the problem is equivalent to the LP

minimize 1Tu
subject to −u ⪯ Fx− g ⪯ u,

−1 ⪯ x ⪯ 1
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Properties of LP

another standard form: minimize cTx subject to Ax = b, x ⪰ 0

an LP may not have a solution (constraints are inconsistent or the feasible set is
unbounded)
we assume A is full row rank; if not, considering Ax = b

depending on A, the system could be inconsistent (hence, no extreme points), or
Ax = b contains redundant equations, which can be removed

if a standard LP has a finite optimal solution then

a solution can always be chosen from among the vertices of the feasible set

(called basic feasible solutions)
the dual of an LP is also an LP
solutions of some simple LPs can be analytically inspected
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Standard form

a quadratic program (QP) is in the form

minimize (1/2)xTPx+ qTx
subject to Gx ⪯ h

Ax = b,

where P ∈ Sn, G ∈ Rm×n and A ∈ Rp×n

convex QP

linear constraints
example: constrained least-squares

minimize ∥Ax− b∥22
subject to l ⪯ x ⪯ u

QP has linear constraints
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Properties of QP

an unconstrained QP is unbounded below if P is not positive definite
an unconstrained QP has a unique solution: x = −P−1q when P ≻ 0

a QP is a convex problem if P is positive semidifinite definite
if P ⪰ 0 then a local minimizer x⋆ is a global minimizer (by convexity)
if P ≻ 0 then x⋆ is a unique global solution (by strictly convexity)

the feasible set (polyhedron) may be empty (hence, the problem is infeasible)
the feasible set can be unbounded (but if P ≻ 0 it implies boundedness)
solution of a QP may not be at a vertex
the dual of a QP is also a QP
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Contour of quadratic objective
consider three cases of P and different feasible sets
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right: a bounded feasible set, while f is unbounded below and above
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Applications of quadratic programming

unconstrained QP
least-squares
optimizing group representative step in k-mean clustering

support vector machine
control systems
inverse problem (medical imaging, signal processing)
least-squares with constraints (lasso and others)
portfolio optimization
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Soft-margin SVM

problem parameters: xi ∈ Rn and yi ∈ R for i = 1, . . . , N, λ > 0

optimization variables: w ∈ Rn, b ∈ R, z ∈ RN

minimize (1/2)∥w∥22 + λ1T z
subject to yi(x

T
i w + b) ≥ 1− zi, i = 1, 2, . . . , N

z ⪰ 0

data are classified by separating hyperplane with maximized margin
zi is called a slack variable, allowing some of the hard constraints to be relaxed
the problem has (convex) quadratic objective and linear constraints (QP)
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Markowitz portfolio optimization

setting:
r = (r1, r2, . . . , rn) ∈ Rn; ri is the (random) return of asset i
the return has the mean r̄ and covariance Σ

optimization variable: x ∈ Rn where xi is the portion to invest in asset i

problem parameters: Σ ⪰ 0, r̄ ∈ Rn, γ > 0

minimize −r̄Tx+ γxTΣx
subject to x ⪰ 0, 1Tx = 1

var(rTx) = xTΣx is the risk of the portfolio
the goal is to maximize the expected return while minimize the risk
γ is the risk-aversion parameter controlling the trade-off
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one can be obtained from
the solution of the other, and vice versa

examples: P1 and P2 are equivalent (but they are not the same)

minimize ∥Ax− y∥2 (P1)

maximize 1
∥Ax−y∥2 (P1)

maximize |f(x)| (P1)

minimize ∥Ax− y∥22 (P2)

minimize ∥Ax− y∥22 (P2)

maximize log |f(x)| (P2)

using monotonically increasing property of squared and log functions
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Transformation that yield equivalent problems

some transformations are useful for problem re-formulation

eliminating equality constraints
introducing slack variables
epigraph form
minimizing over some variables
using indicator function to represent constraints

Overview of optimization concept Jitkomut Songsiri 60 / 110



Eliminating equality constraints

the problem
minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to
minimize f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some x0
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Example: eliminating equality constraints

equality constraint in the form of Ax = b (non-trivial when A is fat)

minimize ∥Hx− y∥2 (P1) minimize ∥H̃x− y∥2 (P2)
subject to x1 + x2 = 0 where H̃ =

[
h1 − h2 h3 · · · hn

]
find the nullspace of A and its basis vectors

dimN (A) = r ⇔ ∃F ∈ Rn×r such that AF = 0 and F is full column rank

find a particular solution of Ax = b, says x0
a general solutions to Ax = b is expressed as x = Fz + x0 for any z
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Introducing slack variables

the problem
minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

is equivalent to
minimize f0(x)
subject to fi(x) + si = 0, i = 1, . . . ,m

si ≥ 0, i = 1, 2, . . . ,m
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Epigraph form
the epigraph of a function f0 is the area above the graph f0

epi epi

epi

the standard problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0,

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

we minimize t over the epigraph of f0 (objective is now linear of (x, t))
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Example: epigraph form

example 1: ∥z∥∞ ≤ t if and only if |zi| ≤ t for all i

minimizex ∥Ax− y∥∞ (P1) minimize(x,t) t (P2)
subject to −t ≤ aTi x− yi ≤ t , i = 1, . . . ,m

example 2: ∥Ax− y∥1 ≤ u if and only if −u ⪯ Ax− y ⪯ u and 1Tu ≤ t

minimizex ∥Ax− y∥1 (P1)
minimize(x,u) 1Tu (P2)
subject to −u ⪯ Ax− y ⪯ u
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Minimizing over some variables

the problem
minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

is equivalent to
minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

where f̃0(x1) = infx2 f0(x1, x2)

if the objective can be minimized over one variable easily, we can reduce the problem
dimension
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Example: minimizing over one variable
given gi : Rn → R, yi ∈ R for i = 1, . . . , N , consider the problem

minimize
x,d

−N log

[
1

d

]
+

1

d

N∑
i=1

(gi(x)− yi)
2

first, we can minimize over d by setting the gradient w.r.t. 1/d to zero

d =
1

N

N∑
i=1

(gi(x)− yi)
2

the reduced problem is

minimize
x

log

[
1

N

N∑
i=1

(gi(x)− yi)
2

]
⇐⇒ minimize

x

N∑
i=1

(gi(x)− yi)
2
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Stochastic optimization

a problem is called a stochastic optimization if

fi(x) contains some randomness, e.g., problem paraters are random variables, or
a random (Monte Carlo) choice is made in the search direction of the algorithm

example: an LP problem where c is a random vector

minimize cTx
subject to Gx ⪯ h

Ax = b

one way is to change the minimization objective
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the cost cTx is random with mean c̄Tx and variance

var(cTx) = var(xT c) = xT cov(c)x ≜ xTΣx

generally there is a trade-off between the mean and the variance
one way is to minimize a combination of the two quantities:

minimize c̄Tx+ γxTΣx
subject to Gx ⪯ h

Ax = b

where γ controls the weight between the two
the resulting problem is an QP
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Nonsmooth optimization

a function is smooth if it is differentiable and the derivatives are continuous

example: f(x) = |x| is not smooth at x = 0

example: f(x) = ∥x∥ is not smooth at x = 0

a problem is called nonsmooth if the objective or constraints are nonsmooth functions

example: lasso problems

minimize ∥Ax− b∥2 + γ∥x∥1

then the methods relying on the gradient should be carefully revisited
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Scalarized multi-objective optimization

a common form of multi-objective problem: for a given γ > 0,

minimize f(x) + γg(x)

we desire both f and g to be small but they are weighed in by a given weight, γ
(or often called penalty parameter)
as γ is higher, we penalize more on g, then the minimized g is smaller; in this
case, we care less about f

appear in model performance evaluation where two diffferent metrics are desired
to be small
example 1: minimize model error + model complexity
example 2: minimize system tracking error + input power
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Multi-objective optimization

setting: minimizing f0 : Rn → Rm (vector-valued function) over a feasible set

minimize f0(x)
subject to x ∈ C

a vector optimization has a vector-valued objective function
example: f0(x) = (fuel,time) the energy used and time spent of a vehicle
parameter x
require a generalized inequality definition for comparing any two vectors of f0(x)[

5
2

]
⪯

[
10
3

]
but

[
5
2

]
⪯̸

[
2
4

]
here, for f0(x) ∈ Rn, we typically use the non-negative orthant to define ⪯
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Achievable objective values
define O = {f0(x) | x ∈ C } the set of objective values of feasible points

u is said to be the minimum element of O if u ⪯ v, for every v ∈ O
u is said to be a minimal element of O if v ∈ O, v ⪯ u only if v = u

if O has a minimum point (then it is unique) and

∃ feasible x such that f0(x) ⪯ f0(y), for all feasible y

then we say x is optimal
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Pareto optimal points
consider when O does not have a minimum element

x is called Pareto optimal (or efficient) if f0(x) is a minimal element of O
a technique to extract pareto optimal points: scalarization (more on this later)
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Optimality conditions
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Unconstrained optimality
assumption: f is twice continuously differentiable (smooth objective)

necessary condition: if x⋆ is a local minimizer of f then
1 ∇f(x⋆) = 0

2 ∇2f(x⋆) ⪰ 0 (positive semidefinite)
sufficient condition: if ∇f(x⋆) = 0 and ∇2f(x⋆) ≻ 0 (positive definite), then x⋆

is a strict local minimizer of f
when f is convex and differentiable, any stationary point x⋆ is a global minimizer
of f

example: the Rosenbrock function:

f(x) = 100(x2 − x21)
2 + (1− x1)

2

verify that x⋆ = (1, 1) is the only local minimizer of f
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Constrained optimality
first, define the Lagrangian function

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

where λ, ν are called the Lagrange multipliers for inequality and equality constraints

the KKT conditions are necessary conditions for optimality
1 zero-gradient condition of L: ∇xL(x

⋆, λ⋆, ν⋆) = 0

2 primal and dual feasibility

fi(x
⋆) ≤ 0, i = 1, . . . ,m, hi(x

⋆) = 0, i = 1, . . . , p, λ⋆ ⪰ 0

3 complementary slackness condition: λifi(x) = 0 for i = 1, 2, . . . ,m

fact: for convex problems, KKT conditions are sufficient and necessary for optimality
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Optimality of contrained LS
derive KKT conditions for

minimize
x

(1/2)∥Ax− y∥22 subject to l ⪯ x ⪯ u

the Lagrangian is L(x, λ1, λ2) = (1/2)∥Ax− y∥22 + λT
1 (l − x) + λT

2 x− u)

KKT conditions are
1 zero-gradient of L: AT (Ax− y)− λ1 + λ2 = 0

2 primal feasibility: l ⪯ x ⪯ u

3 dual feasibility: λ1, λ2 ⪰ 0

4 complementary slackness condition:

λ1i(li − xi) = 0, λ2i(xi − ui) = 0, i = 1, 2, . . . , n
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Intro to duality theory
some quick facts

define the dual function as the infimum of the Lagrangian over primal variables

g(λ, ν) = inf
x∈domD

L(x, λ, ν)

for any λ ⪰ 0, the dual function provides a lower bound for p⋆, i.e., g(λ, ν) ≤ p⋆

any optimization problem (called a primal problem) has its dual problem

maximize
λ,ν

g(λ, ν) subject to λ ⪰ 0

which is the problem of finding the best lower bound, denoted as d⋆, for p⋆

more theoretical results about relations between primal and dual problems – when
d⋆ = p⋆, we say we have strong duality
solving the dual can be more beneficial in some cases

Overview of optimization concept Jitkomut Songsiri 79 / 110



Overview of available methods
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Overview of available methods

unconstrained problems: gradient descent, Newton, quasi Newton, trust-region
convex programs: interior point, gradient projection, ellipsoid method
convex programs of certain structures: proximal methods
linear programming: simplex, interior point
quadratic programming: interior point, active set, conjugate gradient, augmented
Lagrangian

Overview of optimization concept Jitkomut Songsiri 81 / 110



Essential considerations
numerical methods are mostly iterative

generate a sequence of points x(k), k = 0, 1, 2, . . . that converge to a solution;
x(k) is called the kth iterate; x(0) is the starting point
computing x(k+1) from x(k) is called one iteration of the algorithm
each iteration typically requires evaluations of f (or ∇f,∇f2) at x(k)

the update rule is typically of the form

x(k+1) = x(k) + tks
(k)

s(k) is called a search direction and
tk is a step size

large step
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Algorithms for unconstrained problems

algorithms search direction meaning
steepest descent s(k) = −∇f(x(k)) direction that f decreases
Newton s(k) = −[∇2f(x(k))]−1∇f(x(k)) minimize quadratic

approximation of f
quasi-Newton s(k) = −[H(k)]−1∇f(x(k)) H(k) approximates the Hessian
conjugate gradient s(k) = −∇f(x(k)) + βks

(k−1) s(k) and s(k−1) are conjugate
– aiming for less storage of
matrices

trust-region solution of subproblem minimizes quadratic model
with region constraint

for each iteration, the trust-region method solves for the search direction s

minimize f(x(k)) +∇f(x(k))T s+ 1
2s

T∇2f(x(k))s
subject to ∥s∥ ≤ δk
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Properties of algorithms

we look at these factors when considering a method

rate of convergence
search direction (greatly impact the convergence)
choice of step size (not all values is applicable)
computational cost (storage needed, complexity)
stopping criterion (practical conditions for checking optimality)
descent property (objective values are monotonically decreasing)
speed of an algorithm depends on:

the cost of evaluating f(x) (and possibly, ∇f(x) , ∇f2(x))
the number of iterations required to acheive a certain accuracy
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Rate of convergence
a sequence x(k) converges to x⋆ and suppose

lim
k→∞

∥x(k+1) − x⋆∥
∥x(k) − x⋆∥

= c

then we obtain
convergence rate range of c example of x(k) → 1

sublinear: c = 1 x(k) = 1 + 1
k+1

linear: c ∈ (0, 1) x(k) = 1 + (1/2)k

superlinear: c = 0 x(k) = 1 + (1/2)1.7
k

we say x(k) converges to x⋆ with order p if

lim
k→∞

∥x(k+1) − x⋆∥
∥x(k) − x⋆∥p

= C, for some C

example: x(k) = 1 + (1/2)2
k converges quadratically to 1
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Convergence rate of algorithms

suppose x(k) → x⋆ (optimal solution); how fast does x(k) go to x⋆ asymptotically?

error after k iterations: typical choices are
Euclidean distance: ek = x(k) − x⋆

the cost difference: ek = f(x(k))− f(x⋆)
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Linear, superlinear and quadratic rate (another representation)
linear convergence: there exists c ∈ (0, 1) such that

∥ek+1∥ ≤ c∥ek∥ for sufficiently large k

also represented as ∥ek∥ ≤ Mck for M > 0 (converges geometrically)
example: ek = (1/2)k

superlinear convergence: there exists a sequence ck with ck → 0 s.t.

∥ek+1∥ ≤ ck∥ek∥ for sufficiently large k

when ck can be further expressed as ck = Cβpk with C > 0, β ∈ (0, 1), p > 1, we
say ek converges superlinearly with order p (e.g., ek = (1/2)1.7

k)
quadratic convergence: there exists a c > 0 s.t.

∥ek+1∥ ≤ c∥ek∥2 for sufficiently large k

example: ek = (1/2)2
k
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Examples of convergence rates

convergence rate of (0.8)k, C(0.8)1.7
k
, C(0.8)2

k in linear and log scales
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Examples of convergence analysis
what is the convergence rate of the following results (from unconstrained optimization)

f(x(l))− p⋆ ≤ 2m2

L2

(
1

2

)2l−n+1

(1)

f(x(k))− p⋆ ≤ cL∥x(0) − x⋆∥2

k
(2)

f(x(k))− p⋆ ≤ ck(f(x(0))− p⋆) (3)
L

2m2
∥∇f(x(k+1))∥2 ≤

(
L

2m2
∥∇f(x(k))∥2

)2

(4)

(assume c, L,m are problem parameters and n is a positive integer)
an asymptotic analysis explains what happen in the limit as x(k) → x⋆

but, in large-scale problems, an algorithm often stops before a full convergence
we are more interested in the accuracy of solution after k iterations presented as
big O of some function in k
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Big O and little o

Big O: the notation f(x) = O(g(x)) for x → c

reads “f(x) has a smaller or same rate of growth as g when x → c”
mathematically, ∃C > 0 such that |f(x)| ≤ C|g(x)| as x → c

example: ex = 1 + x+O(x2) as x → 0

little o: the notation f(x) = o(g(x)) for x → c

reads f(x) has a smaller rate of growth than g when x → c

mathematically, limx→c
|f(x)|
|g(x)| = 0

example: cosx− 1 = o(x) as x → 0
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Solution precision after k iterations
there are two common ways to explain a convergence rate in large-scale problems
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the accuracy of solution after k iterations: e.g. f(x(k))− f⋆ ≤ O(1/k2)

the number of iterations required to obtain an ϵ-optimal solution: e.g. k ≥ O( 1√
ϵ
)

a constant hidden in O usually depends on properties of f and the distance
between x(0) and x⋆
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Convergence rate vs Computational cost

we prefer a fast convergence rate and less computational cost

assume n is the dimension of optimization variable and k is the number of iterations

for example, we prefer
convergence rate: O(1/k2) ≥ O(1/k) ≥ O(1/

√
k)

convergence rate: O(1/
√
ϵ) ≥ O(1/ϵ) ≥ O(1/ϵ)

cost: O(log(n)) ≥ O(n) ≥ O(n3)

(by using ’X ≥ Y ’ we loosely mean ’prefer X to Y’)
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Stopping criterions
criterions rely on optimality measures

unconstrained optimality tolerance: if the gradient is small enough

absolute: ∥∇f(x(k))∥∞ ≤ ϵ relative: ∥∇f(x(k))∥∞ ≤ ϵ∥∇f(x(0))∥∞

constrained optimality tolerance: ∇xL and λifi(x) must be small

max{ ∥∇xL(x, λ, ν)∥, ∥(λ1f1(x), . . . , λmfm(x))∥ } ≤ ϵ

constraint tolerance: ineq constraint should be less than zero, and equality
constraint should be zero

fi(x) ≤ ϵ (close to zero), |hi(x)| ≤ ϵ, ∀i

convex problem with strong duality: if duality gap is zero
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Stopping criterions

criterions based on function and step values

step tolerance: difference of two consecutive steps is small

absolute: ∥x(k+1) − x(k)∥ ≤ ϵ relative: ∥x(k+1) − x(k)∥
∥x(k)∥

≤ ϵ

function tolerance: the change in the objective value is small

absolute: |f(x(k+1))− f(x(k))| ≤ ϵ relative: |f(x(k+1))− f(x(k))|
|f(x(k))|

≤ ϵ

maximum number of iterations
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Optimization softwares
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Numerical exercises

we will solve some small/moderate problems in class

unconstrained problems
nonlinear least-squares (some curve fitting problems)
linear programs
quadratic programs

trajectory control of linear system
least-squares with linear constraints

constrained problems
convex programs

regression problems using ℓ2, ℓ1, ℓ∞-norms and huber loss
portfolio optimization
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Exercises: Unconstrained problems
minimize the following functions

1 generate P ≻ 0, q randomly and let f(x) = (1/2)xTPx− qTx

2 f(x) =
∑n

i=1 xi log xi

3 f(x) = x21 + x1x2 + 1.5x22 − 2 log(x1)− log(x2) using initial points:
x0 = (−1,−1), (1, 1), (2, 10)

4 f(x) = x21 − x1x2 + 2x22 − 2x1 + ex1+x2 using initial points x0 = (5, 10), (10, 10)

5 generate yi ∈ {1,−1} and xi ∈ Rn randomly for i = 1, . . . , N where
n = 20, N = 200 and minimize

f(x) =
1

N

N∑
i=1

log
(
1 + e−yix

T
i β

)
soft max loss in logistic regression

6 Rosenbrock function: f(x) = 100(x2 − x21)
2 + (1− x1)

2
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Exercises: Nonlinear least-squares

1 minimize
∑N

i=1

(
yi − [ae−(xi−b)2/c2 + d]

)2
with variables a, b, c, d

2 minimize
∑N

i=1

(
yi − K

1+e−bT x

)2
with variables K ∈ R, b ∈ Rn
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Exercises: Linear program
1 minimize cTx subject to 1Tx ≤ 1, x ⪰ 0

2 minimize cTx subject to l ⪯ x ⪯ u

3 minimize cTx subject to ∥x∥∞ ≤ 1

4 minimize cTx subject to 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1

5 minimize cTx subject to dTx = α, 0 ⪯ x ⪯ 1 with d ≻ 0 and 0 ≤ α ≤ 1Td

6 sparse SVM: generate y ∈ {1,−1} and xi ∈ Rn randomly for i = 1, . . . , N where
n = 20, N = 200, set λ > 0

minimize
w,b

λ∥w∥1 +
1

N

N∑
i=1

max(0, 1− yi(x
T
i w + b))

7 generate a tall A ∈ Rm×n and y ∈ Rn randomly and minimize ∥Ax− y∥1
8 generate a tall A ∈ Rm×n and y ∈ Rn randomly and minimize ∥Ax− y∥∞
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Exercises: Quadratic program
1 minimize (1/2)xTPx− qTx subject to Ax = b (3 cases: P ⪰ 0, P ⪰̸ 0, P ⪯ 0)
2 minimize ∥Ax− y∥22 subject to (i) ∥x∥1 ≤ α (ii) l ⪯ x ⪯ u (iii) x3 = x4 = 0

3 soft-margin SVM: generate y ∈ {1,−1} and xi ∈ Rn randomly for i = 1, . . . , N

minimizew,b,z (1/2)∥w∥22 + λ1T z
subject to yi(x

T
i w + b) ≥ 1− zi, i = 1, 2 . . . , N

z ⪰ 0

4 given a linear system described by y(t) =
∑t

τ=0 h(τ)u(t− τ), t = 0, 1, . . . , N
where the impulse response is given as h(t) = 1

8(0.8)
t(1− 0.5 cos(2t)), design

u(0), u(1), . . . , u(N) to minimize

1

N + 1

N∑
t=0

(yref(t)− y(t))2 +
λ1

N + 1

N∑
t=0

u(t)2 +
λ2

N

N−1∑
t=0

(u(t+ 1)− u(t))2
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Exercises: Nonlinear constrained problems

1 minimize
∑n

i=1 ci/xi subject to aTx = 1, x ⪰ 0 where a, c ≻ 0

2 minimize x1 + x2 subject to log(x1) + 4 log(x2) ≥ 1

3 minimize −2x1 + x2 subject to (1− x1)
3 − x2 ≥ 0, x2 + 0.25x21 − 1 ≥ 0 (try

many choices of x0)
4 minimize ex1x2x3x4x5 − (1/2)(x31 + x32 + 1)2 subject to

5∑
i=1

x2i = 10, x2x3 − 5x4x5 = 0, x31 + x32 + 1 = 0
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Exercises: Convex programs
1 minimize ∥Ax− y∥2 subject to ∥x− x0∥ ≤ ϵ

2 portfolio optimization:

minimize
x

cTx+ γxTΣx subject to 1Tx = 1, x ⪰ 0

3 lasso: minimize (1/2)∥Ax− y∥22 + γ∥x∥1
4 elastic net: minimize (1/2)∥Ax− y∥22 + γ{(1/2)(1− α)∥x∥22 + α∥x∥1}
5 let p = (p1, p2, . . . , pn) be pmf of X where pk = P (X = ak) for k = 1, . . . , n

maximizep −
∑n

i=1 pi log pi
subject to −0.1 ≤ E[X] ≤ 0.2

0.5 ≤ E[X2] ≤ 0.7

use n = 10, a = (0, 0.1,−0.2, 2, 0.5, 2, 1,−1, 0.8,−0.3)
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Unconstrained problems
MATLAB: optimization toolbox
fminunc uses quasi-newton and trust-region

quasi-newton: requires description of f , uses relative optimality tolerance, relative
step tolerance
trust-region: requires description of f and ∇f , uses absolute optimality tolerance,
relative function tolerance, and absolute step tolerance
https://www.mathworks.com/help/optim/ug/fminunc.html

fminsearch uses a derivative-free method
Python: scipy.optimize

several methods including BFGS, Newton-conjugate-gradient, trust-region
Newton-conjugate-gradient, trust-region truncated generalized Lanczos,
trust-region nearly exact, Nelder-Mead simplex (derivative free method)
https://docs.scipy.org/doc/scipy/tutorial/optimize.html
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Nonlinear least-squares

problem: minimize r1(x)
2 + · · ·+ r2m(x) subject to l ⪯ x ⪯ u

algorithms: trust-region reflective (default) and Levenberg-Marquardt (LM)
for the problem without bounds, LM uses the search direction equation

[J(x(k))TJ(x(k)) + λ(k)I]s(k) = −J(x(k))T r(x(k))

λ(k) is called damping parameter (large λ, closer to gradient step)
the nonlinear equation system r(x) = (r1(x), r2(x), . . . , rm(x)) is called
under-determined when m < n
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MATLAB: optimization toolbox: lsqnonlin
trust-region reflective (default) requires that the nonlinear system r(x) ∈ Rq

cannot be underdetermined, i.e., q ≥ n

https://www.mathworks.com/help/optim/ug/lsqnonlin.html
curvefit solves a curve fitting problem, which is an application of NLS

Python: scipy.optimize.least_squares
trust-region reflective is suitable for large sparse problems
LM does not handle bound constraints and it does not work for under-determined
nonlinear system
another choice: scipy.optimize.leastsq solves the NLS without bounds
scipy.optimize.curve_fit solves a curve-fitting problem using NLS
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Linear programming (LP)

MATLAB: optimization toolbox
linprog uses dual-simplex and interior-point methods
https://www.mathworks.com/help/optim/ug/linprog.html

Python: scipy.optimize.linprog
uses interior-point and simplex methods (support sparse large-scale matrices)
https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.linprog.html
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Quadratic programming

MATLAB: optimization toolbox
quadprog uses interior-point, trust-region reflective, and active-set methods

interior-point only accepts convex problems
trust-region reflective handles problems with only bounds or only linear equality
constraints (not both)
active-set handles indefinite problems only if P ≻ 0 on N (A)

https://www.mathworks.com/help/optim/ug/quadprog.html
Python: scipy.optimize.linprog

uses interior-point and simplex methods (support sparse large-scale matrices)
https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.linprog.html
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Constrained problems

MATLAB: optimization toolbox
fminunc uses several algorithms

interior-point (default) – several ways to provide Hessian of the Lagrangian
trust-region reflective (requires gradient)
sequential quadratic programming (SQP) (not for large-scale)
active-set (not for large-scale)
https://www.mathworks.com/help/optim/ug/fmincon.html

Python: scipy.optimize
several methods including trust-region and sequential least-square programming
(SLSQP)
https://docs.scipy.org/doc/scipy/tutorial/optimize.html
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Convex problems

MATLAB: cvx
CVX is a MATLAB-based modeling system for convex optimization
http://cvxr.com/cvx/

Python
CVXPY: Python-embedded modeling language for convex optimization problems
available at https://www.cvxpy.org/ by Stephen Boyd group
CVXOPT: Python-based package for convex optimization available at
http://cvxopt.org/ by M. Andersen, J. Dahl and L. Vandenberghe
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