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some structures that are amenable for applying the methods in this chapter
global consensus: minimizing Zf\; fi(x) is equivalent to
minimize Zi\il fi(x;) subjecttox; =x9=---=2xpN
(minimizing local objective on a global x)
exchange problem: minimizing social cost subject to market clearing

N N
minimize Zfl(xz) subject to sz =0

=1 =1

allocation problem

N N
minimizeri(x) subject to x > 0, Zmz =
i=1 i=1
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ADMM solves problems in the form

minimize, . f(z) + g(2) (1)
subject to Ax+ Bz =c

fyg: R" = RU{+o0} are closed proper convex (can be nonsmooth)
the objective function is separable across splitting variable z and z

the augmented Lagrangian associated with the problem is
Ly(w.2.y) = f(2) + 9(2) + y"(Az + Bz — ¢) + (p/2)|| Az + Bz — |}

where p > 0 is a penalty parameter and y € R™ is a dual variable

L, is the usual Lagrangian with an quadratic penalty on the equality constraint
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consider the problem (1), ADMM consists of the iterations

1 = argmin Ly(z, 2 k)
x
Pl — argmin Lp(xk+1,z,yk)
z
yk—f—l _ yk —I—p(Al'IH_l + sz+1 _ C)

in z- and z- update steps, L, is minimized over the variable using the most recent
value of the other primal variable and the dual variable

the method of multipliers has the form

(xk-‘rl’zk-i-l) = argmin Lp(x,z,yk), yk—‘rl — yk; + p(Al,k—‘rl + sz—‘rl o C)

T,2
hence, the term alternating direction in ADMM accounts for the alternating
update in x, 2z
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u = (1/p)y: the scaled dual variable
r = Ax 4+ Bz — ¢: residual and complete the square

y'r+(p/Nrl? = (/2 +y/pl* = (1/20) Iyl
= (0/2lr +ul® = (p/2)]ul?

using the scaled dual variable, we can express ADMM in scaled form as

28 = argmin (f(m) +(p/2)|| Az + B2* —c + ukH%>
x

2 = argmin (g(z) + (p/2)|| Az + Bz — ¢ + ukH%)
z

B SN T ST - 2. e BN g

(u¥ is the running sum of the residuals)

Jitkomut Songsiri 7 /30



the generic constrained convex optimization

minimize f(x) subjectto x € C, f and set C are convex
x

can be rewritten in ADMM format using g(z) = I¢(x) as

minimize f(x)+ g(z) subjectto x—z=0

T,z

the scaled form of ADMM is

P = argmin (f(2) + (p/2)]l2 = 2 + )
X

S 1, (mk+l+uk>

I e s

ADMM is beneficial if the x-update and the projection on C' are computationally simple
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minimmize (1/2)2" Pz + ¢"x  subjectto Az =b, x =0, PeS"
it can be expressed in ADMM format on page 8 with
f(z)=(1/2)2" Pz +¢'z, domf={z|Az=0b}, g(z)= IRi(x)
the z-update step becomes an equality-constrained quadratic minimization

¥ = argmin (1/2)2T Pz + ¢Tx + (p/2)||z — 2% + u*||3)
Az=b

(KKT condition is a linear system — hence, can be solved easily)
the z-update step is simply a projection on the non-negative orthant

zk:-i—l _ HRi (xk:-i-l + uk:) _ max(O,ka + ukz) A (xk-i-l + uk)+
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general cases that will be encountered repeatedly

we illlustrate with the xz-update which has the form

2t = argmin (f(z) + (p/2)|| Az — v]3),

x

proximal operator: when A =1

f is quadratic: f(x) = (1/2)2T Pz +q¢Tx +r
decomposition: f(x) =, fi(z;)

fr-norm: f(x) = Al
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let f: R"™ — RU {400} be a closed proper convex function

the proximal operator prox,; : R" — R™ of f with parameter A > 0 is defined by

. 1
prox(v) = arguin(1(0) + gl ol

prox, s(v) is a point that compromises between minimizing fand being near v
when f is the indicator function: Io(z) =0 if x € C and I¢(x) = 400 otherwise
prox;(v) = Ilc(v) = argmin . |2 — v||2
i Fla.y) = fi(x) + foly) then prox,(u,v) = (prox,, (u), proxy, (v)
if f(z) = ag(x) + b with a > 0 then prox, ;(v) = prox,,(v)
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the problem of minimizing f(x) + g(x) has the ADMM format as

minimize f(x)+ g(z) subjectto x—2z=0

T,z

the ADMM update in scaled form is

281 = argmin f@)+ (p/2)||z — 2+ ukH%
X

M= argmin g(2) + (p/2)l|2FH — 2+ uF3
z

R S +xk+1 — Gkt

z-update step is to find proxf/p(zk —ub)

z-update step is to find prox,,(z"*! + u¥)

ADMM is a proximal algorithm; favorable when the proximal operators can be
efficiently computed
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proximal operator of I-(z) is the projection on C

set () I (v)
nonnegative orthant R’} max (0, v)
affine set {z|Az=b} v — At (Av —b)
v— AT(AAT) 1 (Av —b), Ais fat
hyperplane {x|aTz =0} v+ <b|‘a"|;”) a
b, vk <l
box {zllzz=2u} (Me)e = vk, Ik S v <y,

probability simplex
2-norm ball

consensus

{x|z=0,1Tz =1}
{z ] flzfla <1}

{reRY |z = =an}

Uk, Uk 2> Uk
(v—al)y with1T(v —al), =1
, >1
e (v) = v/[[vll2, vl
v, o]z <1

(1/N)Zl 1Y
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problem: minimize,(1/2)||x — v||2 subject to = 0 and 17z =1
Lagrangian: L(z,\,v) = (1/2)||z — v|2 = M2+ v(1T2 — 1)
zero gradient: Vo, L =0givesx =A+v—vl
dual function: g(\,v) = —(1/2)||]A — (v1 —v)||3 — v + (1/2)||v]|3
dual problem: maximizey , g(\, ) subject to A = 0
any vector can be split as u = u4 + u_ = max(0, u) + min(0, u)
minimize ||\ — ¢||2 subject to A = 0 gives \* = max(0,c) = c;
gv) =g\ v) = (=1/2)| = ("1 = v)_[F — v + (1/2)|[v]l
dual problem: minimize, (1/2)||(v —v1),|%+v
optimal primal: z = (v1—-v); — (v1 —v)=—-(¥1—-v)_ = (v—vl)4

with feasibility: 17 (v — v1) = 1 (we can use bisection to solve for v)
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f(z) prox, ¢(v)

(1/2)2" Pz +qTz+c, P€ST (I+AP) v —\g)
V; — )\, (v > A
|z||1 (soft thresholding) (prox,s(v))i = 4 0, lvi] < A
v+ A, v < —A
or sign(v)([v] — )1 2 Sy(v)

1— 2o, >\
|z|l2 (block soft thresholding) ( H”HQ)U Iollz 2
) [o]l2 <A
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problem: minimize  (1/2)||Az — b||3 + ||z|1
ADMM format: minimize  f(z) + Ag(z) subject to x — z = 0 with

fla) = (1/2)[[ Az — b3 = (1/2)aT AT Az — (ATb)T2 + bTb and g(2) = |||
ADMM updates are

e = (ATA+ p) Y ATb + p(zF —u¥))  (main computation)
A= 8y, @ +uh)  (soft thresholding)
B e

which follows from
281 = argmin f(@)+ (p/2)||x — 2F 4 ukH%) = proxf/p(zk — uk)

At = argmin Ag(2) + (p/2)[|2"F! — 2 4+ uF||5 = prox,,, (2" + ")
z
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define the consensus set
C={(z1,22,...,2N) |T1 =290 =---=2N }, each x; is a vector
. . .. N

problem in canonical form: minimize Y .", fi(z;) + Ic(z1,22,...,2N)

problem in ADMM format: f(z) = Zfil fi(zi) and g(2) = Ic(z1, ..., 2N)
proximal of f can be separable:

prox, s(u) = (prox, s, (u1), prox,y, (u2), ..., prox,, (un))

proximal of ¢ is the projection on C
N
prox,,(v) = llg(v) = (1/N) Z =0 (the average)
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ADMM updates (after simplifying) are as follows fori =1,2,..., N
N
= (1/N)Y b, = proxg, (@ —ub),  uft =k 4t g
i=1

k+1 k+1

the updates can be distributed in parallel to obtain u; " and x;
when f;(x;) is a goodness of fit using the ith data set, the prox step on = can be
interpreted as /o-regularized estimation

the ADMM steps follows from page 13 and are simplified from

N

A= (1/N) Z (xf+1 + uf) L ghtl g gk Rl kg gl kL
i=1

plugging the 1st eq into the 2nd eq gives @*+! =

average)

0 (dual variable has zero
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define the allocation set
C={(x1,....,2Nn) |2; >0, 1 +22+--+2Ny=0b}

problem: minimize Zf\il fi(z;) subject to = > 0 and vazl ;=5
problem in ADMM format: f(x) = Zf\il fi(x;) and g(2) = Io (21, 22, ..., 2N)

proximal of f can be separable:

prox, s(u) = (prox, s, (u1), prox, s, (uz), . .., prox, s, (un))

proximal of g is the projection on C' (similar to projection on probability simplex)
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ADMM updates for i =1,2,..., N

k+

1
it = proxfi/p(zk k), S (@Rt k), uF T = ok g gt ke

the xz-update can be done in parallel
the z-update is a projection on probability simplex that can be solved from the
dual, using bisection
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assumptions:
the extended functions f and g are closed, proper, and convex (implying that the

x- and z-updates are solvable
the unaugmented Lagrangian L has a saddle point (z*, z*,y*) (not unique)

L(x*7z*7y) S L($*7z*’y*) S L(:E? z? y*)

convergence results: as kK — co, ADMM iterations satisfy
residual convergence: 7% — 0
objective convergence: f(z*) + g(2¥) — p* (ADMM objective approaches the

optimal value)
dual variable convergence: y* — y* where y* is a dual optimal point
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define the primal and dual residuals at iteration k + 1 as
sFL = pATB(HHL — k), okl = gghtl | Bok+l ¢
in a convergence proof of ADMM, it can be shown that when ||zF — z*||y < d,
F@®) +9(z") = p* < ="+ dlls" |l < My lllr® 2 + d]s"||2
this suggests a stopping rule that the primal and dual residuals must be small

¥l < e and st < ebe!

denote €2P* and €'®! the absolute and relative tolerance values, we can choose
P — \/ﬁeabs + el max{ |]Axk||2, HBZkHQ, llell2 }, A € RPX™
6dual _ \/ﬁeabs + 6relHATych2
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problem parameters: (m,n) = (150,500), A = 0.1Apax
ADMM parameter: p € {0.5,1,5}, tolerance: €25 = 1074 ¢l = 1072

Objective

05 10! Primal residual norm Dual residual norm

() = p) /0"
Y
—

f(a*)

"o 50 100 0 50 100 0 50 100
lteration Iteration lteration

elapsed time is around 0.01 sec (and around 0.7 sec for (m,n) = (1500, 5000))
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local objective: f;(z) = (1/2)2T Pix + ¢/« for i = 1,2,..., N = 10 and = € R'®

Objective Primal residual norm Dual residual norm

—p=01 o= —p=01

0 20 40 60 8 100 0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration Iteration

small p corresponds to slow convergence in primal residual

elapsed time: 0.1-0.2 sec (not parallel, CVX took 1.1 sec)
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local objective: fi(x) = (1/2)a;x? + bz fori =1,2,...,N =100 and € R

Objective Primal residual norm Dual residual norm
01 102 102
—p=01
—p=1
p= 10! p= p=10
o —— 10°
/ 10° \
0.1 \ 102 \
) 102 10 -
N 3
Sos 10 106
10
0.4 10°
107
K 10
05 0 10
06 107 10712
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Iteration Iteration Iteration

elapsed time: 0.0007 sec (not parallel, CVX took 1 sec)

ADMM parameter (p) is chosen to obtain good convergence in both 7 and s
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for some problem structures, ADMM has a low computational cost, suitable for
large-scale problems

ADMM solutions can be returned with moderate accuracy (when high accuracy is
not crucial)

ADMM parameter (p) is typically tuned by users; it is often problem-dependent,
where literature on adaptive penalty approach exists

ADMM can be applied to non-convex problems where convergence is guaranteed
in some problem types
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