

## Outline

- 1 Alternating direction method of multipliers (ADMM)
  - constrained convex optimization
  - General patterns of ADMM
- 2 Proximal methods
  - Proximal operator
  - ADMM in proximal form
  - Projection on some convex sets
  - Proximal operators in closed-form
- 3 ADMM in applications
  - Lasso
  - Global consensus
  - Allocation
- 4 ADMM convergence



Proximal methods Jitkomut Songsiri 2 / 30

# Alternating direction method of multipliers (ADMM)

3 / 30

### Problem structures

some structures that are amenable for applying the methods in this chapter

- global consensus: minimizing  $\sum_{i=1}^N f_i(x)$  is equivalent to minimize  $\sum_{i=1}^N f_i(x_i)$  subject to  $x_1=x_2=\cdots=x_N$  (minimizing local objective on a global x)
- exchange problem: minimizing social cost subject to market clearing

minimize 
$$\sum_{i=1}^{N} f_i(x_i)$$
 subject to  $\sum_{i=1}^{N} x_i = 0$ 

allocation problem

$$\text{minimize } \sum_{i=1}^N f_i(x) \text{ subject to } x \succeq 0, \quad \sum_{i=1}^N x_i = b_i$$



4 / 30

Proximal methods Jitkomut Songsiri

## Problem format for ADMM

## ADMM solves problems in the form

- $lacksquare f,g:\mathbf{R}^n
  ightarrow\mathbf{R}\cup\{+\infty\}$  are closed proper convex (can be nonsmooth)
- $lue{}$  the objective function is separable across splitting variable x and z
- the augmented Lagrangian associated with the problem is

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + (\rho/2)||Ax + Bz - c||_{2}^{2}$$

where  $\rho > 0$  is a penalty parameter and  $y \in \mathbf{R}^n$  is a dual variable

lacksquare L is the usual Lagrangian with an quadratic penalty on the equality constraint

(ㅁ▶◀鬪▶◀불▶◀불▶ 불 쒸٩0

Proximal methods Jitkomut Songsiri 5 / 30

## ADMM algorithm

consider the problem (1), ADMM consists of the iterations

$$x^{k+1} = \underset{x}{\operatorname{argmin}} L_{\rho}(x, z^{k}, y^{k})$$

$$z^{k+1} = \underset{z}{\operatorname{argmin}} L_{\rho}(x^{k+1}, z, y^{k})$$

$$y^{k+1} = y^{k} + \rho(Ax^{k+1} + Bz^{k+1} - c)$$

- lacktriangleright in x- and z- update steps,  $L_{
  ho}$  is minimized over the variable using the most recent value of the other primal variable and the dual variable
- the method of multipliers has the form

$$(x^{k+1}, z^{k+1}) = \underset{x,z}{\operatorname{argmin}} L_{\rho}(x, z, y^k), \quad y^{k+1} = y^k + \rho(Ax^{k+1} + Bz^{k+1} - c)$$

hence, the term alternating direction in ADMM accounts for the alternating update in x,z

6 / 30

Proximal methods Jitkomut Songsiri

## Scaled form of ADMM

- $u = (1/\rho)y$ : the **scaled** dual variable
- r = Ax + Bz c: residual and complete the square

$$y^{T}r + (\rho/2)||r||^{2} = (\rho/2)||r + y/\rho||^{2} - (1/2\rho)||y||^{2}$$
$$= (\rho/2)||r + u||^{2} - (\rho/2)||u||^{2}$$

using the scaled dual variable, we can express ADMM in scaled form as

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \left( f(x) + (\rho/2) \|Ax + Bz^k - c + u^k\|_2^2 \right)$$

$$z^{k+1} = \underset{z}{\operatorname{argmin}} \left( g(z) + (\rho/2) \|Ax^{k+1} + Bz - c + u^k\|_2^2 \right)$$

$$u^{k+1} = u^k + Ax^{k+1} + Bz^{k+1} - c := u^k + r^{k+1}$$

 $(u^k)$  is the running sum of the residuals)

Jitkomut Songsiri 7 / 30

## Example: constrained convex optimization

the generic constrained convex optimization

$$\label{eq:definition} \mathop{\mathrm{minimize}}_{x} \ f(x) \quad \text{subject to} \quad x \in C, \quad f \text{ and set } C \text{ are convex}$$

can be rewritten in ADMM format using  $g(x) = I_C(x)$  as

$$\label{eq:force_equation} \underset{x,z}{\text{minimize}} \quad f(x) + g(z) \quad \text{subject to} \quad x - z = 0$$

the scaled form of ADMM is

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \left( f(x) + (\rho/2) \|x - z^k + u^k\|_2^2 \right)$$
$$z^{k+1} = \Pi_C \left( x^{k+1} + u^k \right)$$
$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

ADMM is beneficial if the x-update and the projection on C are computationally simple

Proximal methods Jitkomut Songsiri 8 / 30

# Example: quadratic cost and linear constraints

 $\underset{x}{\operatorname{minimize}} \ (1/2)x^TPx + q^Tx \quad \text{subject to} \quad Ax = b, \ x \succeq 0, \quad P \in \mathbf{S}^n_+$ 

it can be expressed in ADMM format on page 8 with

$$f(x) = (1/2)x^T P x + q^T x$$
,  $\mathbf{dom} f = \{x \mid Ax = b \}$ ,  $g(x) = I_{\mathbf{R}^n_+}(x)$ 

the x-update step becomes an equality-constrained quadratic minimization

$$x^{k+1} = \underset{Ax=b}{\operatorname{argmin}} (1/2)x^T P x + q^T x + (\rho/2) \|x - z^k + u^k\|_2^2)$$

(KKT condition is a linear system — hence, can be solved easily) the z-update step is simply a projection on the non-negative orthant

$$z^{k+1} = \Pi_{\mathbf{R}_+^n}(x^{k+1} + u^k) = \max(0, x^{k+1} + u^k) \triangleq (x^{k+1} + u^k)_+$$

Proximal methods Jitkomut Songsiri 9 / 30

# General patterns of ADMM

general cases that will be encountered repeatedly

we illlustrate with the x-update which has the form

$$x^{+} = \underset{x}{\operatorname{argmin}} (f(x) + (\rho/2) ||Ax - v||_{2}^{2}), \quad v = -Bz + c$$

- $\blacksquare$  proximal operator: when A=I
- f is quadratic:  $f(x) = (1/2)x^T P x + q^T x + r$
- decomposition:  $f(x) = \sum_i f_i(x_i)$
- $l_1\text{-norm: } f(x) = \lambda ||x||_1$

Proximal methods Jitkomut Songsiri 10 / 30

### Proximal methods

# Proximal operator

let  $f: \mathbf{R}^n \to \mathbf{R} \cup \{+\infty\}$  be a closed proper convex function

the proximal operator  $\mathbf{prox}_{\lambda f}: \mathbf{R}^n \to \mathbf{R}^n$  of f with parameter  $\lambda > 0$  is defined by

$$\operatorname{prox}_{\lambda f}(v) = \underset{x}{\operatorname{argmin}} \quad \left( f(x) + \frac{1}{2\lambda} \|x - v\|_2^2 \right)$$

 $\mathbf{prox}_{\lambda f}(v)$  is a point that compromises between minimizing f and being near v

when f is the indicator function:  $I_C(x)=0$  if  $x\in C$  and  $I_C(x)=+\infty$  otherwise

$$\operatorname{prox}_f(v) = \Pi_C(v) = \operatorname{argmin}_{x \in C} \|x - v\|_2$$

- $\blacksquare$  if  $f(x,y)=f_1(x)+f_2(y)$  then  $\mathbf{prox}_f(u,v)=(\mathbf{prox}_{f_1}(u),\mathbf{prox}_{f_2}(v))$
- $\blacksquare$  if f(x)=ag(x)+b with a>0 then  $\mathbf{prox}_{\lambda f}(v)=\mathbf{prox}_{a\lambda g}(v)$

(ロ > ᅦ┛ > ᅦ틸 > ᅦ틸 > ) 및 ' 少오C

Proximal methods Jitkomut Songsiri 12 / 30

# ADMM in proximal form

the problem of minimizing f(x) + g(x) has the ADMM format as

$$\label{eq:force_equation} \underset{x,z}{\text{minimize}} \quad f(x) + g(z) \quad \text{subject to} \quad x - z = 0$$

the ADMM update in scaled form is

$$x^{k+1} = \underset{x}{\operatorname{argmin}} f(x) + (\rho/2) \|x - z^k + u^k\|_2^2$$

$$z^{k+1} = \underset{z}{\operatorname{argmin}} g(z) + (\rho/2) \|x^{k+1} - z + u^k\|_2^2$$

$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

- x-update step is to find  $\operatorname{prox}_{f/\rho}(z^k u^k)$
- **z**-update step is to find  $\mathbf{prox}_{a/o}(x^{k+1} + u^k)$
- ADMM is a proximal algorithm; favorable when the proximal operators can be efficiently computed

Proximal methods Jitkomut Songsiri 13 / 30

## Projection on some convex sets

proximal operator of  $I_C(x)$  is the projection on C

| set                 | C                                                | $\Pi_C(v)$                                                                                                     |
|---------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| nonnegative orthant | $R^n_+$                                          | $\max(0, v)$                                                                                                   |
| affine set          | $\{x \mid Ax = b \}$                             | $v - A^{\dagger}(Av - b)$                                                                                      |
|                     |                                                  | $v-A^T(AA^T)^{-1}(Av-b),\;A$ is fat                                                                            |
| hyperplane          | $\{x\mid a^Tx=b\ \}$                             | $v + \left(\frac{b - a^T v}{\ a\ _2^2}\right) a$                                                               |
|                     |                                                  | $\int l_k,  v_k \leq l_k$                                                                                      |
| box                 | $\{x \mid l \leq x \leq u \}$                    | $(\Pi_C)_k = \begin{cases} l_k, & v_k \le l_k \\ v_k, & l_k \le v_k \le u_k \\ u_k, & v_k \ge u_k \end{cases}$ |
|                     |                                                  | $u_k, v_k \ge u_k$                                                                                             |
| probability simplex | $\{x\mid x\succeq 0, 1^Tx=1\;\}$                 | $(v-lpha 1)_+$ with $1^T(v-lpha 1)_+=1$                                                                        |
| 2-norm ball         | $\int_{T}  \ x\ _{2} < 1$                        | $ \Pi_C(v) = \begin{cases} v/\ v\ _2, & \ v\ _2 > 1\\ v, & \ v\ _2 \le 1 \end{cases}  (1/N) \sum_{i=1}^N v_i $ |
| 2 HOITH Dall        | [₩     ₩  2 <u> </u>                             | $  v  _2 \le 1$                                                                                                |
| consensus           | $\{x \in \mathbf{R}^N \mid x_1 = \dots = x_N \}$ | $(1/N)\sum_{i=1}^{N} v_i$                                                                                      |

Proximal methods Jitkomut Songsiri 14 / 30

# Projection on probability simplex

problem: minimize
$$_x(1/2)||x-v||_2$$
 subject to  $x\succeq 0$  and  $\mathbf{1}^Tx=1$ 

Lagrangian: 
$$L(x, \lambda, \nu) = (1/2)||x - v||_2^2 - \lambda^T x + \nu (\mathbf{1}^T x - 1)$$

zero gradient: 
$$\nabla_x L = 0$$
 gives  $x = \lambda + v - \nu \mathbf{1}$ 

dual function: 
$$g(\lambda, \nu) = -(1/2) \|\lambda - (\nu \mathbf{1} - v)\|_2^2 - \nu + (1/2) \|v\|_2^2$$

dual problem: maximize $_{\lambda,\nu} g(\lambda,\nu)$  subject to  $\lambda \succeq 0$ 

- $\blacksquare$  any vector can be split as  $u=u_++u_-=\max(0,u)+\min(0,u)$
- lacksquare minimize  $\|\lambda-c\|_2^2$  subject to  $\lambda\succeq 0$  gives  $\lambda^\star=\max(0,c)=c_+$
- $\tilde{g}(\nu) = g(\lambda^*, \nu) = (-1/2) \| (\nu \mathbf{1} v)_-\|_2^2 \nu + (1/2) \|v\|_2$
- dual problem: minimize $_{\nu}$   $(1/2)\|(v-\nu\mathbf{1})_{+}\|_{2}^{2}+\nu$
- optimal primal:  $x = (\nu \mathbf{1} v)_+ (\nu \mathbf{1} v) = -(\nu \mathbf{1} v)_- = (v \nu \mathbf{1})_+$

with feasibility:  $\mathbf{1}^T(v-\nu\mathbf{1})_+=1$  (we can use bisection to solve for  $\nu$ )

(ㅁ▶◀@▶◀불▶◀불▶ 를 씻qG

Proximal methods Jitkomut Songsiri 15 / 30

# Some proximal operators in closed-form

| f(x)                                               | $prox_{\lambda f}(v)$                                                                                                                                          |  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $(1/2)x^T P x + q^T x + c, \ P \in \mathbf{S}_+^n$ | $(I + \lambda P)^{-1}(v - \lambda q)$                                                                                                                          |  |
| $  x  _1$ (soft thresholding)                      | $(\mathbf{prox}_{\lambda f}(v))_i = \begin{cases} v_i - \lambda, & v_i \ge \lambda \\ 0, &  v_i  \le \lambda \\ v_i + \lambda, & v_i \le -\lambda \end{cases}$ |  |
|                                                    | or $\mathbf{sign}(v)( v -\lambda)_+ \triangleq S_{\lambda}(v)$                                                                                                 |  |
| $  x  _2$ (block soft thresholding)                | $\begin{cases} (1 - \frac{\lambda}{\ v\ _2})v, & \ v\ _2 \ge \lambda \\ 0, & \ v\ _2 < \lambda \end{cases}$                                                    |  |
|                                                    | $\begin{cases} 0, & \ v\ _2 < \lambda \end{cases}$                                                                                                             |  |

Proximal methods Jitkomut Songsiri 16 / 30

# ADMM in applications

## Solving lasso with ADMM

problem: minimize  $(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$ 

ADMM format: minimize  $f(x) + \lambda g(z)$  subject to x - z = 0 with

$$f(x) = (1/2)\|Ax - b\|_2^2 = (1/2)x^TA^TAx - (A^Tb)^Tx + b^Tb \text{ and } g(z) = \|z\|_1$$

ADMM updates are

$$\begin{array}{lll} x^{k+1} &=& (A^TA+\rho I)^{-1}(A^Tb+\rho(z^k-u^k)) & \text{(main computation)} \\ z^{k+1} &=& S_{\lambda/\rho}(x^{k+1}+u^k) & \text{(soft thresholding)} \\ u^{k+1} &=& u^k+x^{k+1}-z^{k+1} \end{array}$$

which follows from

$$\begin{array}{lcl} x^{k+1} & = & \underset{x}{\operatorname{argmin}} & f(x) + (\rho/2) \|x - z^k + u^k\|_2^2) = \operatorname{prox}_{f/\rho}(z^k - u^k) \\ \\ z^{k+1} & = & \underset{x}{\operatorname{argmin}} & \lambda g(z) + (\rho/2) \|x^{k+1} - z + u^k\|_2^2 = \operatorname{prox}_{\lambda g/\rho}(x^{k+1} + u^k) \end{array}$$

Proximal methods Jitkomut Songsiri

# ADMM for global consensus problem

define the consensus set

$$C = \{ (x_1, x_2, \dots, x_N) \mid x_1 = x_2 = \dots = x_N \}, \text{ each } x_i \text{ is a vector}$$

problem in canonical form: minimize  $\sum_{i=1}^{N} f_i(x_i) + I_C(x_1, x_2, \dots, x_N)$ 

problem in ADMM format: 
$$f(x) = \sum_{i=1}^N f_i(x_i)$$
 and  $g(z) = I_C(z_1, \dots, z_N)$ 

 $\blacksquare$  proximal of f can be separable:

$$\operatorname{prox}_{\lambda f}(u) = (\operatorname{prox}_{\lambda f_1}(u_1), \operatorname{prox}_{\lambda f_2}(u_2), \ldots, \operatorname{prox}_{\lambda f_N}(u_N))$$

proximal of g is the projection on C

$$\mathbf{prox}_{\lambda g}(v) = \Pi_C(v) = (1/N) \sum_{i=1}^N v_i = \bar{v}$$
 (the average)

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺 · 釣♀⊙

19 / 30

Proximal methods Jitkomut Songsiri

ADMM updates (after simplifying) are as follows for  $i=1,2,\ldots,N$ 

$$\bar{x}^k = (1/N) \sum_{i=1}^N x_i^k, \quad x_i^{k+1} = \mathsf{prox}_{f_i/\rho}(\bar{x}^k - u_i^k), \quad u_i^{k+1} = u_i^k + x_i^{k+1} - \bar{x}^{k+1}$$

- lacksquare the updates can be distributed in parallel to obtain  $u_i^{k+1}$  and  $x_i^{k+1}$
- when  $f_i(x_i)$  is a goodness of fit using the ith data set, the prox step on x can be interpreted as  $\ell_2$ -regularized estimation
- the ADMM steps follows from page 13 and are simplified from

$$z_i^{k+1} = (1/N) \sum_{i=1}^{N} \left( x_i^{k+1} + u_i^k \right) \triangleq \bar{x}^{k+1} + \bar{u}^k, \quad u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

plugging the 1st eq into the 2nd eq gives  $\bar{u}^{k+1}=0$  (dual variable has zero average)

Proximal methods Jitkomut Songsiri 20 / 30

# ADMM for allocation problem

#### define the allocation set

$$C = \{ (x_1, \dots, x_N) \mid x_i \ge 0, \ x_1 + x_2 + \dots + x_N = b \}$$

problem: minimize  $\sum_{i=1}^{N} f_i(x_i)$  subject to  $x \succeq 0$  and  $\sum_{i=1}^{N} x_i = b$ 

problem in ADMM format:  $f(x) = \sum_{i=1}^N f_i(x_i)$  and  $g(z) = I_C(z_1, z_2, \dots, z_N)$ 

 $\blacksquare$  proximal of f can be separable:

$$\operatorname{prox}_{\lambda f}(u) = (\operatorname{prox}_{\lambda f_1}(u_1), \operatorname{prox}_{\lambda f_2}(u_2), \dots, \operatorname{prox}_{\lambda f_N}(u_N))$$

lacktriangleright proximal of g is the projection on C (similar to projection on probability simplex)

<ロト < 回 > < 巨 > < 巨 > 三 の < の

Proximal methods Jitkomut Songsiri 21 / 30

ADMM updates for  $i = 1, 2, \dots, N$ 

$$x_i^{k+1} = \mathbf{prox}_{f_i/\rho}(z^k - u^k), \quad z^{k+1} = \Pi_C(x^{k+1} + u^k), \quad u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

- the x-update can be done in parallel
- $\blacksquare$  the z-update is a projection on probability simplex that can be solved from the dual, using bisection

Proximal methods Jitkomut Songsiri 22 / 30

### assumptions:

- $lue{}$  the extended functions f and g are closed, proper, and convex (implying that the x- and z-updates are solvable
- $\blacksquare$  the unaugmented Lagrangian L has a saddle point  $(x^\star,z^\star,y^\star)$  (not unique)

$$L(x^{\star}, z^{\star}, y) \le L(x^{\star}, z^{\star}, y^{\star}) \le L(x, z, y^{\star})$$

**convergence results:** as  $k \to \infty$ , ADMM iterations satisfy

- $\blacksquare$  residual convergence:  $r^k \to 0$
- 2 objective convergence:  $f(x^k) + g(z^k) \to p^\star$  (ADMM objective approaches the optimal value)
- ${f 3}$  dual variable convergence:  $y^k o y^\star$  where  $y^\star$  is a dual optimal point

Proximal methods Jitkomut Songsiri 24 / 30

# Stopping criterion

define the **primal** and **dual residuals** at iteration k + 1 as

$$s^{k+1} = \rho A^T B(z^{k+1} - z^k), \quad r^{k+1} = Ax^{k+1} + Bz^{k+1} - c$$

in a convergence proof of ADMM, it can be shown that when  $\|x^k - x^\star\|_2 \le d$ ,

$$f(x^k) + g(z^k) - p^* \le -(y^k)^T r^k + d||s^k||_2 \le ||y^k||_2 ||r^k||_2 + d||s^k||_2$$

this suggests a stopping rule that the primal and dual residuals must be small

$$\|r^k\|_2 \le \epsilon^{\mathrm{pri}}$$
 and  $\|s^k\|_2 \le \epsilon^{\mathrm{dual}}$ 

denote  $\epsilon^{abs}$  and  $\epsilon^{rel}$  the absolute and relative tolerance values, we can choose

$$\begin{array}{lll} \epsilon^{\mathrm{pri}} & = & \sqrt{p} \epsilon^{\mathrm{abs}} + \epsilon^{\mathrm{rel}} \max \{ \; \|Ax^k\|_2, \|Bz^k\|_2, \|c\|_2 \; \}, \; A \in \mathbf{R}^{p \times n} \\ \epsilon^{\mathrm{dual}} & = & \sqrt{n} \epsilon^{\mathrm{abs}} + \epsilon^{\mathrm{rel}} \|A^Ty^k\|_2 \end{array}$$

4 = > 4 를 > 4 를 > 4 를 > 4 를 > 4 를 > 9

## ADMM iterations: lasso

problem parameters:  $(m,n)=(150,500), \lambda=0.1\lambda_{\max}$ 

ADMM parameter:  $\rho \in \{0.5, 1, 5\}$ , tolerance:  $\epsilon^{abs} = 10^{-4}, \epsilon^{rel} = 10^{-2}$ 



elapsed time is around 0.01 sec (and around 0.7 sec for (m,n)=(1500,5000))

Proximal methods Jitkomut Songsiri 26 / 30

## ADMM iterations: consensus

local objective:  $f_i(x) = (1/2)x^T P_i x + q_i^T x$  for  $i = 1, 2, \dots, N = 10$  and  $x \in \mathbf{R}^{100}$ 



small  $\rho$  corresponds to slow convergence in primal residual

elapsed time: 0.1-0.2 sec (not parallel, CVX took 1.1 sec)

Proximal methods

Jitkomut Songsiri

27 / 30

## ADMM iterations: allocation

local objective:  $f_i(x) = (1/2)a_ix^2 + b_ix$  for i = 1, 2, ..., N = 100 and  $x \in \mathbf{R}$ 



elapsed time: 0.0007 sec (not parallel, CVX took 1 sec)

ADMM parameter  $(\rho)$  is chosen to obtain good convergence in both r and s

Proximal methods

Jitkomut Songsiri

28 / 30

# Summary

- for some problem structures, ADMM has a low computational cost, suitable for large-scale problems
- ADMM solutions can be returned with moderate accuracy (when high accuracy is not crucial)
- ADMM parameter  $(\rho)$  is typically tuned by users; it is often problem-dependent, where literature on adaptive penalty approach exists
- ADMM can be applied to non-convex problems where convergence is guaranteed in some problem types

Proximal methods Jitkomut Songsiri 29 / 30

## References

- S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed Optimization and Statistical Learnign via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning, 2011
- N. Parikh and S. Boyd, *Proximal Algorithms*, Foundations and Trends in Optimization, 2013
- J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, Efficient Projections onto the ℓ₁-ball for learning in high dimensions, ICML, 2008, https://stanford.edu/~jduchi/projects/DuchiShSiCh08.pdf

Proximal methods Jitkomut Songsiri 30 / 30